A Metric Learning Approach to Graph Edit Costs for Regression
Résumé
Graph edit distance (GED) is a widely used dissimilarity measure between graphs. It is a natural metric for comparing graphs and respects the nature of the underlying space, and provides interpretability for operations on graphs. As a key ingredient of the GED, the choice of edit cost functions has a dramatic effect on the GED and therefore the classification or regression performances. In this paper, in the spirit of metric learning, we propose a strategy to optimize edit costs according to a particular prediction task, which avoids the use of predefined costs. An alternate iterative procedure is proposed to preserve the distances in both the underlying spaces, where the update on edit costs obtained by solving a constrained linear problem and a re-computation of the optimal edit paths according to the newly computed costs are performed alternately. Experiments show that regression using the optimized costs yields better performances compared to random or expert costs.
Domaines
Machine Learning [stat.ML] Traitement du signal et de l'image [eess.SP] Statistiques [math.ST] Traitement du signal et de l'image [eess.SP] Réseau de neurones [cs.NE] Apprentissage [cs.LG] Ordinateur et société [cs.CY] Vision par ordinateur et reconnaissance de formes [cs.CV] Intelligence artificielle [cs.AI]Origine | Fichiers produits par l'(les) auteur(s) |
---|