Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)
Résumé
This study aims to investigate the influence of the current direction on the energy production of a tidal turbines array. It is based on a three-dimensional (3D) numerical simulation of the flow where the turbines are represented with actuator disks. The case study consists of modelling the energy extraction of a small array of turbines (staggered and aligned layouts) placed in the Raz Blanchard (Alderney Race, France). The simulations are performed with hydrodynamic data (current magnitude and direction) representative of a mean tide, with several resistance forces and ambient turbulence intensities. The influence of the current direction on the energy production is highlighted by comparing the simulations forced with the real current direction with those in which the angle of incidence between the incoming flow and the turbine's axis is "switched off" (bi-directional flow). When the flow is aligned with the turbines' axis (misalignment "switched off"), the staggered layout produces more than the aligned arrangement. Comparison of the two types of simulations (misalignment switched off or not) shows that the misalignment of the flow around a predominant direction reduces the energy produced by the staggered layout and increases the production of the aligned layout. Furthermore, it suggests that the mean energy produced per machine is almost the same for both layouts. Higher turbulence intensity reduces the positive effect of the directional spreading on the aligned layout production and limits the negative effect on the staggered layout production.
Fichier principal
Nguyen_vt_etal_Energies_2019_Effects_of_the_Current_Direction_on_the_Energy_Pro.pdf (4.27 Mo)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|