A Flavor Lactone Mimicking AHL Quorum-Sensing Signals Exploits the Broad Affinity of the QsdR Regulator to Stimulate Transcription of the Rhodococcal qsd Operon Involved in Quorum-Quenching and Biocontrol Activities - Normandie Université
Article Dans Une Revue Frontiers in Microbiology Année : 2019

A Flavor Lactone Mimicking AHL Quorum-Sensing Signals Exploits the Broad Affinity of the QsdR Regulator to Stimulate Transcription of the Rhodococcal qsd Operon Involved in Quorum-Quenching and Biocontrol Activities

Sophie Rodrigues
Mathilde Bouteiller
Annabelle Mérieau
Yoan Konto-Ghiorghi
Marc Feuilloley
Virginie Gobert
  • Fonction : Auteur

Résumé

In many Gram-negative bacteria, virulence, and social behavior are controlled by quorum-sensing (QS) systems based on the synthesis and perception of N-acyl homoserine lactones (AHLs). Quorum-quenching (QQ) is currently used to disrupt bacterial communication, as a biocontrol strategy for plant crop protection. In this context, the Gram-positive bacterium Rhodococcus erythropolis uses a catabolic pathway to control the virulence of soft-rot pathogens by degrading their AHL signals. This QS signal degradation pathway requires the expression of the qsd operon, encoding the key enzyme QsdA, an intracellular lactonase that can hydrolyze a wide range of substrates. QsdR, a TetR-like family regulator, represses the expression of the qsd operon. During AHL degradation, this repression is released by the binding of the γ-butyrolactone ring of the pathogen signaling molecules to QsdR. We show here that a lactone designed to mimic quorum signals, γ-caprolactone, can act as an effector ligand of QsdR, triggering the synthesis of qsd operon-encoded enzymes. Interaction between γ-caprolactone and QsdR was demonstrated indirectly, by quantitative RT-PCR, molecular docking and transcriptional fusion approaches, and directly, in an electrophoretic mobility shift assay. This broad-affinity regulatory system demonstratesthat preventive or curative quenching therapies could be triggered artificially and/or managed in a sustainable way by the addition of g-caprolactone, a compound better known as cheap food additive. The biostimulation of QQ activity could therefore be used to counteract the lack of consistency observed in some large-scale biocontrol assays
Fichier principal
Vignette du fichier
Chaneetal2019.pdf (1.82 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02356493 , version 1 (08-11-2019)

Identifiants

Citer

Andrea Chane, Corinne Barbey, Yvann Bourigault, Olivier Maillot, Sophie Rodrigues, et al.. A Flavor Lactone Mimicking AHL Quorum-Sensing Signals Exploits the Broad Affinity of the QsdR Regulator to Stimulate Transcription of the Rhodococcal qsd Operon Involved in Quorum-Quenching and Biocontrol Activities. Frontiers in Microbiology, 2019, 10, pp.786. ⟨10.3389/fmicb.2019.00786⟩. ⟨hal-02356493⟩
86 Consultations
196 Téléchargements

Altmetric

Partager

More