
HAL Id: hal-03128664
https://normandie-univ.hal.science/hal-03128664v1

Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Metric Learning Approach to Graph Edit Costs for
Regression

Linlin Jia, Benoit Gaüzère, Florian Yger, Paul Honeine

To cite this version:
Linlin Jia, Benoit Gaüzère, Florian Yger, Paul Honeine. A Metric Learning Approach to Graph Edit
Costs for Regression. Proceedings of IAPR Joint International Workshops on Statistical techniques
in Pattern Recognition (SPR 2020) and Structural and Syntactic Pattern Recognition (SSPR 2020),
Jan 2021, Venise, Italy. �10.1007/978-3-030-73973-7_23�. �hal-03128664�

https://normandie-univ.hal.science/hal-03128664v1
https://hal.archives-ouvertes.fr

A Metric Learning Approach to
Graph Edit Costs for Regression

Linlin Jia1,4, Benoit Gaüzère1,4, Florian Yger2?, and Paul Honeine3,4

1 LITIS Lab, INSA Rouen Normandie, France
2 LAMSADE, Université Paris Dauphine-PSL, France
3 LITIS Lab, Université de Rouen Normandie, France

4 Normandie Université, France

Abstract. Graph edit distance (GED) is a widely used dissimilarity
measure between graphs. It is a natural metric for comparing graphs and
respects the nature of the underlying space, and provides interpretability
for operations on graphs. As a key ingredient of the GED, the choice of
edit cost functions has a dramatic effect on the GED and therefore the
classification or regression performances. In this paper, in the spirit of
metric learning, we propose a strategy to optimize edit costs according
to a particular prediction task, which avoids the use of predefined costs.
An alternate iterative procedure is proposed to preserve the distances
in both the underlying spaces, where the update on edit costs obtained
by solving a constrained linear problem and a re-computation of the
optimal edit paths according to the newly computed costs are performed
alternately. Experiments show that regression using the optimized costs
yields better performances compared to random or expert costs.

Keywords: Graph edit distance · Edit costs · Metric Learning.

1 Introduction

Graphs provide a flexible representation framework to encode relationships be-
tween elements. In addition, graphs come with an underlying powerful theory.
However, the graph space cannot be endowed with the mathematical tools and
properties associated with Euclidean spaces. This issue prevents the use of clas-
sical machine learning methods mainly designed to operate on vector represen-
tations. To learn models on graphs, several approaches have been designed to
leverage this flaw and among these, we can cite graph embeddings strategy [17],
graph kernels [3, 27] and more recently graph neural networks [8]. Despite their
state-of-the-art performances, they seldom operate directly in the graph space,
hence reducing the interpretability of the underlying operations.

To overcome these issues, one needs to preserve the property of the graph
space. For this purpose, one needs to define a dissimilarity measure in the graph

? with the support of the ANR ”Investissements d’avenir” program ANR-19-P3IA-
0001 (PRAIRIE 3IA Institute) and grant ESIGMA ANR-17-CE23-0010.

2 L. Jia et al.

space, in order to constitute the minimal requirement to implement simple ma-
chine learning algorithms like the k-nearest neighbors. The most used dissimi-
larity measure between graphs is the graph edit distance (GED) [10, 26]. The
GED of two graphs G1 and G2 can be seen as the minimal amount of distor-
tion required to transform G1 into G2. This distortion is encoded by a set of
edit operations whose sequence constitutes an edit path. These edit operations
include nodes and edges substitutions, removals, and insertions. Depending on
the context, each edit operation e included in an edit path γ is associated with
a non-negative cost c(e). The sum of all edit operation costs included within the
edit path defines the cost A(γ) associated with this edit path. The minimal cost5

among all edit paths Γ(G1, G2) defines the GED between G1 and G2, namely

ged(G1, G2) = min
γ∈Γ(G1,G2)

A(γ). (1)

Evaluating the GED is computationally costly and cannot be done in practice
for graphs having more than 20 nodes in general. To avoid this computational
burden, strategies to approximate the GED in a limited computational time have
been proposed [1] with acceptable classification or regression performances.

An essential ingredient of the GED is the underlying edit cost function c(e),
which quantifies the distortion carried by the edit operation e. The values of the
edit costs for each edit operation have a major impact on the computation of
GED and its performance. Thus, the cost edit function may be different depend-
ing on the data encoded by the graph and the one to predict. Generally, they are
fixed a priori by an expert of the domain, and are provided with the datasets.

However, these predefined costs are not optimal for any prediction tasks, in
the same spirit as the no free lunch theorems for machine learning and statistical
inference. In addition, these costs may have a great influence on both the pre-
diction performance and the computational time required to compute the graph
edit distance. In [9], the authors show that a particular set of edit costs may
reduce the problem of computing graph edit distance to well-known problems in
graphs like (sub)graph isomorphism or finding the maximum common subgraph
of a pair of graphs. This point shows again the importance of the underlying
cost function when computing a graph edit distance.

In this paper, we propose a simple strategy to optimize edit costs according
to a particular prediction task, and thus avoid the use of predefined costs. The
idea is to align the metric in the graph space (namely, the GED) to the prediction
space. While this idea has been largely used in machine learning (e.g. with the so-
called kernel-target alignment [15]), this is the first time that such a line of attack
is investigated to estimate the optimal edit cost. With this distance-preserving
principle, we provide a simple linear optimization procedure to optimize a set of
constant edit costs. The edit costs resulting from the optimization procedure can
then be analyzed to understand how the graph space is structured. The relevance
of the proposed method is demonstrated on two regression tasks, showing that
the optimized costs lead to a lower prediction error.

5 Note the GED will be null when comparing two isomorphic graphs.

A Metric Learning Approach to Graph Edit Costs for Regression 3

The remainder of the paper is organized as follows. Section 2 presents re-
lated works that aim to compute costs associated with a particular task. Sec-
tion 3 presents the problem formulation and describes the proposed optimization
method. Then, Section 4 presents results from conducted experiments. Finally,
we conclude and open perspectives on this work.

2 Related Works

As stated in the introduction, the choice of edit costs has a major impact on
the computation of graph edit distance, and thus on the performance associated
with the prediction task.

The first approach to design these costs is to set them manually, based on
the knowledge on a given dataset/task (when such knowledge is available). This
strategy leads, for instance, to the classical edit cost functions associated with
the IAM dataset [24]. However, it is interesting to challenge these predefined
settings and experiment how they can improve the prediction performance.

In order to fit a particular targeted property to predict, tuning the edit costs
and thus the GED can be seen as a subproblem of metric learning. Metric learn-
ing consists in learning a dissimilarity (or similarity) measure given a training
set composed of data instances and associated targeted properties. For the clas-
sical metric learning where each data instance is encoded by a real-valued vector,
the problem consists in learning a dissimilarity measure, which decreases (resp.
increases) where the vectors have similar (resp. different) targeted properties.
Many metric learning works focus on Euclidean data, while only a few addresses
this problem on structured data [5]. A complete review for general structured
data representation is given in [22]. In the following, we will focus on existing
studies to learn edit costs for graph edit distance.

A trivial approach to tune the edit costs is to use a grid search strategy
among a predefined range. However, the complexity required to compute graph
edit distance and the number of different edit costs forbid such an approach.

String edit distance constitutes a particular case of graph edit distance, as-
sociated to a lower complexity, where graphs are restricted to be only linear and
sequential. In [25], the authors propose to learn edit costs using a stochastic ap-
proach. This method shows a performance improvement, hence demonstrating
the interest to tune edit costs; it is however restricted to strings.

Another strategy is based on a probabilistic approach [19–21]. By providing a
probabilistic formulation for the common edition of two graphs, an Expectation-
Maximization algorithm is used to derive weights applied to each edit operation.
The tuning is then evaluated in an unsupervised manner. In [20], the strategy
consists in modifying the label space associated with nodes and edges such that
edit operations occurring more often will be associated to lower edit costs. Con-
versely, higher values will be associated with edit operations occurring less often.
The learning process was validated on two datasets. However, this approach is
computationally too expensive when dealing with general graphs [4].

4 L. Jia et al.

In [4], the authors propose an interesting way to evaluate whether a distance
is a “good” one. This criterion is based on the following concept:

a similarity function is (ε, γ, τ)− good if a 1− ε proportion of examples
are on average 2γ more similar to reasonable examples of the same class
than to reasonable examples of the opposite class, where a τ proportion
of examples must be reasonable.

This principle is then derived to define an objective function to optimize. The
matrix encoding the edit costs minimizing this objective function is then used to
compute edit distances. However, this approach has only been adapted to strings
and trees, but not to general graphs.

Another set of methods that address the problem of learning edit costs for
GED is proposed in [13, 14]. These methods propose to optimize edit costs to
maximize a ground truth mapping between nodes of graphs. This framework
requires thus a ground truth mapping, which is not available on many datasets
like chemoinformatics.

3 Proposed Method

3.1 Problem formulation

In this section, we propose an optimization procedure to learn edit costs in the
context of regression tasks. Consider a dataset G of N graphs such that each
graph Gk = (Vk, Ek), for k = 1, 2, . . . N , where Vk represents the set of nodes of
Gk labeled by a function fv : V → Lv, and Ek encodes the set of edges of Gk,
namely eij = (vi, vj) ∈ Ek iff an edge connects nodes vi and vj in Gk.

The graph edit distance between two graphs is defined as the minimal cost
associated to an optimal edit path. Given two graphs G1 and G2, an edit path
between them is defined as a sequence of edit operations transforming G1 into
G2. An edit operation e can correspond to a node substitution e = (vi → vj),
deletion e = (vi → ε) or insertion e = (ε → vj). Similarly, for edges, we have
(eij → eab), (eij → ε), and (ε → eab). Each edit operation is associated with a
cost characterizing the distortion induced by this edit operation on the graph.
These costs can be encoded by a cost function c that associates a positive real
value to each edit operation, depending on the elements being transformed.

In this paper, we will restrict ourselves to only constant cost functions. There-
fore, we can associate each edit operation to a constant value. Let cns, cni, cnd,
ces, cei, ced ∈ R+ be the cost values associated with respectively node substitu-
tion, insertion, deletion and edge substitution, insertion, deletion.

As shown in [7], any edit path between two graphs G1 and G2 can be encoded
as two mapping functions. First, ϕ : V1 → V2 ∪ ε encodes the mapping of G1’s
nodes to nodes of G2. If a node vi is deleted, we have ϕ(vi) = ε. Similarly, we
denote as ϕ−1 the mapping of V2 to V1 ∪ ε. For the same edit path, we have
thus ϕ(vi) = vj ⇒ ϕ−1(vj) = vi. Given a mapping and considering constant cost
functions, the cost associated to node operations of an edit path represented by

A Metric Learning Approach to Graph Edit Costs for Regression 5

ϕ and ϕ−1 is given by:

Cv(ϕ,ϕ−1, G1, G2) =
∑

vi∈V1
ϕ(vi)6=ε

cns +
∑

vi∈V1
ϕ(vi)=ε

cni +
∑

vi∈V2

ϕ−1(vi)=ε

cnd. (2)

The cost associated with edge operations is defined as:

Ce(ϕ,ϕ−1, G1, G2) =
∑

e=(vi,vj)∈E1|
ϕ(vi)6=ε∧
ϕ(vj)6=ε∧

(ϕ(vi),ϕ(vj))∈E2

ces +
∑

e=(vi,vj)∈E1|
ϕ(vi)=ε∨
ϕ(vj)=ε∨

(ϕ(vi),ϕ(vj))/∈E2

cei +
∑

e=(vi,vj)∈E2|
ϕ−1(vi)=ε∨
ϕ−1(vj)=ε∨

(ϕ−1(vi),ϕ
−1(vj))/∈E1

ced. (3)

The final cost is given by:

C(ϕ,ϕ−1, G1, G2) = Cv(ϕ,ϕ−1, G1, G2) + Ce(ϕ,ϕ−1, G1, G2). (4)

Let #ns be the number of node substitutions, i.e., the cardinality of the
subset of V1 being mapped onto V2. This number is given by the number of
terms of the first sum in Eq. 2, i.e., #ns = |{vi ∈ V1 | ϕ(vi) 6= ε}|. Similarly:

– The number of node deletions is #nd = |{vi ∈ V1 | ϕ(vi) = ε}|;
– The number of node insertions is #ni = |{vi ∈ V2 | ϕ−1(vi) = ε}|;
– The number of edge substitutions is #es = |{e = (vi, vj) ∈ E1 | ϕ(vi) 6=
ε ∧ ϕ(vj) 6= ε ∧ (ϕ(vi), ϕ(vj)) ∈ E2}|;

– The number of node deletions is #ei = |{e = (vi, vj) ∈ E1 | ϕ(vi) = ε ∨
ϕ(vj) = ε ∨ (ϕ(vi), ϕ(vj)) /∈ E2}|;

– The number of node insertions is #ed = |{e = (vi, vj) ∈ E2 | ϕ−1(vi) =
ε ∨ ϕ−1(vj) = ε ∨ (ϕ−1(vi), ϕ

−1(vj)) /∈ E1}|.
Then, let x ∈ N6 encode the number of each edit operation as x =

[#ns,#nd,#ni,#es,#ed,#ei]>. Note that these values depend on both graphs
being compared and a given mapping between nodes. Similarly, we define
a vector representation of the costs associated with each edit operation by
c = [cns, cnd, cni, ces, ced, cei]

> ∈ R6
+. Given these representations, the cost asso-

ciated with an edit path, as defined by Eq. 4, can be rewritten as:

C(ϕ,ϕ−1, G1, G2, c) = x>c. (5)

Therefore, the graph edit distance between two graphs is defined as:

ged(G1, G2, c) = argmin
ϕ,ϕ−1

C(ϕ,ϕ−1, G1, G2, c). (6)

3.2 Learning the edit costs

Consider that each graph Gk ∈ G is associated with a particular targeted prop-
erty yk ∈ Y, namely the target in regression tasks (e.g. Y ⊆ R for real-valued
output regression). Furthermore, a distance dY : Y ×Y → R+ is defined on this
targeted property, such as the Euclidean distance when dealing with a vector
space Y, namely dY(yi, yj) = ‖yi − yj‖2.

6 L. Jia et al.

The main idea behind the proposed method is that the best metric in the
graph space is the best aligned one to the target distances (i.e., dY). With this
distance-preserving principle, we seek to learn the edit cost vector c by fitting
the distances between graphs to the distances between their targeted properties.
Ideally, we seek to preserve the GED between any two graphs Gi and Gj and the
distance between their targeted properties. Considering the set of N available
graphs G1, . . . , GN and their corresponding targets y1, . . . , yN , we seek to have

ged(Gi, Gj , c) ≈ dY(yi, yj) for all i, j = 1, 2, . . . N. (7)

Let ω : G × G × R6
+ → N6 be the function that computes an optimal edit

path between Gi and Gj according to the cost vector c and returns the vector
x? ∈ R6

+ of numbers of edit operations associated to this optimal edit path,
namely x? = ω(Gi, Gj , c). This function can be any method computing an exact
or sub-optimal graph edit distance [1, 6].

For any pair of graphs (Gi, Gj), let xi,j be a vector encoding the number

of each edit operation. Let X ∈ NN2×6 be the matrix of the numbers of edit
operations for each pair of graphs, namely its (iN + j)-th row is xTi,j . Then, Xc

is the N2 × 1 vector composed of edit distances computed according to c and
X between all pairs of graphs. Let d ∈ RN2

+ be a vector of the differences on
targeted properties according to dY , with d(iN + j) = dY(Gi, Gj). Therefore,
the optimization problem can be rewritten as:

argmin
c

L(Xc,d) subject to c > 0, (8)

where L denotes a loss function. Besides the constraint on c to avoid negative
costs, one can also add a constraint to satisfy the triangular inequality, or one
to ensure that a deletion cost is equal to an insertion cost [23].

In the case of regression problem, L can be defined as the sum squares of
differences between computed graph edit distances and dissimilarities of the
targeted property. Therefore, the final optimization problem is:

argmin
c

||Xc− d||22 subject to c > 0. (9)

Estimating c by solving this constrained optimization problem allows to linearly
fit graph edit distances to a particular targeted property according to the edit
paths initially given by ω. However, changing the edit costs may influence the
optimal edit path, and thus its description in terms of the numbers of edit
operations. There is thus an interdependence between the function ω computing
an optimal edit path according to c, and the objective function optimizing c
according to edit paths encoded within X. To solve this interdependence, we
propose an alternated optimization strategy, summarized in Algorithm 1 where
Ω(G, c) denotes the computation of ω(Gi, Gj , c),∀i, j ∈ 1 . . . N . The two main
steps of the algorithm are described next:

– Estimate c for fixed X (line 4): This optimization problem is a constrained
linear problem that can be resolved using off-the-shelf solvers, such as

A Metric Learning Approach to Graph Edit Costs for Regression 7

Algorithm 1 Main algorithm to optimize costs

1: c← random(6)
2: X← Ω(G, c)
3: while not converged do
4: c← argminc||Xc− d||22, subject to c > 0
5: X← Ω(G, c)
6: end while

cvxpy [16] and scipy [28]. This optimization problem can also be viewed
as a non-negative least squares problem [18]. For a given set of edit opera-
tions between each pair of graphs, this step linearly optimizes the constant
costs to be applied such that the difference between graph edit distances and
distances between targets is minimized.

– Estimate X for fixed c (line 5): The modification performed on costs in the
previous step may have an influence on the associated edit path. To address
this point, the optimization of costs is followed by a re-computation of the
optimal edit paths according to the newly computed c vector encoding the
edit costs. This step can be achieved by any method computing graph edit
distance. For the sake of computational time, one can choose an approxi-
mated version of GED [6,7].

This alternated optimization is repeated to compute both edit costs and edit
operations. Since we do not have theoretical proof of the convergence of this op-
timization scheme, we limit the number of iterations to 5 in our implementation.

4 Experiments

We conducted experiments6 on two well-known datasets in chemoinformatics,
both composed of molecules and their boiling points. The first dataset is com-
posed of 150 alkanes [11]. An alkane is an acyclic molecule solely composed of
carbons and hydrogens. A common representation of such data consists in im-
plicitly encoding hydrogen atoms using the valency of carbon atoms. Such an
encoding scheme allows to represent alkanes as acyclic unlabeled graphs. The
second dataset is composed of 185 acyclic molecules [12]. In contrast with the
previous dataset, these molecules contain several hetero atoms and are thus rep-
resented as acyclic labeled graphs.

To evaluate the predictive power of different settings of edit costs, we used a
k-nearest-neighbors regression [2] model, where k is the number of the neighbors
considered to predict a property. The performances are estimated on ten differ-
ent random splits. For each split, a test set representing 10% of the graphs in the
dataset is randomly selected and used to measure the performance of the predic-
tion. The remaining 90% are used to optimize the edit costs and the value of k,
where k is optimized through a 5-fold cross-validation (CV) procedure over the

6 Code available at https://gitlab.insa-rouen.fr/bgauzere/fit-distances.

8 L. Jia et al.

Method Train errors Test errors

random 9.60± 1.42 11.46± 3.50
expert 8.90± 0.97 8.28± 1.32
fitted 6.24± 0.24 6.78± 2.11

t raning errors test errors
0

2

4

6

8

10

12

14

R
M

S
E

random

expert

fit ted

(a) Results on Alkane Dataset

Method Train errors Test errors

random 26.70± 5.32 30.43± 7.71
expert 29.17± 0.66 31.77± 2.88
fitted 10.12± 0.67 13.69± 2.95

t raning errors test errors
0

5

10

15

20

25

30

35

40

R
M

S
E

random

expert

fit ted

(b) Results on Acyclic Dataset

Fig. 1: Results on each dataset in terms of RMSE for the 10 splits

Table 1: Average and standard deviation of fitted edit costs values

Dataset cns cnd cni ces ced cei

Acyclic 10.74± 0.2 14.26± 0.7 14.8± 0.6 0.32± 0.01 0.23± 0.2 0.4± 0.2
Alkane - 26.22± 1.0 26.85± 0.8 - 0.16± 0.1 0.11± 0.1

candidate values {3, 5, 7, 9, 11}. The number of iterations for the optimization of
the edit costs is fixed to 5.

The proposed optimization procedure is compared to two other edit costs
settings: a random set of edit costs and a predefined cost setting as given in [1];
the latter is the so-called expert costs. Tables in Fig. 1 show the average root
mean squared errors (RMSE) obtained for each cost settings over the 10 splits,
estimated on the training set and on the test set. The ± sign gives the 95%
confidence interval computed over the 10 repetitions. Figures show a different
representation of the same results with error bars modeling the 95% confidence
interval. As expected, a clear and significant gain in accuracy is obtained when
using fitted costs on the two datasets. These promising results confirm the hy-
pothesis that ad-hoc edit costs may help the graph edit distance catch better
targeted properties that are associated to a graph, and thus improve the predic-
tion accuracy while still operating in the graph space.

The fitted values of edit costs are summarized in Table 1. From these results,
we can observe that insertion and deletion costs are almost similar, hence show-
ing the symmetry of these operations. Also, one can observe that deletion and
insertion costs are more important than substitution costs, which shows that the
number of atoms is more important than the atom itself. This is coherent with
the chemistry theory [12]. Finally, we can note that costs associated with nodes
are higher to the ones associated with edges.

A Metric Learning Approach to Graph Edit Costs for Regression 9

5 Conclusion and future work

In this paper, we introduced a new principle to define optimal graph edit costs
of a GED for a given regression task. Based on this principle, we defined the op-
timization problem of fitting the edit costs to a particular metric, measured for
instance on a targeted property to predict. An alternated optimization strategy
was proposed to solve this optimization problem. The conducted experiments on
two well-known datasets showed that the optimization process leads to a GED
with a better predictive power compared to other methods. All these observa-
tions confirm that the proposed method helps to fit edit costs and outperforms
other methods. There are still several challenges to address in future work. First,
a clear and complete comparison to other methods cited in the introduction and
related works will be established. Second, we seek to examine other criteria than
the distance-preserving criterion, such as the conformal map for instance [?].
Third, from a theoretical point of view, we are interested in establishing conver-
gence proof on our alternated optimization strategy, and to extend these proofs
to approximate computations of graph edit distances. Fourth, this scheme will
be extended to classification problem and non-constant costs to be applicable
in most application domains. Considering non-constant costs will need to op-
timize parametric functions rather than scalar values, hence complexifying the
procedure.

References

1. Abu-Aisheh, Z., Gaüzère, B., Bougleux, S., Ramel, J.Y., Brun, L., Raveaux, R.,
Héroux, P., Adam, S.: Graph edit distance contest: Results and future challenges.
Pattern Recognition Letters 100, 96–103 (2017)

2. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric re-
gression. The American Statistician 46(3), 175–185 (1992)

3. Balcilar, M., Renton, G., Héroux, P., Gaüzère, B., Adam, S., Honeine, P.: When
spectral domain meets spatial domain in graph neural networks. In: Proceedings
of ICML 2020 - Workshop on Graph Representation Learning and Beyond (GRL+
2020). Vienna, Austria (12 - 18 Jul 2020)

4. Bellet, A., Habrard, A., Sebban, M.: Good edit similarity learning by loss mini-
mization. Machine Learning 89(1-2), 5–35 (2012)

5. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors
and structured data. arXiv preprint arXiv:1306.6709 (2013)

6. Blumenthal, D.B., Boria, N., Gamper, J., Bougleux, S., Brun, L.: Comparing
heuristics for graph edit distance computation. The VLDB Journal 29(1), 419–
458 (2020)

7. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit
distance as a quadratic assignment problem. Pattern Recognition Letters (2015)

8. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18–42 (2017)

9. Bunke, H.: Error correcting graph matching: on the influence of the underlying
cost function. IEEE Transactions on Pattern Analysis and Machine Intelligence
21(9), 917–922 (1999). https://doi.org/10.1109/34.790431

10 L. Jia et al.

10. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1(4), 245–253 (1983)

11. Cherqaoui, D., Villemin, D.: Use of a neural network to determine the boiling point
of alkanes. J. Chem. Soc. Faraday Trans. 90, 97–102 (1994)

12. Cherqaoui, D., Villemin, D., Mesbah, A., Cense, J.M., Kvasnicka, V.: Use of a Neu-
ral Network to Determine the Normal Boiling Points of Acyclic Ethers, Peroxides,
Acetals and their Sulfur Analogues. J. Chem. Soc. Faraday Trans. 90, 2015–2019
(1994)

13. Cortés, X., Conte, D., Cardot, H.: Learning edit cost estimation models
for graph edit distance. Pattern Recognition Letters 125, 256–263 (2019).
https://doi.org/10.1016/j.patrec.2019.05.001

14. Cortés, X., Serratosa, F.: Learning graph-matching edit-costs based on the opti-
mality of the oracle’s node correspondences. Pattern Recognition Letters 56, 22–29
(2015)

15. Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On kernel-target align-
ment. In: Advances in neural information processing systems. pp. 367–373 (2002)

16. Diamond, S., Boyd, S.: Cvxpy: A python-embedded modeling language for convex
optimization. The Journal of Machine Learning Research 17(1), 2909–2913 (2016)

17. Gibert, J., Valveny, E., Bunke, H.: Graph embedding in vector spaces by node
attribute statistics. Pattern Recognition 45(9), 3072–3083 (2012)

18. Lawson, C.L., Hanson, R.J.: Solving least squares problems. SIAM (1995)
19. Neuhaus, M., Bunke, H.: A probabilistic approach to learning costs for graph edit

distance. Proceedings ICPR 3(C), 389–393 (2004)
20. Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph

matching. IEEE transactions on systems, man, and cybernetics 35(3), 503–14 (jun
2005)

21. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for
graph edit distance. Information Sciences 177(1), 239–247 (2007).
https://doi.org/10.1016/j.ins.2006.02.013

22. Ontañón, S.: An overview of distance and similarity functions for structured data.
Artificial Intelligence Review (2020). https://doi.org/10.1007/s10462-020-09821-w

23. Riesen, K.: Structural pattern recognition with graph edit distance. In: Advances
in computer vision and pattern recognition. Springer (2015)

24. Riesen, K., Bunke, H.: Iam graph database repository for graph based pattern
recognition and machine learning. In: Joint IAPR International Workshops on
Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic
Pattern Recognition (SSPR). pp. 287–297. Springer (2008)

25. Ristad, E.S., N.yianilos, P.: Learning string-edit distance. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 20(5), 522–532 (1998).
https://doi.org/10.1109/34.682181

26. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for
pattern recognition. Systems, Man. and Cybernetics 13(3), 353–362 (1983)

27. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research
12(9) (2011)

28. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.: Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods 17(3),
261–272 (2020)

