Journal Articles Journal of Computational Physics Year : 2022

A conservative Eulerian-Lagrangian decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers

Abstract

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Fichier principal
Vignette du fichier
Leer_2022_JCP_preprint.pdf (14.86 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03784194 , version 1 (22-09-2022)

Identifiers

Cite

M. Leer, M.W.A. Pettit, J.T. Lipkowicz, Pascale Domingo, L. Vervisch, et al.. A conservative Eulerian-Lagrangian decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers. Journal of Computational Physics, 2022, 464, pp.111216. ⟨10.1016/j.jcp.2022.111216⟩. ⟨hal-03784194⟩
162 View
131 Download

Altmetric

Share

More