Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy - Normandie Université
Article Dans Une Revue Autophagy Année : 2023

Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy

Ahmed Osman
  • Fonction : Auteur
Wei Han
  • Fonction : Auteur
Cecilia Dominguez
  • Fonction : Auteur

Résumé

Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunc-tion was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiol-ogy, including survival and phagocytosis, as we determined both in vivo and in vitro using pharma-cological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.
Fichier principal
Vignette du fichier
2022_Beccari_Autophagy.pdf (8.95 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04183074 , version 1 (18-08-2023)

Licence

Identifiants

Citer

Sol Beccari, Virginia Sierra-Torre, Jorge Valero, Marta Pereira-Iglesias, Mikel García-Zaballa, et al.. Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy. Autophagy, 2023, 19 (7), pp.1952 - 1981. ⟨10.1080/15548627.2023.2165313⟩. ⟨hal-04183074⟩
30 Consultations
71 Téléchargements

Altmetric

Partager

More