Manipulation of the graphene surface potential by ion irradiation - Normandie Université Access content directly
Journal Articles Applied Physics Letters Year : 2013

Manipulation of the graphene surface potential by ion irradiation


We show that the work function of exfoliated single layer graphene can be modified by irradiation with swift (Ekin ¼ 92MeV) heavy ions under glancing angles of incidence. Upon ion impact individual surface tracks are created in graphene on silicon carbide. Due to the very localized energy deposition characteristic for ions in this energy range, the surface area which is structurally altered is limited to 0:01 um2 per track. Kelvin probe force microscopy reveals that those surface tracks consist of electronically modified material and that a few tracks suffice to shift the surface potential of the whole single layer flake by 400 meV. Thus, the irradiation turns the initially n-doped graphene into p-doped graphene with a hole density of 8.5 10 ^12 holes/cm2. This doping effect persists even after heating the irradiated samples to 500 deg C. Therefore, this charge transfer is not due to adsorbates but must instead be attributed to implanted atoms. The method presented here opens up a way to efficiently manipulate the charge carrier concentration of graphene.

Dates and versions

hal-03203861 , version 1 (21-04-2021)



O. Ochedowski, B. Kleine Bussmann, B. Ban d'Etat, Henning Lebius, M. Schleberger. Manipulation of the graphene surface potential by ion irradiation. Applied Physics Letters, 2013, 102 (15), pp.153103. ⟨10.1063/1.4801973⟩. ⟨hal-03203861⟩
20 View
0 Download



Gmail Facebook X LinkedIn More