Time-Frequency Learning Machines - Normandie Université
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2007

Time-Frequency Learning Machines

Résumé

Over the last decade, the theory of reproducing kernels has made a major breakthrough in the field of pattern recognition. It has led to new algorithms, with improved performance and lower computational cost, for non-linear analysis in high dimensional feature spaces. Our paper is a further contribution which extends the framework of the so-called kernel learning machines to time-frequency analysis, showing that some specific reproducing kernels allow these algorithms to operate in the time-frequency domain. This link offers new perspectives in the field of non-stationary signal analysis, which can benefit from the developments of pattern recognition and Statistical Learning Theory.
Fichier principal
Vignette du fichier
T-SP-04373-2006.pdf (826.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02111309 , version 1 (25-04-2019)

Identifiants

Citer

Paul Honeine, Cédric Richard, Patrick Flandrin. Time-Frequency Learning Machines. IEEE Transactions on Signal Processing, 2007, 55 (7), pp.3930-3936. ⟨10.1109/TSP.2007.894252⟩. ⟨hal-02111309⟩
50 Consultations
262 Téléchargements

Altmetric

Partager

More