Particle Shape Recognition with Interferometric Particle Imaging Using a Convolutional Neural Network in Polar Coordinates - Normandie Université
Article Dans Une Revue Photonics Année : 2023

Particle Shape Recognition with Interferometric Particle Imaging Using a Convolutional Neural Network in Polar Coordinates

Résumé

A convolutional neural network (CNN) was used to identify the morphology of rough particles from their interferometric images. The tested particles had the shapes of sticks, crosses, and dendrites as well as Y-like, L-like, and T-like shapes. A conversion of the interferometric images to polar coordinates enabled particle shape recognition despite the random orientations and random sizes of the particles. For the non-centrosymmetric particles (Y, L, and T), the CNN was not disturbed by the twin image problem, which would affect some classical reconstructions based on phase retrieval algorithms. A 100% recognition rate was obtained.
Fichier principal
Vignette du fichier
photonics-2023.pdf (4.41 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04151576 , version 1 (05-07-2023)

Identifiants

Citer

Alexis Abad, Alexandre Fahy, Quentin Frodello, Barbara Delestre, Mohamed Talbi, et al.. Particle Shape Recognition with Interferometric Particle Imaging Using a Convolutional Neural Network in Polar Coordinates. Photonics, 2023, 10 (7), pp.779. ⟨10.3390/photonics10070779⟩. ⟨hal-04151576⟩
46 Consultations
20 Téléchargements

Altmetric

Partager

More