A Hidden Markov Model for Indoor Trajectory Tracking of Elderly People
Résumé
Tracking of elderly people is indispensable to assist them as fast as possible. In this paper, we propose a new trajectory tracking technique to localize elderly people in real time in indoor environments. A mobility model is constructed, based on the hidden Markov models, to estimate the trajectory followed by each person. However, mobility models can not be used as standalone tracking techniques due to accumulation of error with time. For that reason, the proposed mobility model is combined with measurements from the network. Here, we use the power of the WiFi signals received from surrounding Access Points installed in the building. The combination between the mobility model and the measurements result in tracking of elderly people. Real experiments are realized to evaluate the performance of the proposed approach.
Domaines
Machine Learning [stat.ML] Traitement du signal et de l'image [eess.SP] Statistiques [math.ST] Traitement du signal et de l'image [eess.SP] Réseau de neurones [cs.NE] Apprentissage [cs.LG] Ordinateur et société [cs.CY] Vision par ordinateur et reconnaissance de formes [cs.CV] Intelligence artificielle [cs.AI]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...