Hyperdoped Si nanocrystals embedded in silica for infrared plasmonics - Normandie Université
Journal Articles Nanoscale Year : 2023

Hyperdoped Si nanocrystals embedded in silica for infrared plasmonics

Hervé Rinnert
Rémi Demoulin
Etienne Talbot

Abstract

Plasmonic hyperdoped Si nanocrystals embedded in silica synthesized via a combination of sequential low energy ion implantation and rapid thermal annealing. We show that phosphorus dopants are incorporated into the nanocrystal cores at concentrations up to six times higher than P solid solubility in bulk Si by combining 3D mapping with atom probe tomography and analytical transmission electron microscopy. We shed light on the origin of nanocrystal growth at high P doses, which we attribute to Si recoiling atoms generated in the matrix by P implantation, which likely increase Si diffusivity and feed the Si nanocrystals. We show that dopant activation enables partial nanocrystal surface passivation that can be completed by forming gas annealing. Such surface passivation is a critical step in the formation of plasmon resonance, especially for small nanocrystals. We find that the activation rate in these small doped Si nanocrystals is the same as in bulk Si under the same doping conditions.
Fichier principal
Vignette du fichier
2023-Zhang-Nanoscale-HAL.pdf (4.19 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-04088288 , version 1 (19-10-2023)
hal-04088288 , version 2 (07-12-2023)

Licence

Identifiers

Cite

Meiling Zhang, Jean-Marie Poumirol, Nicolas Chery, Hervé Rinnert, Alaa Giba, et al.. Hyperdoped Si nanocrystals embedded in silica for infrared plasmonics. Nanoscale, 2023, 15 (16), pp.7438-7449. ⟨10.1039/D3NR00035D⟩. ⟨hal-04088288v2⟩
537 View
81 Download

Altmetric

Share

More