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Time-frequency learning machines
Paul Honeiné, Cédric Richard, Member, IEEE, Patrick Flandrin, Fellow, IEEE

Abstract— Over the last decade, the theory of reproducing
kernels has made a major breakthrough in the field of pattern
recognition. It has led to new algorithms, with improved per-
formance and lower computational cost, for non-linear analysis
in high dimensional feature spaces. Our paper is a further
contribution which extends the framework of the so-called kernel
learning machines to time-frequency analysis, showing that some
specific reproducing kernels allow these algorithms to operate in
the time-frequency domain. This link offers new perspectives in
the field of non-stationary signal analysis, which can benefit from
the developments of pattern recognition and Statistical Learning
Theory.

Index Terms— Time-frequency analysis, kernel machines,
learning theory, support vector machines.

I. INTRODUCTION

T IME-frequency and time-scale distributions provide a
powerful tool for non-stationary signal analysis. Unlike

conventional spectral methods, they reveal the time-varying
spectral content of one-dimensional signals by mapping them
into a two-dimensional time-frequency domain. Substantial
theoretical work has been carried out in this direction and has
yielded many different classes of time-frequency distributions,
parametric or otherwise, in which optimal solutions for a given
signal or task can be selected. As an example, distributions
dedicated to signal analysis are studied in [1]–[3] whereas
optimal distributions for signal detection are considered in [4],
[5].

Since the pioneering work of Aronszajin [6], pattern recog-
nition based on reproducing kernel Hilbert spaces (RKHS)
has gained wide popularity. The most prominent recent de-
velopments include support vector machines (SVM) [7], ker-
nel principal component analysis (KPCA) [8], kernel Fisher
discriminant analysis (KFDA) [9], and its generalization to
multiclass problems, kernel generalized discriminant analysis
(KGDA) [10]. A key property behind such algorithms is that
they can be expressed in terms of inner products only, involv-
ing pairs of input data. Replacing these inner products with
a reproducing kernel provides an efficient way to implicitly
map the data into a high, even infinite, dimensional RKHS
and apply the original algorithm in this space. Because cal-
culations are then carried out without making direct reference
to the non-linear mapping of input vectors, this principle is
commonly called the kernel trick. Kernel-based algorithms
are computationally very efficient, and generally have their
generalization performance guaranteed by Statistical Learning
Theory [11], [12].

With the exception of [13], [14], there are very few works
combining kernel learning machines and time-frequency anal-
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ysis, although the interest in pattern recognition based on
time-frequency representations remains strong. In [13], the
authors solve a signal classification problem using a SVM
and a reproducing kernel expressed in the time-frequency
domain. Reproducing wavelet kernels are considered in [14]
for non-parametric regression. Clearly, time-frequency analy-
sis still has not fully benefited from the rapid development
of kernel learning machines. In this paper, we show that
some specific reproducing kernels allow any kernel learning
machine to operate in the time-frequency domain. For the sake
of simplicity, we begin by describing our approach applied
to the Wigner distribution. Next we apply it to other time-
frequency distributions. But before, let us briefly review the
basics concepts of kernel learning machines.

II. KERNEL LEARNING MACHINES: A BRIEF REVIEW OF
BASIC CONCEPTS

Most kernel learning machines are statistical learning algo-
rithms that take advantage of the geometric and regularizing
properties of RKHS, which are established by the kernel trick
and the representer theorem [15], [16]. In this section, we
briefly introduce these concepts through an example.

A. Example of kernel-based method: the KPCA algorithm

Problems commonly encountered in machine learning start
with a training set An containing n instances xi ∈ X
and, in a supervised context, their labels or desired outputs
yi ∈ Y . The objective of the exercise is usually related to
feature extraction, density estimation or classification. Linear
methods have played a crucial role in the development of
machine learning because of their inherent simplicity from
conceptual and implementational points of view. However, in
many fields of current interest such as biological engineering
and communications, it is necessary to deal with non-linear
complex phenomena. A possible way to extend the scope of
linear learning machines is to map the input data from X
into a feature space F via a non-linear mapping φ(·). The
n instances φ(xi) are then used as training samples. Clearly,
this basic strategy may fail when F is a very high, or even
infinite, dimensional space. As shown below with the KPCA
algorithm, kernel learning machines overcome this limitation
by using a powerful computational shortcut.

KPCA is a non-linear form of principal component analysis
(PCA) which allows to extract features that are non-linearly
related to the input variables. Consider a set of n data points
φ(xi) mapped into a feature space F and centered at the
origin, that is,

∑n

i=1
φ(xi) = 0. PCA is performed in F

by solving the eigenvalue problem ΣΦ = µΦ with Φ 6= 0,
where Σ = 1

n

∑n

i=1
φ(xi) φ(xi)

> is the covariance matrix. If
F is infinite-dimensional, note that φ(xi) φ(xi)

> may be seen
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as the projection operator onto direction φ(xi). The problem
becomes

∑n

i=1
〈φ(xi), Φ〉φ(xi) = nµ Φ, where 〈· , ·〉 is the

inner product in F . Observe that any solution Φk with µk 6= 0
must lie in the span of φ(x1) . . . , φ(xn), and can then be
expanded as follows

Φk =

n∑
i=1

ai,k φ(xi). (1)

As detailed in [8], substituting this expression into the eigen-
value equation, and multiplying it from the right by φ(xj),
we obtain the following eigenvalue problem:1 Kak = λk ak,
where K is the n-by-n Gram matrix whose (i, j)-th entry is
〈φ(xi), φ(xj)〉, and λk = nµk. The components of the k-th
eigenvector ak of K are the ai,k’s defined in equation (1).
Finally, the k-th principal component can be extracted from
any φ(x) by projecting it onto Φk, namely,

〈φ(x), Φk〉 =
n∑

i=1

ai,k 〈φ(x), φ(xi)〉. (2)

The most interesting characteristic of this algorithm is that
the non-linear mapping φ(·) only appears in the form of
inner products 〈φ(xi), φ(xj)〉. Suppose we are given a kernel
function κ : X × X → C with the property that there exists
a map φ : X → F such that for all xi, xj ∈ X , we have
κ(xi, xj) = 〈φ(xi), φ(xj)〉. For a survey, see e.g. [6]. The so-
called kernel trick consists of substituting each inner product
〈φ(xi), φ(xj)〉 by κ(xi, xj). The power of this principle lies
in that the inner products in the feature space F are computed
without explicitly carrying out or even knowing the mapping
φ(·), which results in computationally efficient algorithms.
Classic examples of valid kernels are the q-th degree poly-
nomial kernel κ(xi, xj) = (1 + 〈xi, xj〉)

q and the Gaussian
kernel κ(xi, xj) = exp(−‖xi − xj‖

2/2σ2), where σ is the
kernel bandwidth. Note that the feature space corresponding
to the latter is infinite dimensional.

B. The kernel trick, the representer theorem

The kernel trick can be used to transform any linear data
processing technique into a non-linear one, on the condition
that the algorithm can be expressed in terms of inner products
only, involving pairs of the input data. This is achieved by
substituting each inner product 〈xi, xj〉 by a kernel κ(xi, xj),
leaving the algorithm unchanged and incurring essentially
the same computational cost. In conjunction with the kernel
trick, the representer theorem [15], [16] is a solid foundation
of kernel-based methods such as SVM, KFDA, KGDA and
KPCA. Consider the learning machine L(x) = 〈φ(x), Φ〉 and
the regularized risk functional

n∑
i=1

V (L(xi), yi) + λ‖L‖2, (3)

with V (L(x), y) the cost of predicting L(x) when the desired
output is y, and λ a positive parameter. The representer

1The eigenvalue problem for non-centered data points φ(xi) in feature
space F is given by: (K − 1nK − K1n + 1nK1n)ak = λk ak , with
K(i, j) = 〈φ(xi), φ(xj)〉 and 1n(i, j) = 1

n
[9].

theorem states that, under very general conditions on the loss
function V , any Φ ∈ F minimizing the criterion (3) admits a
representation of the form

Φ =

n∑
i=1

ai φ(xi). (4)

This leads to the well-known kernel expansion L(x) =∑n

i=1
ai κ(x, xi). As an example, note that expressions (1)

and (2) arise as a direct consequence of this theorem when it
is applied to the problem of PCA in feature space.

III. TIME-FREQUENCY LEARNING MACHINES: GENERAL
PRINCIPLES

The reason for time-frequency analysis is to give a mathe-
matical core to the intuitive concept of time-varying Fourier
spectrum for non-stationary signals. For a survey, see [17],
[18] and references therein. Most of the parametric distribu-
tions of current interest belong to the Cohen class, which
has proven useful in identifying non-stationarities in signals
produced by a host of real-world applications. In this section,
we investigate the use of kernel learning machines for pattern
recognition in the time-frequency domain. To clarify the
discussion, we will first focus on the Wigner distribution,
which plays a central role in the Cohen class. This will be
followed by an extension to other time-frequency distributions.

A. The Wigner distribution

Among the myriad of time-frequency representations that
have been proposed, the Wigner distribution is considered
fundamental in a number of ways. Its usefulness derives
from the fact that it satisfies many desired mathematical
properties such as the correct marginal conditions and the
weak correct-support conditions [17], [18]. This distribution
is also a suitable candidate for time-frequency-based detection
since it is covariant to time shifts and frequency shifts and it
satisfies the unitarity condition [4]. Let X be a subspace of
L2(C), the space of finite-energy complex signals, equipped
with the usual inner product 〈xi, xj〉 =

∫
t
xi(t) x∗

j (t) dt and
its corresponding norm. The Wigner distribution of any signal
x ∈ X is defined as

Wx(t, f) =

∫
x(t + τ/2) x∗(t − τ/2) e−2jπfτ dτ. (5)

By applying conventional linear pattern recognition algorithms
directly to time-frequency representations, we seek to deter-
mine a time-frequency pattern Φ(t, f) so that

〈Wx, Φ〉 =

∫∫
Wx(t, f) Φ(t, f) dt df (6)

optimizes a given criterion of the general form (3). The
principal difficulty encountered in solving such problems is
that they are typically very high dimensional, the size of
Wigner distributions calculated from the training set being
quadratic in the length of signals. This makes pattern recogni-
tion based on time-frequency representations time-consuming,
if not impossible, even for reasonably-sized signals. With
the kernel trick and the representer theorem, kernel learning
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Fig. 1. First eigendistribution Φ1 obtained using (a) Wigner-based KPCA, (b) Choı̈-Williams-based KPCA and (c) AOK algorithm applied to the Wigner-
based KPCA result. The experiments were carried out using a collection of 1000 signals, each of length 64, consisting of a linear chirp and a Gaussian pulse
in an additive white Gaussian noise with a standard deviation of 1.

machines eliminate this computational burden. It suffices to
consider the following kernel

κW (xi, xj) = 〈Wxi
, Wxj

〉, (7)

and note that Wxi
and Wxj

do not need to be computed since,
by the unitarity of the Wigner distribution, we have

κW (xi, xj) = |〈xi, xj〉|
2. (8)

Any kernel learning machine proposed in the literature can
then be used with the kernel (8) to perform pattern recognition
tasks in the time-frequency domain. The solution L(x) =∑n

i=1
ai |〈x, xi〉|

2 guaranteed by the representer theorem al-
lows for a time-frequency distribution interpretation, L(x) =
〈Wx, ΦW 〉, with

ΦW =

n∑
i=1

ai Wxi
. (9)

We should again emphasize that the coefficients ai are esti-
mated without calculating any Wigner distribution. The time-
frequency features are obtained from a decomposition into
time-domain ones, which is an interesting consequence of the
kernel trick and the representer theorem that is worth men-
tioning. The time-frequency pattern ΦW can be subsequently
evaluated with (9), in an iterative manner, without suffering
the drawback of storing and manipulating a large collection of
Wigner distributions. The inherent sparsity of the coefficients
ai produced by most of the kernel learning machines, a typical
example of which is SVM, may speed-up the calculation of
ΦW .

B. Example of time-frequency learning machine: the Wigner-
based KPCA

We proceed now to illustrate the concept of time-frequency
learning machines outlined above through an example in-
volving KPCA, described in Section II-A, and the Wigner
distribution. There have been so many contributions related
to eigenvalue and singular value decompositions of time-
frequency distributions that we can only mention one of the
first papers [19] and recent applications [20], [21]. Consider a
collection of n signals x1, . . . , xn, each of length d. KPCA can
be adapted to operate directly on their Wigner distributions by
using the kernel κW (xi, xj). The central step of the algorithm

is to perform eigendecomposition of the Gram matrix KW −
1nKW − KW 1n + 1nKW 1n, with KW (i, j) = κW (xi, xj)
and 1n(i, j) = 1

n
. Let the eigenvectors and eigenvalues be

denoted by ak and λk, respectively, with λ1 ≥ λ2 ≥ . . . The
k-th principal component can be extracted from any signal x
as follows

Lk(x) = 〈Wx, Φk〉 =

n∑
i=1

ai,k κW (x, xi), (10)

with Φk =
∑n

i=1
ai,k Wxi

, and ai,k the i-th component of
ak. As shown in [9], the normalization requirement ‖Φk‖ = 1
leads to the condition λk‖ak‖

2 = 1. We call Φk the k-th
eigendistribution. We call Φk the k-th eigendistribution. Note,
however, that it is not a valid time-frequency distribution in
that no signal with time-frequency transform Φk necessarily
exists. This approach is summarized in Table I.

To show that KPCA is a potentially useful tool in time-
frequency signal processing, a set of 1000 noisy signals of
length 64 was generated. Each signal was made up of a linear
chirp with normalized frequency increasing from 0.2 Hz to
0.45 Hz, a Gaussian pulse centered at time index 32 and
normalized frequency 0.1 Hz, and an additive zero-mean
white Gaussian noise with a standard deviation of 1. This
resulted in a signal-to-noise ratio of −5.1 dB in the time-
frequency domain. Wigner-based KPCA was performed to
determine the eigendistributions Φk. Their calculation was
based on the discrete-time discrete-frequency Wigner distri-
bution introduced in [23] since it satisfies most of properties
of its continuous counterpart (5), in particular unitarity. The
first eigendistribution Φ1 represented in Figure 1(a) shows
that significant information has been successfully extracted
from noisy data. The two signal components can be clearly
distinguished in it, as well as oscillating interferences that
are characteristic of the Wigner distribution and often limit
its expertise. This observation is corroborated by an increase
in signal-to-noise ratio of 8.5 dB for Wigner distributions
projected into the space spanned by the eigendistributions Φ1

and Φ2.
Applying standard PCA directly to the set of Wigner distri-

butions would lead to the same result. However, this approach
usually suffers from the high computational cost of calculating
the d2-by-d2 covariance matrix of n time-frequency distribu-
tions, each of size d-by-d, and performing its eigendecomposi-
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TABLE I
THE WIGNER-BASED KPCA ALGORITHM

Instructions Complexity
1. Compute the Wigner distribution of each one of the n signals O(d2 log d) per signal [22]
2. Compute the Gram matrix KW (i, j) = κW (xi, xj) O(dn2)
3. Perform eigendecomposition of KW − 1nKW − KW 1n + 1nKW 1n O(n3)
4. Compute and normalize the eigendistributions Φk O(d2n) per eigendistribution
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unitary distribution whereas the latter is not. All the codes were implemented
in Matlab and run on a laptop PC with 1 GB RAM and Pentium M 1.60
GHz processor.

tion. The complexities of these computationally intensive steps
are O(d4n) and O(d6), respectively. They replace instructions
2. and 3. of the Wigner-based KPCA algorithm depicted in
Table I, whose computational complexities are O(dn2) and
O(n3), respectively. Figure 2 shows the computation time of
both methods plotted as a function of n, with d fixed to 64.
As expected, it is almost linear in n for PCA applied directly
to Wigner distributions, and polynomial for Wigner-based
KPCA. It can also be verified that the latter is computationally
more efficient than PCA as long as n is less than d2, a
condition often satisfied in practice. These conclusions remain
valid for standard pattern recognition methods that require
either inversion or eigendecomposition of covariance matrices,
such as FDA and GDA.

C. Application to other time-frequency distributions

Obviously, the concept of time-frequency learning machine
is not limited only to the Wigner distribution. In this sub-
section, we illustrate it with other popular time-frequency
distributions, linear and quadratic.

The short-time Fourier transform is probably the most com-
mon example of linear time-frequency distribution. Denoting
by w(t) an analysis window localized around the origin of the
time-frequency domain, it is defined by

Fx(t, f) =

∫
x(τ) w∗(τ − t) e−2jπfτ dτ, (11)

or, in an equivalent way, Fx(t, f) = 〈x, wt,f 〉 with wt,f (τ) =
w(τ − t) e2jπfτ . The kernel function κF (xi, xj) = 〈Fxi

, Fxj
〉,

namely,
κF (xi, xj) = ‖w‖2〈xi, xj〉. (12)

can be used with any kernel learning machine proposed in the
literature. The solution guaranteed by the representer theorem
offers a time-frequency distribution interpretation: L(x) =
〈Fx, ΦF 〉 with ΦF =

∑n

i=1
ai Fxi

.
The use of quadratic forms in non-stationary signal analysis

is motivated by the need to collect information on the distribu-
tion of signal energy over time and frequency. Over the years,
the Cohen class has received considerable attention because it
contains all the distributions Cx that are covariant with respect
to time-frequency shifts applied to the signal. These are taking
the form

Cx(t, f) =

∫∫
Π(t′ − t, f ′ − f) Wx(t′, f ′) dt′ df ′ (13)

where Π is a weighting function. We can easily check that
κC(xi, xj) = 〈Cxi

, Cxj
〉 is a valid kernel that can be used

by any kernel learning machine. The solution can further be
rewritten as L(x) = 〈ΦC , Cx〉 with ΦC =

∑n

i=1
ai Cxi

. The
advantage of κC over κW is that the correlative form (13)
can be exploited to improve the readability of ΦC , that
may be affected by the presence of troublesome oscillating
interferences. Nevertheless, as can be seen on Figure 1(b)
with an example of Choı̈-Williams-based KPCA, the same
processing is simultaneously applied to interference terms and
signal components, removing the former ones and spread-
ing out the latter. The most popular quasi-interference-free
distribution of the Cohen class is certainly the spectrogram.
Formally defined as the squared magnitude of the short-time
Fourier transform, the spectrogram is related to the kernel
κS(xi, xj) =

∫∫
|〈xi, wt,f 〉〈xj , wt,f 〉|

2 dt df . Other examples
of distributions include those that satisfy the unitary condition
〈Cxi

, Cxj
〉 = |〈xi, xj〉|

2, e.g., the Wigner distribution, the
Page distribution and the Rihaczek distribution. Kernel learn-
ing machines L(x) = 〈ΦC , Cx〉 based on unitary distributions
share the same kernel (8), and then have the same performance.
They differ by their time-frequency pattern ΦC , which can be
computed directly or using ΦW as follows:

ΦC(t, f) =

∫∫
Π(t′ − t, f ′ − f) ΦW (t′, f ′) dt′ df ′. (14)

In the general case of non-unitary distributions, the calculation
of κC(xi, xj) can be a time consuming part of training
processes since it explicitly involves pairs of d-by-d time-
frequency distributions. Computing the Gram matrix KC thus
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Fig. 3. Discriminant information extracted by (a) Wigner-based KFDA and (b) Wigner-based SVM. The experiments were carried out using two classes of
1000 signals, each of length 64, consisting of a frequency-modulated waves with a parabolic modulation and a Gaussian pulse, respectively, in an additive
white Gaussian noise with a standard deviation of 2.2.

costs O(n2d2). Definition (13) shows that extra computation
cost of O(d2) is also required to calculate time-frequency
distributions other than the Wigner distribution, but the whole
computation also takes time of order O(d2 log d) per distri-
bution [22]. Computation times of Wigner-based and Choı̈-
Williams-based KPCA plotted in Figure 2 corroborate this
analysis. It can also be observed that Choı̈-Williams-based
KPCA is computationally more efficient than PCA as long
as n is strictly less than d2, that is, as long as the size of
Gram matrix is less than the size of covariance matrix.

In applications where computation time is a crucial fac-
tor, we suggest a simple heuristic procedure to derive rules
of the form L(x) = 〈Cx, ΦC〉. It consists of training the
kernel learning machine with κW (xi, xj) = |〈xi, xj〉|

2. The
time-frequency feature ΦC is then obtained from ΦW and
equation (14). This strategy is clearly non-optimal when Cx

does not satisfy the unitarity condition. However, it greatly
improves computational efficiency and also simplifies the use
of signal-dependent methods of designing Π. Figure 1(c) pro-
vides an example of time-frequency-based PCA followed by
the AOK algorithm [2]. This result demonstrates a significant
visual improvement over those given in Figures 1(a) and 1(b).
A complete analysis of this heuristic falls beyond the scope
of this paper and will be addressed in the future.

D. Signal classification with time-frequency learning ma-
chines

The last ten years have seen an explosion of research in
supervised [9], [10], [24] and unsupervised [25] classification
techniques based on kernels; see [26] for a recent survey.
These include SVM, which map data into a high dimensional
space where the classes of data are more readily separable, and
maximize the distance – or margin – between the separating
hyperplane and the closest points of each class [11]. SVM ba-
sically involve formulating the margin maximization problem
into dot product form in order to use kernels, and solving a
quadratic programming problem to estimate the parameters ai

of the test statistic

L(x) =
n∑

i=1

ai κ(x, xi). (15)

The excellent performance of SVM has inspired countless
works in discriminant analysis. In particular, KFDA is a
powerful method of obtaining non-linear Fisher discriminants.
It also uses the kernel trick and the representer theorem to
design, via an eigenvalue problem, kernel-based classifiers of
the form (15) that maximize the Rayleigh coefficient of the
between and the within class scatter matrices [9], [24]. KGDA
is an extension to this approach for handling multiclass prob-
lems [10]. We are now going to illustrate the concept of time-
frequency learning machines through supervised classification
problems involving SVM, KFDA and KGDA.

The first example deals with a binary classification task
involving two classes of 1000 signals of length 64. Each
signal was consisting either of a Gaussian pulse centered
at time index 32 and normalized frequency 0.1 Hz, or of
a frequency-modulated wave with a parabolic modulation
between 0.1 Hz and 0.4 Hz, corrupted by an additive zero-
mean white Gaussian noise with a standard deviation of
2.2. Two time-frequency learning machines were evaluated,
Wigner-based SVM and Wigner-based KFDA, obtained from
SVM and KFDA with κW (xi, xj). Preliminary experiments
were conducted on a cross-validation set of 1000 signals to
select the best settings for each algorithm. The regularization
parameter c of SVM was set to 1, and KFDA was regularized
by adding 10−3 to the diagonal elements of within class scatter
matrix. Figure 3 provides, in both cases, the time-frequency
pattern Φ that follows from the reformulation of (15) in terms
of Wigner distributions. The signal components can be clearly
distinguished, showing that discriminant information has been
successfully extracted from training data. The positive orienta-
tion of the Gaussian pulse, and the negative orientation of the
frequency-modulated wave and its interference terms, allow
the test statistic (15) to increase the separability of the two
competing classes of signals. Note that Figure 3(b) is more
visually meaningful than Figure 3(a), which is corroborated by
the error rate of the Wigner-based SVM and the Wigner-based
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KFDA estimated over a 10000-sample test set: 12.5% for
the former and 13.9% for the latter. This illustrates the good
generalization ability of SVM that makes them so popular.
Our approach enables this technique to be adapted for use with
time-frequency distributions. This experiment was extended to
a wide variety of distributions of the Cohen class: smoothed
pseudo-Wigner, Margenau-Hill, Choı̈-Williams, Born-Jordan,
reduced-interference with Hanning window and spectrogram.
Parameters of these distributions were set to the default values
proposed by the Matlab toolbox TFTB2. Figure 4 shows
that the best performance was obtained with the Wigner
distribution, which means that the filtering process (13) caused
some loss of relevant information in the other distributions.
Wigner-based learning machines were also computationally
the most efficient.

Given a m-class classification problem, KGDA provides
(m − 1) test statistics of the form (15) that maximize the
Rayleigh ratio of between and within class scatter matrices.
The classification of new data is then achieved by comparing
these test statistics to predetermined thresholds. As another
application of time-frequency learning machines, we propose
here to perform KGDA with kernel κW (xi, xj). This example
deals with a classification problem involving three classes of
300 signals, each of length 64. Each signal was consisting
either of a Gaussian pulse centered at time index 32 and
normalized frequency 0.25 Hz, of a 0.1 Hz sine wave, or
of a frequency-modulated wave with a parabolic modulation
between 0.15 Hz and 0.45 Hz. These signals were corrupted by
an additive zero-mean white Gaussian noise with a standard
deviation of 0.45. Figures 5(a) and 5(b) represent the time-
frequency patterns extracted by the Wigner-based KGDA
algorithm, denoted by Φa and Φb, respectively. Each signal can
be easily distinguished in these distributions, meaning that all
the discriminant information has been successfully collected.
In particular, note that the task of Φa is to discriminate the

2The Time-Frequency Toolbox (TFTB) is downloadable from
http://tftb.nongnu.org/.

parabolic modulation from the sine wave and the Gaussian
pulse since the former is negatively oriented while the latter
are positively oriented. The time-frequency pattern Φb makes
it possible to discriminate between the parabolic modulation,
which is almost absent, the sine wave and the Gaussian
pulse, which are respectively negatively and positively ori-
ented. This analysis is confirmed in Figure 5(c), where each
training data xi is represented in the ΦaΦb plane by a point
whose coordinates are 〈Wxi

, Φa〉 and 〈Wxi
, Φb〉. The class

of parabolic modulations is characterized by negative Φa-
coordinates whereas the classes of sine waves and Gaussian
pulses correspond to positive Φa-coordinates. Along the Φb-
axis, the coordinates of the sine waves, parabolic chirps
and gaussian pulses are negative, close to zero and positive,
respectively.

IV. CONCLUSION

The theory of reproducing kernels enabled the development
of new learning algorithms for pattern recognition, whose
formulation is independent of the representation space of
data. Their success was largely influenced by the emerging
field of Statistical Learning Theory, which simultaneously
provided fundamental bounds on achievable performance. In
this paper, we have focused our attention on the new concept
of time-frequency learning machines. It takes advantage of
this progress for implementing universal learning machines
that extract time-frequency information from signals. We have
illustrated the efficiency of these novel techniques for non-
stationary signal analysis through unsupervised and supervised
learning problems. Time-frequency learning machines can
be used in many other applications, such as blind source
separation [27] and filtering [28], where kernel-based methods
have proved their efficiency. Their extension to higher order
distributions also seems feasible.

In ongoing studies, we are investigating kernel-based
methodologies that could be advantageously used to solve
recurrent problems in the field of non-stationary signal anal-
ysis. For instance, we have recently proposed a method for
selecting time-frequency distributions appropriate for given
learning tasks [29]. It is based on a criterion that has recently
emerged from the machine learning literature: the kernel-
target alignment. Further work may contribute to strengthen
these connections with the most recent methodological and
theoretical developments of pattern recognition and Statistical
Learning Theory, in order to offer new perspectives in the field
of non-stationary signal analysis.
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