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Abstract

Matrix theory has shown its importance by its wide range of applications in different fields
such as statistics, machine learning, economics and signal processing. This thesis concerns
three main axis related to two fundamental objects of study in matrix theory and that arise
naturally in many applications, that are positive semi-definite matrices and doubly stochastic
matrices.

One concept which stems naturally from machine learning area and is related to the
positive semi-definite property, is the one of similarity matrices. This thesis will explore
the latter desirable structure for a list of similarity matrices found in the literature. The
importance of characterising such matrices is also discussed. Moreover, we present new
results concerning the strictly positive definite and the three positive semi-definite properties
of particular similarity matrices.

On the other hand, an interesting research field in matrix analysis involves the study
of roots of stochastic matrices which is important in Markov chain models in finance and
healthcare. We extend the analysis of this problem to positive semi-definite doubly stochastic
matrices. Our contributions include some geometrical properties of the set of all n X n positive
semi-definite doubly stochastic matrices with nonnegative pth roots for a given integer p,
denoted by K,i /P We also present methods for finding elements in K,i /p by making use of
the theory of M-Matrices and the symmetric doubly stochastic inverse eigenvalue problem
(SDIEP), which is also of independent interest.

In the context of the SDIEP, which is the problem of characterising those lists of real
numbers which are realisable as the spectrum of some symmetric doubly stochastic matrix, we
present some new results along this line. In particular, we propose to use a recursive method
on constructing doubly stochastic matrices from smaller size matrices with known spectra to
obtain new independent sufficient conditions for SDIEP. Finally, we focus our attention on
the realizability by a symmetric doubly stochastic matrix of normalised Suleimanova spectra

which is a normalized variant of the spectra introduced by Suleimanova.






Table of contents

2

List of tables xi
1 Introduction 1
1.1 Notations . . . . . . . . . . . e 2
1.2 Positive semi-definite matrices . . . . . . . . .. ... 2
1.3 Nonnegative and doubly stochastic matrices . . . . . . . ... ... .... 5
1.4 Inverse eigenvalue problem . . . . . . . . ... . Lo 7
1.5 Distance and similarity . . . . . .. . ... ..o 8
1.6 Aboutthisthesis . . . . ... ... .. ... ... 10
Positive semi-definite similarity matrices and some applications 13
2.1 Introduction . . . . . . . . . ... 13
2.2 General definitions . . . . .. ... 15
2.3 Similarity measures for binarydata . . . . . . ... ... ... 17
2.3.1 Definition and Notation . . . . . ... ... ... .. ....... 17

2.3.2  Similarity measures with nonnegative entries . . . . . .. ... .. 18

2.3.3 Coefficients of correlation and association . . . . . . . ... .. .. 20

2.4 Main results concerning PSD matrices . . . . . . . ... ... ... .... 20
2.5 Alist of PSD similarity matrices . . . . . . . . . ... ..., 28
2.5.1 Notations . . . . . . . ... 28

2.5.2 Family of PSD similarity matrices . . . . . .. ... ... ..... 28

2.5.3 Other similarity matrices . . . . . . . . .. .. .. ... ... 30

2.6 Positive definiteness of similarity matrices . . . . . . .. ... ... 32
2.6.1 Sufficient condition for the positive definiteness of similarity matrices 33

2.6.2 The complete Tversky similarity matrix is positive definite . . . . . 34

2.7 Three-positive semi-definite similarity matrices . . . . . . . . ... .. .. 38
2.8 Non-PSD similarity matrices . . . . . . . . . ... ... ... ... 43
2.9 Similarity measures for numericaldata . . . . . .. ... ... 44



x | Table of contents

2.10 Applications . . . . . . .. 46

3 Positive semi-definite pth roots of positive semi-definite doubly stochastic ma-

trices 51

3.1 Introduction of the problem of interest . . . . . . . .. ... ... ..... 51

3.2 Square root of a PSD doubly stochastic matrix . . . . ... ......... 53

3.3 Some geometrical properties of the set Kn1 P 57

3.4 Generating elements in K,i /P using M-matrices . . . ... ... ... ... 64

3.5 Constructing elements of K,i /P via the use of eigenvalues. . ... ... .. 68

3.6 A family of K,% /2 Via the use of eigenvalues. . . . .. ... .. ....... 75
361 Amethodtodefine K3/% . . ... 75

3.6.2 Generalizationtoordern . . . . . . . ... ... .. 82

4 The symmetric doubly stochastic inverse eigenvalue problem 87
4.1 Introduction . . . . . . . . . . . e 87

4.2  Preliminairies and overview of some results . . . . . ... ... ...... 88
4.3 Recursive sufficient conditions for SDIEP . . . . . ... ... ... .... 92
4.3.1 Inaccurate refinementof Soules . . . ... ... ... ....... 94

4.3.2  An alternative sufficient condition whennisodd . ... ... ... 95

4.3.3 The recursive approachto SDIEP . . . . . ... ... ... .... 102

S On the realizability of normalized Suleimanova spectra 117
5.1 Introduction . . . . . . . . . . . e e e e 117

5.2 NS-SDIEPforrnodd . . ... ... ... ... ... ... ... ... 118

5.3 Sufficientconditions . . . . . ... .. 120

5.4 Sequences of sufficient conditions for NS-SDIEP . . . . . ... ... ... 129

6 Conclusions and Futur works 137
6.1 Summary . . . . ... e 137
6.2 Futurwork . . . . . . . .. 139
Appendix A 141
Appendix B: Synthese en francais 145

References 165



List of tables

2.1
2.2
23
24

Bivariate counts table for binary variables. . . . . . . ... ... ... ... 18
Similarity measures ignoringd . . . . ... ..o Lo 19
Similarity measures includingd . . . . . ... ... oo 20

Similarity measures with negative values






Chapter 1
Introduction

Matrix theory has developed rapidly in the last few decades because of its wide range
of applications and many links with different fields of mathematics, economics, machine
learning and signal processing. One of the most desirable structures a matrix can possess is
the positive semi-definite property. The class of positive semi-definite matrices is fundamental
in matrix analysis and arises naturally in many applications such as data analysis, complex
analysis, harmonic analysis, mechanics, and engineering. Moreover, positive semi-definite
matrices are used as covariance matrices in statistics, as kernels in machine learning and
tensors in medical imaging. In addition, the concept of positive semi-definiteness is of a
certain importance when considering similarity matrices [35, 36, 131], which are matrices
used to quantify the resemblance of elements of a data space. The mentioned property allows
us to construct distance metrics between elements of a data set.

On the other hand, nonnegative matrices form an integral part of matrix theory, started by
Oskar Perron [98] and and George Frobenius [33] at the start of the twentieth century. Of
special importance of nonnegative matrices is the class of doubly stochastic matrices that
is particularly endowed with a rich collection of applications in other areas of mathematics
such as regular graph theory, matrix inequalities and majorization, combinatorics, numerical
analysis, and also in other areas such as economics, statistics, clustering and the theory of
communications [14, 75, 124, 130, 134]. A problem that have been of a special interest in
matrix analysis is the study of functions mapping on matrices (i.e trigonometric functions, pth
root functions and others [41]). More particularly, finding roots that preserves nonnegativity
of nonnegative matrices [73, 74, 89, 125] and recently of stochastic matrices [37, 38] play an
important role in both theory and applications. By combining the doubly stochastic property
and the positive semi-definite property in some matrix A, it is natural to seek conditions
under which the pth root of A, with p > 2 positive integer, is positive semi-definite doubly

stochastic matrix.
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In addition to studying the power functions t —> tY/P with a given positive integer p,
an other intriguing object of study in the theory of doubly stochastic matrices is that of
the inverse eigenvalue problem which explores the necessary and sufficient conditions on a
complex (or real) prescribed spectrum for the existence of a doubly stochastic matrix with
the prescribed spectral data.

In this thesis, we make advances in some related problems and applications in the area
of positive semi-definite and doubly stochastic matrices. Before explaining the main three
axis of the thesis (Section 1.6), we will give a general introduction to some of the basic
facts needed from the theory of positive semi-definite matrices, nonnegative matrices, and
doubly stochastic matrices. This introduction is given to provide a convenient repository for
all readers. We discuss briefly the material we shall require from these theories and in each

section we point the reader to the suitable reference(s).

1.1 Notations

First let us give our notation used in the whole thesis. We denote by C"*" (respectively
R™*™) the set of all n x n complex matrices (respectively n X n real matrices). A matrix A
of dimension n with real entries is said to be nonnegative (respectively positive) if all of its
entries are nonnegative (respectively positive). In this case, we write A > 0 (respectively
A>0).

We say that C is a principal submatrix of A € C"*", if C is a square submatrix obtained
from A by deleting some rows and columns indexed by the same set of indices. The
determinant of an r X r submatrix of A is called a minor of size r.

For any matrix (or vector) A, we denote by A* its conjugate transpose and by A7 its
transpose. A @ B will denote the direct sum of A and B, for any A € C"*"* and B € C"™*™,

Finally, let diag(1,A,,A3,...,4,) be the n x n diagonal matrix with diagonal entries

1,A2,A43,...,A,. Let I, and J,, be the n x n identity matrix and the n x n matrix whose all
1

entries are - respectively. Also, let e, be the vector of dimension n with every entry equal to

\/Lﬁ, ie e, = \/Lﬁ(l,..., DT,

1.2 Positive semi-definite matrices

In this section, we will give the briefest of summaries on the theory of positive semi-definite

matrices.
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Definition 1.2.1. A matrix A € C"*" (A = A*) is said to be positive semi-definite (PSD),
denoted by A >~ 0, if
xX*Ax >0

for all x = (x1,xp,... ,xn)T € C". Furthermore, A is said to be positive definite (PD) denoted
by A > 0, if

x"Ax >0,
forall x #0 € C".
Remark 1. Clearly, a symmetric matrix A € R is called positive semi-definite if x” Ax > 0
for all x = (x1,x2,...,%,)7 € R", and is called positive definite, if x” Ax > 0 for all nonzero
x e R

From Definition 1.2.1 , we conclude the following simple observation, for which the
proof can be found in [43, page 430]

Observation 1.2.2. Let A € C"*" be positive semi-definite matrix, then all of its principal
submatrices are positive semi-definite. Moreover, if A is positive definite, then all of its

principal submatrices are positive definite.

Moreover, positive semi-definite matrices can be characterised in many different ways.

We shall make frequent use in Chapter 2 of the following characterisations.

Theorem 1.2.3. [43] A Hermitian matrix is positive semi-definite if and only if all of its
eigenvalues are nonnegative. It is positive definite if and only if all of its eigenvalues are

positive.
This leads us to the following corollary.
Corollary 1.2.4. [43] If A € C"™" is positive semi-definite, then so is each AK, k=1,2, ...

The following theorem gives a characterization using the determinant of principal subma-

trices of a Hermitian matrix.

Theorem 1.2.5. (Sylvester’s criterion)[43]. Let A € C"*" be Hermitian. If every principal

minor of A (including det A) is nonnegative, then A is positive semi-definite.

Next, we give the the Schur decomposition [139, Theorem 3.3] and the spectral decom-

position [139, Theorem 3.4] of matrices that play a critical role in matrix theory.



4 | Introduction

Theorem 1.2.6. Schur Decomposition [139]
Let A1, Az, ..., Ay be the eigenvalues of A € C"*" . Then there exists a unitary matrix U € C"*"

such that U*AU is an upper-triangular matrix, i.e

M *
A

Theorem 1.2.7. Spectral Decomposition[139]

Let A be a matrix in C"™" with eigenvalues A, Ay, ..., A, . Then A is normal if and only if

there exists a unitary matrix U such that
U*AU = diag(A1, A2, ..., Ap).

Moreover, A is Hermitian if and only if the A; are all real. A is positive semi-definite if and

only if the A; are all nonnegative and A is positive definite if and only if the A; are all positive.

This leads us to the real version of spectral decomposition for symmetric matrices that
we will need for our purposes in Chapter 3. For convenience, we will state it in the following
(see [43, Corollary 2.5.11]).

Theorem 1.2.8. Let A € R"™" be a symmetric matrix with eigenvalues Ay, A, ..., A, . Then,

there exits a real orthogonal matrix P such that
PTAP = diag(A, Ay, ..., A).

The spectral decomposition is used to define the pth root of A, denoted by AVP for p > 2.
In fact, every nonnegative number has a unique nonnegative pth root for p € {2,3,...} . An
analogous result for positive semi-definite matrices holds as we can see in the following
theorem which the proof can be found in [43, Theorem 7.2.6].

Theorem 1.2.9. Let A € C"™*" be positive semi-definite and let p € {2,3,...}. Then there

exists a unique positive semi-definite matrix B such that B” = A.

Next, we will define a way to construct a positive semi-definite matrix by considering an
inner product space. Let xy, ..., x,, be vectors in an inner product space X with inner product
< .,.>- Then, the Gram matrix of the vectors xy,...,x,, with respect to the inner product
<.,.>1i8 M = (< xi,xj >)1<i j<n. Therefore, we have the following theorem which can be
found in [43, Theorem 7.2.10].
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Theorem 1.2.10. [43] Let x1, ..., x, be vectors in an inner product space X with inner product
<.,.> andlet M = (< xj,xj >); j € C"". Then,

* M is positive semi-definite
* M is positive definite if and only if the vectors xy,...,x, are linearly independent.

Moreover, every positive semi-definite matrix can be written as a Gram matrix. In fact,
consider a positive semi-definite matrix A € C"**”. Partition A'/? = [x{, ..., x,] according to
its columns and notice that A = A'/2A1/2 = (A1/2)*A1/2 = (< x;,x; >E); j, in which < .,. >
is the Euclidean inner product on C" . Hence, A is a Gram matrix.

Next, we give the following definition.

Definition 1.2.11. Let A = [a;;] and B = [b;;] € C"*" then their Hadamard product (or Schur
product) denoted by A o B is the matrix whose entries are given by (Ao B); ; = a; jb; ;.

Next, we state the Schur product theorem [43, Theorem 7.5.3] concerning the positive
semi-definitness of the Schur product of two positive semi-definite matrices.

Theorem 1.2.12. [43] Let A,B € C"*" be two positive semi-definite matrices (respectively

positive definite matrices). Then, A o B is also positive semi-definite (respectively positive
definite).

Finally, we end our section, with the following definitions that we will need for our

purposes.

Definition 1.2.13. A Hermitian matrix A € C"*" is said to be two-positive (resp. three-
positive) semi-definite if all of its principal submatrices of size two (resp. three) are positive

semi-definite.

Definition 1.2.14. Let A,B € C"*"". We write A > B (respectively A > B ) if A and B are
Hermitian and A — B is positive semi-definite (respectively positive definite).

Excellent accounts of the theory of positive semi-definite matrices can be found in
[8, 43, 139].

1.3 Nonnegative and doubly stochastic matrices

This section will give a general introduction to some of the basic facts of the theory of
nonnegative matrices and doubly stochastic matrices. For more details on this subject, see
Berman and Plemmons [7], Minc [77] and Bapat and Raghavan [4]. First, we recall the

following definitions.
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Definition 1.3.1. Let X and Y be two real square matrices. X is said to be cogredient to Y if
there exists a permutation matrix Q such that X = o’yoQ.

Definition 1.3.2. A nonnegative n x n matrix A(n > 2) is called reducible if it is cogredient
B D

to a matrix of the form (0 C> where B and C are square matrices. Otherwise, A is

irreducible.

The Perron-Frobenius theory of nonnegative matrices (see [77, Chapter 1] and [43,
Chapter 8]) can be summarised as follows.

Theorem 1.3.3. Let A be an n X n nonnegative matrix and let p(A) be the spectral radius of
A. Then p(A) is an eigenvalue of A, called the Perron eigenvalue of A, with a corresponding
nonnegative eigenvector, called the Perron eigenvector of A. In addition, if A is irreducible,
then

*p(A)>0
* there is an x > 0 such that Ax = p(A)x.
* p(A) is a simple eigenvalue of A (that is, it has algebraic multiplicity 1).

A class of nonnegative matrices with important applications in many areas of mathematics

and informatics is the class of doubly stochastic matrices.

Definition 1.3.4. A real square matrix is said to be doubly quasi-stochastic if each of its row
and column sum is equal to 1. A nonnegative doubly quasi-stochastic matrix is called doubly
stochastic.

It follows that a nonnegative matrix A of size n is doubly stochastic if and only if

Ae, = ey,
and
enAT =e,
or equivalently
Al, =J,A=J,.

From this characterization, we can conclude that the product of doubly stochastic matrices
is doubly stochastic, and in particular, any power of a doubly stochastic matrix is also doubly
stochastic.

Finally, we should note that doubly stochastic matrices represent a special subset of
stochastic ones.
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Definition 1.3.5. A nonnegative n X n matrix A is said to be a stochastic (or row stochastic)
matrix if each row sum is equal to 1. A stochastic matrix A such that A” is also stochastic is

said to be doubly stochastic.

1.4 Inverse eigenvalue problem

The nonnegative inverse eigenvalue problem (NIEP) asks the necessary and sufficient con-
ditions for the components in an n-tuplets, also called list, 6 = (4y,...,4,) in C" to be the
spectrum of an n X n nonnegative matrix A. Although the nonnegative inverse eigenvalue
problem has been studied extensively, it is still unsolved for n > 5.

We say that 6 = (A1, ...,4,) in C" is realizable if there is an n X n nonnegative matrix A
with spectrum {A,...,A4,} C C". Then A is called a realising matrix for ¢ . For any n x n
nonnegative matrix A with spectrum {4y, ..,4,}, and for any positive integer k, we denote
the trace of A by

se(0) = Af 4.+ Ak

Some well known necessary conditions for a list 6 = (44,..., 4,) to be realizable by an

n X n nonnegative matrix A are:
1. p(o) = max|A;| € o, by Perron-Frobenius * theorem.

2. s¢(0) >0, Vk € N as A* is also a nonnegative matrix.

3. o is closed under complex conjugation, i.e. G := (A, 42,...,A,) = ©.
4. sp(0)™ < "™ lsy, (o) for all positive integers k and .

Condition (3) follows from the fact that the characteristic polynomial of A has real
coefficients. The inequalities in (4) are proved by Loewy and London [64], and independently
by Johnson [50]. They are known by the JLL conditions.

When o is a list of n real numbers, we have then the following two problems:

* The real nonnegative inverse eigenvalue problem (RNIEP) that asks which lists of n

real numbers are realizable by a n X n nonnegative matrix A.

* The symmetric nonnegative inverse eigenvalue problem (SNIEP) that asks which lists

of n real numbers are realizable by an n X n symmetric nonnegative matrix A.

If there exists a nonnegative symmetric matrix A with spectrum o, then o is said to be
symmetrically realizable by A. A large body of work on the SNIEP / RNIEP can be found in
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the literature, giving several different sufficient conditions[68—70]. Many partial results for
the three problems are known. We encourage the reader to see also Johnson et al. [51] and
the references within for an extensive survey on the NIEP.

These problems become more challenging when extra properties are imposed to the
nonnegative matrices. For example, the realizabilty of the spectra by nonnegative circulant
matrices is studied in [104], by nonnegative integral matrices in [55], by companion matrices
in [57] and recently by permutative matrices in [3, 63, 66, 92]. Indeed, when NIEP involves
doubly stochastic matrices, we are talking about the doubly stochastic inverse eigenvalue
problem denoted by (DIEP), which is the problem of determining the necessary and sufficient
conditions for a complex n-tuple to be the spectrum of an n X n doubly stochastic matrix.
When o is a list of real numbers the problem of determining necessary and sufficient
conditions for ¢ to be the spectrum of a doubly stochastic matrix is called the real doubly
stochastic inverse eigenvalue problem (RDIEP). When we are searching for a symmetric
doubly stochastic matrix to be the the realising matrix of a list of real numbers, we are talking
about the symmetric doubly stochastic inverse eigenvalue problem (SDIEP). For convenience,

we will define it explicitly in the following.

Problem 1. The symmetric doubly stochastic inverse eigenvalue problem (SDIEP) asks
which sets of n real numbers can be the spectrum of an n X n symmetric doubly stochastic

matrix.

All the above problems have drawn considerable interest but all the results are partial
[50, 76, 78, 85, 97, 96, 95, 121, 122]. In this thesis, we will be dealing only with SDIEP. So
far, SDIEP have only been solved for the case n = 3 by Perfect and Mirsky [97] and remains
open for the cases n > 4 (see [45, 50, 58, 79, 81, 82, 85, 97, 99, 122] for a collection of most
sufficient conditions for the SDIEP). In Chapter 4, we mention several sufficient conditions

for the SDIEP, and we give some new results of this type.

1.5 Distance and similarity

In this section, we collect some useful definitions concerning distances.

Definition 1.5.1. Let X be any set. A function d : X x X — R is called a metric, if for any
x,y,z € X, it satisfies the following conditions:

(1) d(x,y) > 0 (non-negativity),

(2) d(x,y) = d(y,x) (symmetry),
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(3) d(x,y) <d(x,z)+d(z,y) (triangle inequality),
(4) d(x,y) =0 if and only if x = y (identity of indiscernibles).

There are some variations of a metric function, which satisfy weaker properties. Property
(4) can be splitinto (4)” and (4)”, the properties of:

* (4) Reflexivity : d(x,x) =0 forall x € X,
* (4)” Separability: d(x,y) =0 = x=.

If d verifies the Conditions (1), (2), (3) and (4)’ , then d is called a pseudo-metric. 1f d
satisfies only the Conditions (1), (2) and (4)’, then d is called a dissimilarity .

Next, we provide some examples of distance functions, which can be applied to numerical
data:

1. Euclidean: d(x,y) = f’zl V (xi —yi)?,

2. Weighted Euclidean: d(x,y) = f):l vV oti(xi —yi)?

3. Mabhalanobis: d(x,y) = \/(x—y)TZ_l(X—y),

where p denotes the data dimension, x = (x;);—1,.., and y = (yi)i=1,..., two data points
belonging to R?, (@;);—1.... , a vector of positive weights, and X the data covariance matrix.

Complementary to dissimilarity (or distance) is the concept of similarity. As an alter-
native to a dissimilarity function, we can define a similarity measure. A dissimilarity is a
measure that quantify how different two objects are. A high value of a dissimilarity indicates
that the objects are very different and a small value indicates that they are close. For a
similarity coefficient the interpretation is the other way around. A high value indicates great
resemblance between the objects whereas a low value indicates great dissimilarity.

From this interpretation, we can define similarly a similarity measure as a mapping from
X x X to R as follows.

Definition 1.5.2. A similarity is a mapping S from X x X into R such that:
1. S(x,y) >0 forall x,y € X,
2. S(x,y) =S(y,x) forall x,y € X,

3. S(x,y) < S(x,x) forall x,y € X.
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Note that we will see more about types of similarity measures and their properties in
Chapter 2. Similarity measures quantify how much two objects are alike. However, when we
are confronted to more than two objects, we will define a similarity matrix. As we will see
in Chapter 2, such matrix is real symmetric. Our purpose is to prove that it is also positive
semi-definite for a large number of similarity measures found in the literature because this
property is very important to derive distances between data set in many applications.

For an extensive survey and comparison of various known distances and similarities, we

encourage the reader to consult [23].

1.6 About this thesis

We address three main issues in this thesis which are the positive semi-definite property
of similarity matrices, the positive semi-definite pth roots of positive semi-definite doubly
stochastic matrices, and the symmetric doubly stochastic inverse eigenvalue problem.

Motivated by its widespread applications, our work starts with studying the positive
semi-definite property of similarity matrices. Similarity matrices are fundamental objects of
applied sciences [19]. They can be used to measure the resemblance between objects of a
data set. Moreover, PSD similarity matrices are of a special importance by their ability to
define distance metrics. However, few similarity matrices are proved to be positive semi-
definite [35, 36]. Chapter 2 is concerned with the analysis of the properties of similarity
matrices and more specifically the positive semi-definite property. We start by defining
similarity measures and matrices, then we collect the most frequent ones found in the
literature. Using a different approach on defining similarity matrices as theoretical operations
between subsets of a finite set, we will prove that many useful similarity matrices are positive
semi-definite. This property as we will show, and other stronger and weaker properties such
as the positive definite and the three-positive semi-definite properties (see Sections 2.6 and
2.7), will pave the way to define new distance metrics and pseudo-metrics between data
set, which is important in many applications of machine learning. That we will see more in
details in the final section of Chapter 2.

One particular type of similarity matrix can be a doubly stochastic matrix. Beside their
applications in combinatorics, the doubly stochastic matrices which represent a special subset
of stochastic matrices, are a very useful tool in probability and statistics. In fact, a stochastic
matrix B = (b;;) can be thought of as a transition matrix of a Markov chain where b;; is
the probability of going from state i to j. They are often used to model the behaviour of
evolutionary systems that are encountered in the analysis of queuing networks and computer

systems, discrete economic models and in many stochastic models found in biological and
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social science. One of many problems that is studied in the theory of stochastic matrices, is
finding the pth roots of a stochastic matrix [37, 38] as the computation of such roots has led
to many applications in the area of financial mathematics and chronic diseases. Motivated by
their many applications, we extend the analysis to the doubly stochastic case and in particular
to PSD doubly stochastic matrices. Our purpose in Chapter 3, is to characterise conditions
under which the pth root of a doubly stochastic positive semi-definite matrix, is doubly
stochastic. More particularly, we study some geometrical properties of the set of all n X n
positive semi-definite doubly stochastic matrices with nonnegative pth root for any integer
p, denoted by K,i/ P Moreover, we construct elements that belongs to K,i/ P via the use of
eigenvalues and the theory of M-matrices.

In addition, we strongly believe that there is a close connection between finding nonneg-
ative roots of PSD doubly stochastic matrices and SDIEP. More precisely, any solution of
SDIEP should in principle lead to a new algorithm for a solution in finding nonnegative pth
roots of doubly stochastic PSD matrices (see Section 3.6). Motivated by the close relation
between the problem of finding roots and the inverse eigenvalue problem, the third part
of the thesis is devoted to the study of the symmetric doubly stochastic inverse eigenvalue
problem (SDIEP). In Chapter 4, we focus on deriving new sufficient conditions for a list
of real numbers to be the spectrum of a doubly stochastic matrix using a recursive method
of constructing new doubly stochastic matrices from old ones. By many examples and
observations, we will show how these new sufficient conditions can be of a great importance
in finding new independent partial solutions for SDIEP. Finally, Chapter 5 is devoted to study
a special case of SDIEP, the normalised Suleimanova symmetric doubly stochastic inverse
eigenvalue problem that asks which sets of a normalised Suleimanova spectrum occurs as a

spectrum of a symmetric doubly stochastic matrix.






Chapter 2

Positive semi-definite similarity matrices
and some applications

2.1 Introduction

The notion of similarity is a fundamental concept in many research areas and applications. In
practice, similarities are evaluated by a measure that quantifies the extent to which objects,
or variables, resemble one another. We can distinguish different measures according to the
type of data they apply to, i.e binary, numerical or structured data. A similarity measure
gives rise to a similarity matrix when considering pairs of variables or sample units. This
chapter is concerned with the analysis of the properties of binary similarity matrices. More
specifically, we focus on their positive semi-definite property, which is important to derive
useful distances between data sets [11, 36, 127]. In fact, a similarity coefficient is used to
quantitatively measure the resemblance between elements of a data set in many applications
fields such as information integration [5], theory of hypergraphs [9, 10], image analysis
[15], biology [44], or more generally in pattern analysis problem [109]. However, for some
applications like clustering and pattern recognition, it is useful to have dissimilarities and
more particularly metric distance [23]. The simplest way to derive a dissimilarity coefficient
from a similarity measure s is to apply a decreasing function on s. Moreover, many similarity
measures will become a metric, or even Euclidean, if transformed according to d = V1=rs.
In fact, Gower and Legendre [36] proved that if S is a positive semi-definite similarity matrix,
then the dissimilarity matrix given by D = /1 — S is Euclidean.

Most machine learning algorithms rely on the development of an effective distance metric
based on the concept of similarity. For example, we will cite the K-nearest neighbour (KNN)
classifier [21] that needs a suitable distance metric, through we can identify neighbouring
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data points. The most frequently used distance to compare numerical data is the Euclidean
distance that assumes that each feature of the data points is equally important and independent
from others. This assumption may not be always satisfied in real applications. A good
distance metric with good quality should identify relevant from irrelevant features. However,

one can consider a more general linear transformation of the data, defined by d4(x,y) =

v/ (x—y)TA(x —y) where x,y € R™ and A € R™*™ is a positive semi-definite matrix. For
instance in Statistics, an effective method to determine the similarity between data sets is
the Mahalonobis distance. This distance (ds-1), thanks to the inverse of the covariance
matrix o, takes into account correlations between data. It may be generalised by replacing
the correlation matrix by another matrix, whose role is to integrate information on the sets
under study [136]. To define this type of metrics (respectively pseudo-metrics), we need PD
matrices (respectively PSD matrices). The similarity matrices are very good candidates for
this. In addition, PSD similarity matrices are very popular since they can also be used as
kernels, in the now popular kernel-based classification methods [20, 110], such as Support
Vector Machines. The positive semi-definiteness of kernels is essential to ensure that the
kernel algorithms, like SVMs, converge.

Motivated by the importance of the positive semi-definite property of similarity matrices
in many applications, we will focus of this chapter on binary similarity measures that have
been proposed in various fields [23, 36, 109] and play a critical role in pattern analysis
problems such as classification and clustering. While few similarity matrices are proved to
be positive semi-definite in [35, 36], we will use a different approach on defining similarity
matrices as theoretical operations between subsets of a finite set to show that most known
binary similarity matrices are positive semi-definite. This chapter is also designed to give

answers for the following questions.
1. Under what conditions, PSD similarity matrices are strictly positive definite?

2. When we are unable to prove that a particular similarity matrix is PSD, can we obtain

a weaker conclusion such as the three-positive semi-definite property ?
3. Why is it important for a similarity matrix to be positive semi-definite (and definite)?

But first, we will give some basic information about similarity coefficients in Section 2.2.
In Section 2.3, we will collect many binary similarity measures defined in the literature that
we will consider in the rest of this chapter. In Section 2.4, general results concerning PSD
matrices are proven from which we can then derive that many similarity matrices are indeed
positive semi-definite in Section 2.5. In Section 2.6, the strictly positive definite condition of
similarity matrices is investigated . In Section 2.6.1, we give a sufficient condition for all
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positive semi-definite similarity matrices introduced in Section 2.5 to be positive definite.
Then, the positive definiteness of the Tversky’s family of similarity matrices is proven in
Section 2.6.2. Section 2.7 deals with giving a sufficient condition for a similarity matrix to
be three-positive semi-definite via the use of the formal definition of a similarity metric [18].
For a complete study of the known similarity coefficients, regarding the positive semi-definite
property, Section 2.8 gives examples of non-PSD similarity matrices. Section 2.9 explains
how to generalise the results on the similarity matrices taken from binary data to numerical
data. Finally, in Section 2.10, we illustrate the importance of the positive semi-definite and

definite property in many applications of machine learning.

2.2 General definitions

Informally, similarity measures (also named similarity coefficients or resemblance measures)
are functions that quantify the extent to which objects resemble one another. They are, in
some sense, the inverse of distance metrics. They take large values for similar objects and
either zero or negative values for dissimilar objects.

Although there do not exist a single unified definition of a similarity measure, certain
criteria for defining similarity measures are more useful than others; especially in the

applications. Denoting X the data space, a similarity measure is usually defined as follows.
Definition 2.2.1. A similarity S is a mapping from X x X into R such that:

1. S(x,y) >0 forall x,y € X,

2. S(x,y) =S(y,x) for all x,y € X,

3. S(x,y) < S(x,x) for all x,y € X.

Condition 1 states that the similarity between any two elements x and y is nonnegative.
Condition 2 states that S(x,y) is symmetric. Condition 3 states that for any x, the self
similarity is no less than the similarity between x and any y. Other properties can be required,
as for instance it may be necessary to normalise such a measure to take values in the interval
[0, 1] which essentially amounts to taking S(x,x) = 1 for all x € X.

However, for some similarity measures defined in the literature (mostly known as coeffi-
cients of association or correlation), the positivity constraint is rejected. Such coefficients
measure the strength of the relationship between the two variables in the interval [—1, 1]. The
two extreme values reveal maximum strength differing only in direction and the value of the

similarity coefficient is zero in the absence of association between the two variables. For this
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purpose, we can adopt a more general definition of a similarity measure that does not verify
the positivity condition as follows.

Definition 2.2.2. A mapping R from X x X into R is said to be a similarity if R satisfies the
following:

a) R(x,y) =R(y,x) for all x,y € X,
b) R(x,x) >0 forall x € X,
¢) |R(x,y)| <R(x,x) for all x,y € X.

R is said to be a real normalized similarity measure if R(x,x) = 1 for all x € X.
The similarity measures can determine the relationships between two variables (or two
objects). However, under most circumstances, we are confronted with more than two

variables. For this purpose we define the similarity matrix for any data set as follows.

Definition 2.2.3. Let O, O,....,0,, be m elements of a data set X. Andlet S: X x X — R+
be a similarity measure defined on the data set XX . Then a similarity matrix between Oy,
0,,...,0,, is defined as

S(Ol,Ol) S(Ol,Oz) S(Ol,Om)

S(02,01) S(02,05) ... S(03,0,)
Ms = ) . : ;

S(0p,01) S(0p,02) .. S(O, On)

where S(O;,0;) represents the similarity value between O; and O;.

Since S(0;,0/) = S(0;,0;) for all i = 1,...,m, then the similarity matrix My is a nonneg-
ative symmetric matrix. Moreover, if S is a normalised similarity measure (i.e S(0;,0;) = 1
for all 1), then, My is a nonnegative symmetric matrix with 1 as its diagonal elements. Note
that if we consider a real normalised similarity measure R, then the corresponding similarity
matrix Mg is symmetric with 1 as its diagonal elements. However, Mg can have negative
entries.

The main objective of this chapter is to prove that for many similarity measures found in
the literature, the corresponding similarity matrices are PSD. Many similarity coefficients
have been proposed for different type of data : binary, numerical and structural data, and
in various fields. Moreover, a same similarity measure may have been proposed by several
authors independently, with different names. In this thesis, we focus on the case of binary

data, also called set data, i.e., data represented by the presence or absence of characteristics.
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We will exploit more about binary similarity measures in the following section. First, let us

give the following notation.

Notation. We will use S as a general symbol for a similarity coefficient with positive values

and R as a general symbol for a similarity coefficient with real values.

2.3 Similarity measures for binary data

A large variety of data can be represented by binary variables, which express two possible
states of the data, i.e. presence/absence, true/false, yes/no, male/female. Generally speaking,
a variable corresponds to an object or individual and the binary scores reflect the presence
or absence of certain characteristics of the object. For example, in archaeology, binary data
may denote if certain species types is found or not in a specific location; in psychology,
binary data may denote if a person has a specific psychological behaviour. As the binary
representation is one of the most common representations of patterns, many binary similarity
measures were proposed to determine the amount of agreement between variables in many
problems of clustering, classification and data analysis. For example, the binary similarity
measure were applied in ecology [47], taxonomy [117], ethnology [25], image retrieval [115]
and geology [42]. We are not concerned here with recommending what coefficients should be
used on what circumstances neither doing a comparative study collecting the wide variety of
binary similarity measures. For more details on grouping different existing binary similarity

measures, we encouraged the interested reader to consult [19, 44, 128, 48].

2.3.1 Definition and Notation

We are interested in the case of XX = {0, 1}", i.e. data described by n binary scores. Such
data can encode data described by the set of present characteristics, from a predefined list.
For each characteristic, a score is defined, that takes value 1 if the object possesses the
characteristic, and O otherwise.

Given two objects described by two variables x = (xy,...,x,) and y = (y1,...,y,) both
belonging to X, the binary similarity measures are commonly calculated using the four
dependant counts a, b, ¢ and d presented in Table 2.1, called the 2 x 2 contingency table .

In Table 2.1,

* a = the number of 1 ’s that the variables share in the same positions, meaning the

number of attributes common to x and y.
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Table 2.1 Bivariate counts table for binary variables.

. Variable 2
Variable 1 value 1 | value O | Total
value 1 a b a+b
value 0 c d c+d
Total a+c b+d n

¢ b —the number of 1 ’s in the first variable and 0’s in the second variable in the same

positions, meaning the number of attributes present in x but not in y.

e ¢ = the number of O ’s in the first variable and 1’s in the second variable in the same

positions, meaning the number of attributes present in y but not in x.

* d = the number of 0 ’s that the variables share in the same positions, meaning the

number of attributes in neither x nory .

Clearly, n = a+ b+ c+d is the total number of features (attributes) or dimension of each
binary vector. The diagonal sum a + d represent the total number of matches between x and

v, and the other diagonal sum b + ¢ represents the total number of mismatches between x and
y.

2.3.2 Similarity measures with nonnegative entries

Since binary data are very common, the literature abounds in coefficients developed specifi-
cally for binary variables (see [23] and [131]). In this section, we will make a list of many
binary nonnegative similarity measures. The problem that arises when selecting a binary
similarity measure to compare our data objects is whether we should include the value d,
which is the number of double zeros in the variables. We can therefore wonder if d influences
the comparisons? Sokal and Sneath [116, 117] among others, make distinction between
coefficients that do and those that do not include the quantity d. When we are investigating
the presence or absence of a list of characteristics, then d reflects the number of negatives
matches, which is generally felt not to contribute to resemblance. Indeed, an infinite number
of characteristics may be missing in both objects. However, in a piece of data where the two
binary states are of equal importance, d can be as important as a. For example, if the binary
data encodes a nominal variable (female/male, vertebrate/invertebrate...), the a reflects the
number of matches on the first attribute and d the number of matches on the second one. In
such cases, d is as meaningful as a, and coefficients that involves d should be used. Hence,

no general rule can be given as to the incorporation of d in a similarity measure. It depends
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on the data itself, the nature of the study and the intended type of analysis.

Similarity measures ignoring d
Table 2.2 recalls binary similarity measures ignoring d that we will consider in this chapter.

Table 2.2 Similarity measures ignoring d

| Similarity measure | Notation | Definition |
| Jaccard [47] | Sk | b |
| Gleason [34] | Scteas | satpe |
‘ Sorensen [119] ‘ Ssor ‘ 4a—icbl+c ‘
‘ Anderberg [2] ‘ Sand ‘ SaEZJrC ‘
| Sneath and Sokal 2[116] | Sss2 | 33 |
| Ochiai [90] | Soa | = |
| Kulezynski2 (1927) | Sk | 1% +:%) |
‘ Braunn-Blanquet [13] ‘ SBB ‘ ax (aib,m—c) ‘
| Simpson [111] | Ssim | wm@isarg |
| Forbes [32] | Srorbes | @it |
‘ Sorgenfrei [120] ‘ Ssorg ‘ WEHC) ‘
| Faith 28] | Sra | %

It is worthy to mention here that the name of the above similarity coefficients can vary
according to authors. To each similarity measure, we point out the reader to a suitable

reference.

Similarity measures including d

Table 2.3 recalls main binary similarity measures including d that will be our elements of

study in this chapter.
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Table 2.3 Similarity measures including d

| Similarity measure | Notation | Definition
‘ Rogers and Tanimoto [101] ‘ SrT %
‘ Sokal and Michener [118] ‘ Ssm %
‘ Sokal and Sneath 1 [117] Sss1 ﬁ?ﬂ)
Russel and Rao [105] SrR m
Sokal and Sneath 3 [117]

et e

|

| |

| |

| | |

| | | |
‘ ‘ Sss3 ‘ \/(a—O—b)(a-i-c )(b+d)(c+d) ‘
‘ Rogot and Goldberg [102] ‘ SrG ‘ ‘
‘ Hawkins and Dotson [40] ‘ ‘ ‘
| | | |
| | | |

1
SHD (T + 5rara)
Doolittle [24] SD()() (a_,_b)(a(j_dc IZ,C_Q_d (c+d)
Pearson [93] SPearson nlad_bc)*

(a+b)(a+c)( b+d (c+d)

2.3.3 Coefficients of correlation and association

In this section, we consider a list of similarity measures that may have negative values as
shows Table 2.4. Most of them have the covariance in the numerator. The covariance between
two binary variables is given by (ad — bc). Coefficients with quantity (ad — bc) are mostly
known as coefficients of correlation and association. Most coefficients of association and
correlation measure the strength of the relationship in the interval of [—1, 1], an exception
being the Dispersion similarity matrix. For example, if we consider the most popular
coefficient of correlation, Phi similarity coefficient, a value of O indicates no relationship
between x and y, whereas a value of 1 represents the perfect positive correlation. It occurs
when x and y perfectly coincide. However -1 is the perfect negative correlation. It occurs
when x and the negative of y perfectly coincide.

2.4 Main results concerning PSD matrices

In this section, we are mainly concerned with proving that certain classes of matrices are
PSD. This in turn will be the basis for proving that a number of similarity matrices are
positive semi-definite in Section 2.5. First, we will exploit some standard PSD matrices

before constructing more original ones basically built for our purposes.
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Table 2.4 Similarity measures with negative values

| Similarity measure | Notation | Definition
Dispersion similarity [23] Rpis %
Phi (Yule [138], Pearson and Heron[94]) |  Rpy; T (aajc_)lg; e
Maxwell and Pilliner [71] Ryp T b)(bi(s)dg(iﬂ D)
Loevinger [62] Rioe min (a+b)(gi§)b,c(a+c) (ctd)
Fleiss [31] RFeiss (“d_'Q‘El,(iﬁ(’;)ﬁ;iﬂ)“(ﬂf +d)
| Yule 1[137] | Rng | e |
Yule 2 [138] Ryuy @7\/\/%
Hamann [39] Ream Z;Z;iiﬁ
McConnaughey [72] Ryec %

We begin with a lemma that deals with two known PSD matrices for which the proof can

be found in [8] for example.
Lemma 2.4.1. Let x1,x2,...,X, € R. Then

i) The matrix whose (i, j)-entry is given by (x;.x;)1<i j<m is PSD.

1

ii) If in addition, x1,x2,...,%, > 0, then for all & € R™, the matrix <(x,-+xj)0‘ is

)1§i, j<m
PSD. In particular, the Cauchy matrix (x,+x1)1 <i,j<m s PSD.

Proof.
i) Let P be an m x m matrix whose (i, j)-entry is given by (x;.x;)i<i j<m, and let
v=(,v2,...,vm)T € R™ Then, v/ Py = l’-”:lZ’}lejxjxivi = Z?’ZIZ;”ZIxivixjvj =
(X7 xvi)* > 0.

ii) See [8, page 25].

As a conclusion, we prove the following lemma.

Lemma 2.4.2. Let x1,x2,...,X, > 0, then the following holds.
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i) The matrix whose (i, j)-entry is given by (W) e is PSD.
(Rl _l,j_m
it) The matrix whose (i, j)-entry is (min{x,-,xj}> e is also PSD.
<ij<m
Proof.

1

. . . 1 :
i) Forall i, j, we know that max{x;,x;} = lim(x]+x)». Hence we obtain ] =
n—oo e

lim——. In view of the preceding lemma, the matrices ( 1

; are
n—soo (x;’+x’jl)ﬁ (X?foy)ﬁ 1<i,j<m

PSD for all n. It follows that for any v = (v, va,...,v,;)" € R™ and for all n,

1
<_> V0
n n
(o +7) 1<i,j<m

S =

This implies that

I =

1
lim 7. <—> v >0,
n—oo n n
<xi +xj) 1<i,j<m

vl (max{x;, x;})1<i j<m-v > 0.

that is,

And the proof is completed.

ii) It is enough to notice that min{x;,x;} = mx{% and then the proof is complete by
X; 77j

using the first part.
O

While the matrix (min{x;,x;})1<; j<m is PSD, the matrix (max{x;,x;})i<; j<m is not

necessarily PSD. The next proposition deals with this issue.

Proposition 2.4.3. Let ay, ... ,a,, be m positive real numbers with a = max{a;}. Let A be the
matrix defined by A = (max{a;,a;})i<i j<m and whose minimum and maximum eigenvalues
are denoted by Ayin and Amax respectively. Let I, be the m x m identity matrix, and J,, to be

the m x m matrix whose all entries are equal to 1. Then

i) 0 <a< Amax.

ii) If a; = a for all i, then Ay, =0 and A = al,, = 0.
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iii)

Otherwise, Apin < 0 and
)Lminlm <A =al,.

Moreover, A and 0 are not comparable with respect to <.

Proof.

i)

iif)

By appealing to the Courant-Fischer theorem (see [43, page 236]) which gives a

variational formulation of the eigenvalues of a symmetric matrix, we know that

vTAv
vTy

Amin < < Amax for all nonzero V € R". (2.1)
Suppose now that a = g; for some 7, and in (2.1) if we let V = (0,...,1,...0)” with I in
i-th position and zero elsewhere, then we clearly obtain VIV =1and VTAV = q; = q,
so the proof of the first part is complete.

The matrix aJ,, possesses only two distinct eigenvalues A = 0 and A = am, which are

nonnegative, hence A = alJl,, = 0.

First, Apmin < 0, since otherwise A = 0 and for every i < j, if we let
vV =(0,...,0,1,0,...,0,—1,0,...,0)T

with 1 in the i-th position, —1 in the j-th position and zero elsewhere, then we obtain
0 <VTAV =a;+a; —2max{a;,a;}. However, this would imply that ¢; = a; for all
i, j which is a contradiction. On the other hand, in view of (2.1), it is easy to see that
VITAV > AminVTV, hence VT (A — Apindin)V > 0, VV € R”, and the first inequality is
proved. Nextif weletb =a+ % where n > 1, then obviously b > q; for every i. Thus
we get b] —A = (b—max{a;,a;});j = (min{b —a;,b —a;}); ; which is PSD by the

preceding lemma. By letting n tends to infinity, the proof is complete.

O

Finally, we give the following lemma that treats the convergence of sequences of PSD

matrices (V},),>0, for which the proof can be found in [8].

Lemma 2.4.4. Let V = (v;;) be an m x m real matrix and for each natural number k, define

the k-Hadamard product of V by V¥ =Vo.. .oV = (vfj) Consider the sequence of matrices
n
(Vi)ns0 which is defined by V, = Y, VX, If V is PSD then the matrices V,, are PSD for all n,

o n
and Y. V,= lim Y V, is PSD.
k=0

n—oo k=0
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We now focus on constructing interesting classes of PSD matrices for which many

similarity matrices will be deduced based on them.

Theorem 2.4.5. Let E ={ey,...,e,} be a non-empty finite set, lL a non-trivial finite (positive)
measure on E, and (A;)1<i<m be m subsets of E. Then the following holds.

1) The matrix A = (U(A;NA;j))1<i j<m is PSD. More generally, for any real numbers a

and b the matrix

(Clz.[J(Ai ﬂAj) —I—ab.‘Ll(Al'AAj) —f—bz.,u(A,-c ﬂAjC)) 1<i,j<m

is PSD, where A is the complement of A;, and A;/\A; denotes the symmetric difference
between the two sets.

2) If u(A;) #0 foralliand a > b > 0, then the following 4 matrices are PSD:

) - 1
i) B= (a.u(A-AA-)-i-b#(AﬂAj)) 1<i,j<m

i) C=

AAA +buAﬂA ))1<i’j<m

((Ai0A))) )
AAA Vb (@A DA ) 1<ij<m’

(o
i) D= ( (AiDA; +bu(AAA))>1<i,j<m
(a7

iv) E=

Proof.
1) Consider the Hilbert space £2(E, u,R) with its inner product <, > given by:

<fig>= /E fgdu, 22)

for any f,g € £L2(E, 1, R). Note that for a any set S C E, 1g(x) is the characteristic function
of S returning 1 for x € S. For any element x not contained in S, 1g(x) = 0. In addition, we

S) :/ lgd‘u
E

For any subsets A; and A; of E, the characteristic functions 1,4, and 1,4; € Lz(E SR Tt
follows that

have

<1Ai’1Aj >:/ElAi'1Aj d,u:/ElAl.mAj d[.LZ.LL(A,'ﬂAj).
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Therefore, the matrix A is a Gram-matrix, and thus it is PSD. Now in (2.2), if we let

f=alp+blycand g =aly; +bl AS then the proof can be achieved by noticing that

< aly, —i—blAlq,alAj —|—b1A; >= az./.t(AlﬂAj) +ab.,u(A,AAj) +b2.,u(A,-CﬂAjc).

1
2)1) Let b;; = . Then obviousl it
) 1) Let b;; a(ADA) T bp(ANA) en obviously we can write
1
; =a.u ((AiUAj) \ (Ai ﬂAj)) —|—b.[,L(AiﬂAj)
ij
=a.l(AiUAj)+ (b—a)u(AinAj)
= a.J(E) —a.pu(AiNAG) + (b—a)u(AiNAj)
= a.u(E)(1—vij),
where

0. (AS N1AS) + (a— b)R(A;NA))
a.u(E) '

As a > b then v;; > 0, and since b > 0 then, for each i, j, it holds that:

Vij = (2.3)

Lo GRAINAY Fap(AiNA)  p((AUA))+pANA) _
N a.i(E) u(E) —

Now if we define the matrix V = (v;;), then using (2.3), it is easy to see that the matrix V is

PSD as it is the sum of two PSD matrices. Next, for each natural number n, define the matrix

V, = (ZZ:o vf j) et e and consider the sequence (V,),>0. As V is PSD, then obviously
’ <i,j<m -
V., is PSD for each n and therefore in view of Lemma 2.4.4, limV,, = (#) is PSD.
n—yoo i) 1<i,j<m

To complete the proof, it suffices to notice that b;; = m (ﬁ) which ensures that the
matrix B = (b;;) is PSD.

i1) It suffices to notice that the matrix C = A o B and hence it is PSD since both A and B are
PSD.
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1
ii) Let d;; = i (ADA) —l—bu((AiAAj)C)' Then

—— = a.u((AUAj)\ (AiNA))) +b((A;iNAj) + 1 (A7 NAT))
= a.u(E) — a. (A7 NAS) —a.u(AiNA;) +b(u(AiNA)) + 1(AT NAT))
=a.p(E)+(b—a)u(Ai NAj) + (b—a)u(AiNAj) = a.u(E)(1 —nij)

(a—b)u (AfﬂAj)—}—(a—b)[.L(AiﬂAj)

where n;; = i (E)

. Consequently we obtain

1 1
dij =
7 a.u(E) (1 —ni,)

and thus the proof can be completed by employing a similar argument as the one used in Part
1).

iv) Let M be the m x m matrix whose (i, j)-entry is given by (Af NA}))1<;,j<m- M is PSD by
Part 1) and thus the proof can be completed by noticing that E =AoD+ Mo D.

[
In particular, with the choice p({e;}) = 1, we obtain the following result.

Corollary 2.4.6. Let E = {ey,...,e,} be a non-empty finite set, and (A;)1<i<m be m subsets
of E. Then the following holds.

1) The matrix (|A;NA j|)1§,-7 j<m 18 PSD, and for any real numbers a and b the matrix

(a2.|A,- NAj|+ab.|A;NA|| +b2~|Aic mAjCD 1<i<m

is also PSD.

2) If u(A;) #0 foralliand a> b >0, then the following 4 matrices are PSD:

1
)\ amaa; \—i—b\AmA )ngm

ii) < DA, )
TADAFBIACAT ) 1< e

i) alADA; +bAAA)|)1Si7j§m

iV) < |(AiAAj)‘ )
a.lAiAA_i‘+b.‘(AiAA_i)c| lgi,jgm.

The next result shows a class of PSD matrices with negative values.
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Theorem 2.4.7. Let E = {ey,...,e,} be a non-empty finite set, Ll a non-trivial finite (positive)

measure on E, and (A;)1<i<m be m subsets of E. Then the matrix

R= (1A DA (A NA5) — AN ADR(AT A) o

is PSD.

Proof. If we let R = (r;;), then we can write:

(A7 NAT) — u(A; A (AT NA))
(AiNA) (AT NAT) — (1(Ai) — n(AiNA;)) (1(A)) — u(AiNA)))
(AiNAj) (A7 NAT) — u(A)(A)) + (A NA)) (n(Ai) + u(A))
) 9+ u(A) +1(Aj) — u(AiNA;)) — u(A)u(
) )+ 1(AiUA;j)) — n(Ai)p(A;)

Noticing that

U(A;) K(A;)
<@ BT

g >= ,LL(A,‘ﬂAj) —

so that ( )R =<y, — ((’2’)) 1g, lAj — %15 > is a Gram matrix and hence it is PSD.

Therefore, R is a PSD matrix. [
Similarly, with the choice u({e;}) = 1, we obtain the following.

Corollary 2.4.8. Let E = {ey,...,e,} be a non-empty finite set, and (A;)1<i<m be m subsets
of E. Then the matrix

(14N A |AS NAS] — |4; N AS[JAS NA,])

1<i,j<m

is PSD.
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2.5 A list of PSD similarity matrices

Although numerous binary similarity measures have been proposed in different fields [131],
few are proved to be positive semi-definite [35, 36]. Moreover, similarity measures can also
be defined based on sets of arbitrary elements. Our approach in this section is to consider
many similarity matrices as cardinals of the intersection, union, symmetric difference and
other set theoretical operations between subsets of a finite set, to show that our previous
results concerning certain positive semi-definite matrices will pave the way to prove that

these similarity matrices are positive semi-definite.

2.5.1 Notations

Suppose that x = (x1,x7,...,x,) and y = (y1,y2,...,yn) are two binary n sequences, and let
X={1<i<n:xi=1}andY ={1 <i<n:y;= 1} be the set of attributes present in
objects x and y respectively. Then, the binary similarity measures can be expressed using the

cardinals of the following four quantities

s a=|XNY]
s b=|XNY]|
s c=|XNY|
«d=|XNY|.

It follows that all similarity measures are now defined based on the cardinality of theoretical
operations between subsets of a finite set. Hence, without loss of a generality, we can suppose
that X = P(E), the power set of a finite set E of cardinal n and a similarity measure S is
defined from P(E) x P(E) into R. Given m non empty subsets (A;)1<;<p of E, the similarity

measure S gives rise to a similarity matrix Mg = (S(A;,A;)) I<ij<m’

2.5.2 Family of PSD similarity matrices

It is worth mentioning here that similarity measures may be members of some sort of a
parameter family. For instance, Tversky [129] proposed a model of similarity measures
where he rejected the symmetry constraint. He introduced the following contrast model

a

Stve(x,y) = m7
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1.e,

Sl XY
X =
TS Y = X AY [+ alX — Y|+ BX Y|

where o and f are any two real numbers. Contrary to others, Tversky argues that similarity
should not be treated as a symmetric relation. He explains about the directional nature of the
similarity relation of the form "x is like y". Such statement has a subject x and a referent y.
Hence the two objects have different roles and non-symmetric measure are necessary ([129]).
With non-symmetric measures, we obtain asymmetric similarity matrices that we will not
consider in this thesis. Symmetry is obtained when o = f3.

Moreover, in [36], Gower and Legendre define for two binary variables x and y, two

parameter families of similarity coefficients Sg and Ty as follows:

XY
T p—
oY) = XAy + OXAY]
and,
XANAY)¢
Se(x,y) = ( /1

|(XAY )|+ 6|XAY|
where 6 is a real number . We note that Ty is the special case of Tversky index, when o = 3.

By taking 6 > 0 to avoid the possibility of negative similarity coefficients, and making use
of parts ii) and iv) of Corollary 2.4.6 for a = 6 and b = 1, we have the following conclusion.

Corollary 2.5.1. Let E = {ey,...,e,} be a non-empty finite set, L a non-trivial finite (posi-
tive) measure on E, and (A;)1<i<m be m subsets of E such that Vi A; # 0. Assume that 6 > 1,
then the following similarity matrices:

|AiNA;|

D) (To(AA)) 1 <jjom = (\AmA_,-—|+9|A,~AAj\ and

) 1<i,j<m

) o (I
i) (So(AiA))) \<i jem = ((A,AA,)C|+§|A,AA,|)Kw.gm

are PSD.

Next, we give examples of known similarity matrices that belongs to the previous families.
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Example 1.

|A,‘ﬁAi‘> < ‘A,‘ﬂA,‘l ) T (A: A
. _ . _ AN 1< e,
AVAS] ) 1<i j<m [A; DA T+]ANA ] \<ii<m (T1(AiAj))1<ij<m

|AiNAj|+]A¢NAS|

_ [AinA| — AN
2. Msgs, = (W o~ (AR AD 1t
( n )1gi,jgm

3. Ms,, = = (S1(Ai,A)))1<i,j<m-

|(AiNA )|
4. Mgy, = (W) reijem — S2MABAD 1<t jm:

The following remarks exhibits the case of 0 less than 1.

Remark 2. It is worthy to mention here that for 6 < 1, our knowledge concerning the
positive semi-definiteness of the elements of Ty and Sy is less. For example, by taking Ty
with 8 = 1, we obtain

T < 2L4ﬂ7AJ| ) <2L4JWAJ|)
| = =\ :
2 2|AiﬂAj|+|(Al'AAj)| 1<i,j<m |Ai|—|—|Aj| 1<i,j<m

which we will prove to be positive semi-definite in the following section. However, for

0 < \/§ — 1, we can show by a counterexample that Ty is not PSD. Indeed, consider the
three binary variables x,y and z € {0,1}*, defined by x = (1,0,0,0),y = (0,0,0,1) and
z=(1,0,0,1). Then by a simple computation the similarity matrix Ty between x,y and z is

given by
1
0 e
T9 ()C,y, Z) = 0 1 QLH
11 g
0+1 6+1
By a simple check, Ty(x,y, z) has eigenvalues 1, OJFI‘J{%“ , 6]@“ . The proof can be achieved

by noticing that for 8 < v/2— 1, Tg(x,y,z) has a negative eigenvalue.

2.5.3 Other similarity matrices

Next, our main objective is to show that many binary similarity matrices introduced in Section
2.3, can be rewritten as cardinals of theoretical operations between subsets of a finite set and

consequently they are PSD using the results of the previous section.

1. Mg, = (A0 is PSD by Corollary 2.4.6 part 1).

> 1<i,j<m
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10.

11.

12.

. MSFai = < 2n

+ Mg = (IAiHIAjl + A7 1 +HAS]

My, = (i tay)
SBB max(|A,\7|AJD lgl,jgm

AiNAj|+|(Ai DA )E : ;
JANAj[+|(AiAA)°| is PSD since

>1§i,j§m
(Ai2A))| = |E| — (JA;UA;| — [AiNAj]) = [E\AINE\A;| +|A;N 4]

and then making use of Corollary 2.4.6 part 1).

.M, = (”'{‘f”’*/ ') is PSD by Corollary 2.4.6 part 1), Lemma 2.4.1 part i) with
For Ail.[A] 1<i,j<m
Xi = ﬁ and x; = ﬁ, and Schur’s theorem.

‘AiﬂAj‘z

. Mg, = ( L ) is PSD for the same reason stated in the preceding case and
Sorg |Ai|.|A] 1<i, j<m

then by applying Schur’s theorem twice.

Mg, = ( DA ) is PSD by Corollary 2.4.6 part 1), Lemma 2.4.1 part i)
1<i,j<m

v IAil|Aj]
. 1 1 )
with x; = —— and x; = ——, and Schur’s theorem.
' |A;] VY

. Mg, = ( AA, LT AVA))] )1<~ ~ is PSD by Corollary 2.4.6 part 1), Lemma 2.4.1
<i,j<m

/AT TATTIAIAS]

part i) with x; = ‘A%||A€,‘ , and Schur’s theorem applied twice.

2|A;NA; 2|AiNA;| .
M _ ( ira) ) = <# is PSD by Corollar
SGlea 2[AiNA[+ANAS[HIATNA | 1<i,j<m Ail+[A] 1<i,j<m y y

2.4.6 part 1), Lemma 2.4.1 part ii) with x; = |A;|, and Schur’s theorem.

AinA;| | 1ATNA]]

) is PSD by the same reasonning as in the preced-
1<i,j<m

ing case.

(1AinA| is PSD by Corollary 2.4.6 part i), Lemma 2.4.2 and

Schur’s theorem.

is PSD as ( AT A 7

M _1( JAiNA,j| A7 NAS| > )
Sup = 2 \ JAAAFANA;] T TADAHIATDAT 1<i,j<m [AiDATHATNAST ) | <ij<m
is PSD and then employing a similar proof to that used in proving Theorem 2.4.5 part
2ii).
AiNA | |ASNAS|—|ASNA ;|| A;NAS
Mg, :(\, jl-1A] J\ZI, jl-1A ]|>
P n 1<i,j<m

is PSD by Corollary 2.4.8.

|ANAj|.|[ATNAS|—|ATNA j[.|A;NAS]
Mg, = (

- - is PSD by Corollary 2.4.8 and L
ATATATIA )1§i,j§mls y Corollary and Lemma

2.4.1 with x; = , and Schur’s theorem.

S S
Al A
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A;NA j|.|ASNAS|—|ASNA ;|.|A;NAS|)2
3. Mg, — <<| iNA | JASNAS|—|ASA ;| |A:NAS))

AT TACT A, A 1s PSD since it is the Hadamard
il 1A 1A 114 1<i i<
<i,j<m

product of Mg, by itself.

" [ n(1ANA;]ASNAS|—|ASNA | |AiNAS))?
. Spearson —

A TACT A A is PSD since it is the Hadamard
i 1A 1 1A 114 \<i i<
_l7j—m

product of Mg, ~and the matrix whose all entries are equal to n.

15. Mg, — <2(\AiﬂAj|~\AfﬂAﬂflA?ﬂAJI-lAiﬂAEI))
' mp ‘Ai|"Az€‘+|Aj"|Aj"‘ lSi,jSm
2.4.1 part ii) with x; = |A;||A{], and Schur’s theorem.

is PSD by Corollary 2.4.8, Lemma

16. Mg, = (2
Corollary 2.4.6 part 1) witha=1and b = —1.

,is PSD by

[AiNA; | +[ATNAG| 1) _ (IAiﬂAjIHA?ﬂAj-\—IAiAA.f\
" 1<i,j<m

n ) 1<i,j<m

2.6 Positive definiteness of similarity matrices

In this section, we will extend the previous results to a stronger property than the positive
semi-definite property. In particular, we will focus on the definite property, which insures
that a null distance between two objects guarantees they are strictly identical, or formally,
d(x1,x) = 0 <= x| = xp. Although, the reflexivity property is always satisfied (see Section
1.5), the separability is rather often violated by distance measures. This is what distinguishes
metric distances from pseudo-metric distances. The positive definiteness of a similarity
matrix used as a weighting matrix in the generalised Euclidean distance will guaranty then
that the associated Euclidean distance is a full metric. Among all similarity matrices proved
to be positive semi-definite, the complete (2" — 1) x (2" — 1) Jaccard index of all pairs of
subsets of a finite set E of size n (excluding the empty set), is by far the only similarity matrix
proved to be positive definite for any positive integer n [11].

First, consider a non-empty finite set E of size n. Let P(E) be the power set of E, and
P(E)" = P(E)\ 0. Since every principal submatrix of a positive definite matrix is positive
definite, the Jaccard similarity formed by m arbitrary non-empty subsets of E is also positive
definite. However, the positive definiteness of other similarity matrices depends on the
subsets under study, as shows the following example.

Example 2. Let E = {e},e3,e3,e4} be a finite set of size 4.

* Consider the Ochiai-Otsuka similarity matrix O; formed by the 3 subsets A; = {e; },
Ay ={ex} and Az = {e1,ez}. Then with respect to the following order: Aj, Ay, Az, we
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get
1 0 1/V2
o,=| o 1 1/V2],
1/vV2 1/vV2 1

and O is positive semi-definite and not positive definite since it has 0 as one of its

eigenvalues.

* However, considering the Ochiai Otsuka similarity matrix O, formed by the 3 subsets
A; ={e1}, Ay ={ez,e3} and A3 = {e;,e4}. Then with respect to the order Ay, A;, A3,

we obtain
1 0 0
O,=10 1 1/21,
0 1/2 1

and O is positive definite since all its eigenvalues are strictly positive.

2.6.1 Sufficient condition for the positive definiteness of similarity ma-

trices

As mentioned before, the positive definiteness of PSD similarity matrices depends on the
data set under study. In the next theorem, we will give a sufficient condition on the subsets of
E under study for which all similarity matrices given in Section 2.5.3, are positive definite.
For this purpose, we state the following lemma for which the proof can be found in [43,
Theorem 7.5.3].

Lemma 2.6.1. Let A,B € M,, be positive semi-definite. If A is positive definite and every

entry on the main diagonal of B is positive, then A o B is positive definite.

Theorem 2.6.2. Consider the matrix M = (|A;NA}]) \<i<y JOrmed by m subsets of E such
that for all i € {1 <i < m}, there exists x; € E with x; € A;\ UjA; Then M is positive

definite.

Proof.
By part i) of Theorem 2.4.5, M = (< La;, lAj >)
that

I<i<m’ Now let a, o0, ..., 0, € R such

allAl +0‘21A2 +...—|—(Xm1Am =0.

Hence forall x € E, (a114, + 0214, + ... + 04y 14,,) (x) = 0. In particular, for x = x; we have
a4, (xi) + 0214, (xi) + ... + G4, (x;) = 0. Thus @; = 0, since 14;(x;) = 0 for all j # i, and
so the vectors 14,,14,,...,14,, are linearly independent. Therefore M is a Gram matrix of m
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linearly independent vectors in the inner product space £2(E, u,R), and consequently M is
positive definite. 0

The previous condition is also a sufficient condition for any similarity matrix considered

in Section 2.5.3, to be strictly positive definite, as the next corollary shows.

Corollary 2.6.3. Let E be a non-empty finite set of size n. Let S be any similarity matrix from
Section 4.1, formed by m arbitrary subsets (A;); of E and such that for all i € {1,2,...,m},
there exists x; € E with x; € A; \ UjxiAj. Then S is a positive definite.

Proof. 1t suffices to see that every similarity matrix of Section 2.5.3 is the Hadamard product
of M = (|AiNAj])|_ic
entries. By Lemma 2.6.1, the proof is complete. [

and a positive semi-definite matrix with positive main diagonal

The next simple example is given to illustrate the previous corollary.

Example 3. Consider the following four binary 9-sequences x = (1,1,0,0,1,1,0,1,0),
y=(1,0,1,1,0,1,0,1,0), z = (1,0,0,1,1,0,1,0,0) and ¢ = (1,0,0,1,1,1,0,1,1). Using
the same notation as in Section 2.5, we have X = {1,2,5,6,8}, Y = {1,3,4,6,8}, Z =
{1,4,5,7}, and T = {1,4,5,6,8,9} which are four subsets that belong to the set E =
{1,2,3,4,5,6,7,8,9}. It is easy to see that X, Y, Z and T satisfy the assumption of the
previous corollary. This implies that the Ochiai-Otsuka similarity matrix O3 formed by the 4
subsets X, Y, Z and T given by

L3 L 4
55 v
R N
5 Vo
O=(1 o 7 5|
VA 26
A S S
V% VB 26

is positive definite.

The condition of the previous corollary is achieved when considering a sample of objects

such that each object has a proper characteristic (or attribute) not found in the others.

2.6.2 The complete Tversky similarity matrix is positive definite

For any a > b > 0, consider the Tversky similarity matrix of m arbitrary nonempty subsets
(Ai)1<i<m of E given by

( |AiNA;| )
a|AiAAj| +b|Ai ﬂAj| lgi,jﬁm.
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This subsection explores the positive definitness of the Tversky family of matrices given
above. It is worthy to note here that the only similarity matrix proved by far to be strictly
positive definite, is the Jaccard similarity matrix which is a special case of Tversky matrices
(a= b =1). First, let us introduce the following notation.

Notation. For a matrix M whose rows and columns are indexed by elements of P(E)’, the
scalar M (A, B) refers to the entry of M whose row is associated with the subset A and whose
column is associated with B.

In [11], Bouchard et al. proved the following theorem.

Theorem 2.6.4. The matrix Jac whose elements are the Jaccard indexes

|ANB|

Jac(A,B) = m,

of all pairs of subsets (excluding the empty set) A and B of a reference frame of size n is

positive definite, for any integer n > 1.

For this purpose, Jac can be written as Jac = lim,_,.. Jac, where Jac, = Y _,Ji and
Ji = I—Zt o %, with Int and W}, are matrices whose rows and columns are indexed by the
elements of P(E)’ and such that Int(A,B) = |ANB| and Wi (A,B) = (n— |AUB|)*. In [11],
the authors proved that for any nonzero vector x € R*'~!, we have either x” Jox > 0 or
xJ,_1x > 0. Our main objective here is to extend this result to the (2" — 1) x (2" — 1)
Tversky similarity matrix T which is formed from all pairs of subsets of E excluding the
empty set.

In view of Corollary 2.4.6 part 2) ii), the Tversky similarity matrix formed by m arbitrary
nonempty subsets (A;)|<;<, of E is PSD. Hence, the complete (2" — 1) x (2" — 1) Tversky

similarity matrix T is PSD. In fact, it is (strictly) PD as the next theorem shows.

Theorem 2.6.5. Let E be a non-empty finite set of size n. Let T be the complete (2" — 1) X
(2" — 1) Tversky similarity matrix whose elements are the Tversky’s coefficients for any pair
of subsets A and B of E (excluding the empty set) defined by

ANB|
alAAB[+bJANB|

T(A,B) =

Then T is positive definite for any positive integer n > 1, and for all a > b > 0.

Proof. Let a > b > 0, and consider A and B to be any two different elements in P(E)’.

In addition, let L be the matrix whose rows and columns are indexed by P(E)’ and such
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By Theorem 2.4.5, L is positive semi-definite and L(A,B) =

a|A°NBC|+(a—b)|ANB]
an :

_ 1
L (+> where V is the matrix indexed by P(E)’, and with V (A, B) =

an \ I-V(A,B)
Moreover, since =lim, . V,(A,B) where V., =Y _, VoK then L = ﬁ lim, .oV,

1
[—V(A,B)
and hence

1
T=IntoL=— limIntoV,.

an r—ee

n
Now clearly for any nonzero vector x € R*'~!, we have

1
xITx = — lim xT (Int o V,)x.
an r—ee

Since V., =Y _, V°k is a sum of PSD matrices, then every term is greater than or equal to 0.

Thus, it suffices to consider only two terms and consequently we can write
1
T > — (xT (Int o Vo)x +x! (Int o VO("*I))x> )
an

It is easy to see that Int o VO = Int = nJy. Next, if we let X and Y be two matrices such that
for each of them, the rows and columns are indexed by P(E)’ and with X (A, B) = a|A° N B|
and Y(A,B) = (a— b)|AN B, then we obtain

o(n— 1 oln—
v I)Z(an)nfl(XjLY)( v,

On the other hand, since (X +Y)°(*~1) = ZZ;& (”;l) xon=1-k) g yok (Where (";1) = w;ly

then clearly

n—1
(X+Y)O("_1) _Xo(n—l) _ Z (n;l)Xo(n—l—k) oYk
k=1

Each term of the right-hand side of this last equality is positive semi-definite since it is a
Hadamard product of positive semi-definite matrices. Obviously, we conclude that the left
hand side is also positive semi-definite. Therefore, for any nonzero vector x € Rzn_l, it holds
that

(X +Y)°=D _ x> o

)CT<(X _|_Y)o(n—1))x > XTXO(n_l)X,

Ty, > : ;n_leXo(n—l)x.
an
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But this implies that

X" (Int o VO=1)x > x'(Int o X°"=1)x

(an)"1

1
— FXT (Int O Wn_l)x

= n.xTJ,,_ 1X.
Finally, we obtain

1 1
T > —xT (ndo)x + —x (nJ,_1)x
an an

1
= E(XTJ()X—I—XTJ,,_UC) > 0.

Next, we give an example of a complete Tversky similarity matrix where |E| = 3.

Example 4. Consider Sokal and Sneath similarity measure defined below by

o AN B|
5527 \2|AAB|+]ANB| )’

for any pair of subsets A and B, of the finite set E = {e],e2,e3}. It is easy to see that Sgs» is

a special case of Tversky matrix where a =2 and » = 1. The complete Sokal and Sneath

similarity matrix where the rows are indexed by the subsets of E according to the following
order: {e1},{ex}.{e3}.{e1,ex2}, {e1,e3}, {er,e3} and E, is given by

1 1 1
1oodtlol
1 1 1
o101%+o 11
1 1 1
o010 411
11 1 1 1 1
T=13 30135 353
1 1 1 1 1
3035153
1 1 1 1 1
0335513
111111
5 5 5 2 2 2

By Theorem 2.6.3, T is positive definite. Therefore, any principal submatrix of T is positive
definite. This implies that for any combination of p binary 3-sequences among the 7 binary
possible non zero 3-sequences, the Sokal and Sneath similarity matrix between them is
positive definite.
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In the previous theorem, we provided a formal proof of the positive definiteness of

the Tversky similarity matrix. This property means that the Tversky distance defined

by d% (my,mp) = \/(ml —mp)TT (my —my), between belief functions m; and mj is a full
distance for any size of the frame of discernment E. This result justify the use of the Tversky
distance as a suitable distance between belief functions. We will discuss more about this in
Section 2.9.

2.7 Three-positive semi-definite similarity matrices

Not all similarity matrices are PSD as we will see in Section 2.8. So in general the question
of characterising which similarity matrices are PSD, is not a straightforward matter and in
certain cases, it may be hard to prove that particular similarity matrices are PSD. So one
can check if such matrices satisfy a weaker property such as the three-positive semi-definite
property. In this section, we present a sufficient condition to a similarity matrix to be three-
positive semi-definite and we investigate briefly the advantages of such property.

For this purpose, we recall the following definition from [18].

Definition 2.7.1. Given a set X, a real-valued function s(x,y) on the cartesian product X x X
is a similarity metric if, for any x,y,x € X, it satisfies the following conditions:

1 s(xy) = s(y,%)

2. s(x,x) >0

3. s(x,x) > s(x,y)

4. s(x,y) = s(x,x) = s(y,y) if and only if x = y.
5. s(x,y) +s(0,2) < s(x,2) +5(3,y).

Next, we impose on Definition 2.2.1 of a similarity measure, the condition (5) that, in our

terminology will become
SX,Y)+S(Y,Z2) <S(X,Z)+S(Y,Y), (2.4)

for all X,Y,Z € P(E). Inequality (2.4) states that the similarity between X and Z through Y
is no greater than the direct similarity between X and Z plus the self similarity of Y (which is
somewhat equivalent to the triangle inequality in distance metrics). As mentioned earlier, it
maybe very difficult to prove that such similarity matrix is PSD with this extra property. For

this reason, we need the following definition.
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Definition 2.7.2. Let S : P(E) x P(E) — R*(or R) be a similarity. Then S is said to be
three-positive semi-definite if for all X,Y,Z € P(E), the matrix

1s a positive semi-definite matrix.
As a conclusion, we have the following lemma.

Lemma 2.7.3. Let S: P(E) x P(E) — R* ( R) be a similarity. Then S is three-positive
semi-definite if and only if for all X,Y,Z € P(E),

Proof. Tt is easy to see that the principal minors of size 1 and 2 are nonnegative from the

definition of a similarity measure. [

We are ready now to identify a class of similarity matrices that are three-positive semi-
definite in the following theorem.

Theorem 2.7.4. Let S : P(E) x P(E) — R™ be a similarity coefficient such that S(X,X) =k,
k>0, forallX € P(E) and S(X,Y)+S(Y,Z) <S(X,Z)+k, forall X,Y,Z € P(E). Then S

is three-positive semi-definite.

Proof. By the preceding lemma, it suffices to prove that
K +28(X,Y)S(Y,2)S(X,Z) > k(S*(X,Y)+S*(X,Z) + S*(Y,2)).
For simplicity, we denote a = S(X,Y), b = S(Y,Z) and ¢ = S(X,Z). Then from Inequality
(2.4), we know that the following 3 inequalities hold:
ca+b<c+k

cat+c<b+k

e bt+c<a-+k.
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Nowifweletx=a+k—b—c,y=b+k—a—c,and z=c+k—a— b, then obviously x,y
and z are nonnegative withx+y+z=3k—a—b —c < 3k, and

_ 2k—x—z _ 2k—x—y

=——F— b
a 5 2,C )

In order to prove that k> + 2abc > k(a® + b* + ¢?), we need to prove

g((2k—x—y)2+(2k—x—z)2+(2k—y—z)2) < k3+%(2k—x—y)(2k—x—z)(2k—y—z)

which is equivalent to prove that

k(4Kk? + 2x° — 8kx 4 2xy + 4k> + 2% — 8ky + 2yz + 4k> + 22> — 8kz + 2x7)
< 12k3 + (2kx® — 8k*x + 6kxy) + (2ky? — 8k%y + 6kyz) + (2kz> — 8k*z + 6kxz)
—(x+y)(+2)(x+2).

That in turn is equivalent to show that
Ak(xy+xz4yz) = (x+y)(x+2)(y+2).

Since 1 > % then it is enough to prove that

%(x+y+z)(xy+xz+yz) > (x+y)(x+2)(y+2)

which is equivalent to show that
Py 4+ 224y x+y 2+ Px+ 22y + 6xyz > 0.

However, this last inequality is true since x,y and z are nonnegative. [

As mentioned in the introduction, the use of PSD similarity matrices is important to derive
distances between data set. The question that arise here is if a three-positive semi-definite
matrix can be of a similar importance. That we will discuss briefly in the following two

remarks.

Remark 3.
One of the advantages of considering a similarity coefficient S which is 3-PSD, is that
this weaker condition on S allows us to obtain a function which is defined from S and fulfils

the triangular inequality, that is a pseudo-metric. In fact, in [127], the authors proved that if
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S is 3-PSD, we can then associate the two pseudo-metrics:
D = arccos(S) and Dp=+1-S8.

It is interesting to note that a pseudo-metric will have a different behaviour from that of
the dissimilarity defined by D = 1 — § because it satisfies the triangular inequality but it is
far away from the Euclidean distance. We encourage the interested reader to consult [127]
for numerical experiments and a comparison concerning this issue.

Remark 4. If S : P(E) x P(E) — R is a similarity with S(X,X) =1 for all X € P(E), then
we can conclude that D' = 1 — S is a pseudo-metric if and only if S verifies inequality (2.4).
This implies that S is three-positive semi-definite and that in turn means that D = /1 —Sis a
pseudo-metric. If in addition, S verifies the condition that S(X,Y) = 1 if and only if X =Y,
then it holds that D’ = 1 — S is a metric if and only if S verifies inequality (2.4). Similarly

this implies that S is three-positive semi-definite and which in turn means that in this case,
D =+/1—Sis a metric.

It is worth mentioning here that we were unable to find any matrix A = (a;;) 1<, j<m With
0 <a;j <k, a; = k and satisfying inequality (2.4) (i.e. a;j +aj; < a; +k for any i, j,[) which

is not PSD. Thus, we state the following conjecture.

Conjecture 2.7.5. Let My be a similarity matrix and S : P(E) x P(E) — R the correspond-
ing similarity coefficient such that S(X,X) =k, for all X € P(E) and S(X,Y)+S(Y,Z) <
S(X,Z)+k, forall X,Y,Z € P(E). Then My is positive semi-definite.

In fact, we shall give a list of similarity matrices that verify the assumption of the
preceding conjecture and are in fact PSD. For this purpose, we need the following theorem

given in [18].

Theorem 2.7.6. [18] Let s(x,y) be a similarity metric, and f a concave function over

[0,00) satisfying f(0) >0, f(x) >0 ifx>0and f(x) < f(y) if x <y. Then, 5(x,y) =
s(x.y)
Fls(ex)+s(.y)—s(ry

Example 5. Let E be a finite set and A and B € P(E). Let F(A,B) = |ANB|. ThenFis a
similarity metric by [18]. By Theorem 2.7.6, it follows that

) is a similarity metric.

F(A,B) _ |ANB|
F(A,A)+F(B,B)—F(A,B) |AUB|

Fy(A,B) =

is also a similarity metric. In fact, it is easy to prove recursively that for any nonnegative
integer p,

Fo(A.B) = |ANB|
PYT 20 |AAB|+|AN B
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is a similarity metric. Indeed for p = 0, clearly we obtain the Jaccard similarity Fy(A,B).

Suppose that the assumption is true for p. We will prove it for p+ 1. Since F,1{(A,B) =

ANB| _ 5p(A,B)
JANB[+2PT1AAB| — sp(A,A)+s,(B,B)—s,(A,B)
As a result, the Jaccard similarity matrix and the Sokal-Sneath similarity matrix as well

, then by Theorem 2.7.6, F},, 1 is a similarity metric.

as any member of the family Ty with 8 = 27 (where p is any nonnegative integer) are all
PSD and verify the assumption of Conjecture 2.7.5.

Example 6. Let E be a finite set of cardinal n and A and B € P(E). The simple matching
similarity is defined by G(A,B) = mm:ﬂ. It is easy to see that G verifies conditions 1

to 4 of a similarity metric. For condition 5, we have

ANB|+|A°N B¢ BNC|+|B‘NCe
n n

|ANB| |BNC| |A“NB| |B°NCC|
= + + +

n n n n
C C C
< |AﬂC\+|B|+|A NC¢|+ |B|

n n
_lANnC|+]A°NCe N |B|+ |B¢|
N n n

ANC|+]A°NCe
_lncl+iane]
n

= G(A,C)+G(B,B).

Thus G is a similarity metric. Now by Theorem 2.7.6,

B G(A,B) B [(AAB)]
G4 B) = GAA) + G(B.B)—G(A.B)  [(ALBY|+ 2ALB]

is also a similarity metric. More generally, for any nonnegative integer p

[(AAB)°|
((AAB)e|+27|AAB|’

G,(A,B) =

is a similarity metric. Consequently, the simple matching similarity matrix, Rogers-Tanimoto
similarity matrix and any member of the family Sy with 6 = 27, are all PSD and verify the

assumption of Conjecture 2.7.5.

Remark 5. It is worth mentioning that while writing these thesis, the author in a recent paper

[100] shows that the previous conjecture is indeed false in his current form by giving the
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following counterexample. The similarity matrix

1 04 06 02 0.8
04 1 08 04 06
S=106 08 1 06 04],
02 04 06 1 04
08 06 04 04 1

verifies the assumption of the Conjecture 2.7.5, but it is not positive semi-definite.

2.8 Non-PSD similarity matrices

In order to make a complete study of the positive semi-definite property of similarity matrices,
we prove by examples that some of similarity matrices that we consider in Section 2.3 are
not PSD. Let E = {e],e2,e3,e4} be a non-empty finite set, and (A;);<;<3 be 3 subsets of E
such that

* Ay ={ei},
* Ay ={er},
° A3 = {61,62}.

Next we consider similarity matrices M, defined on the set {A},A;,A3} and we prove that
they are not PSD.

4|A;NA ; . .
1. MSSW = <m> i = (T1/4(Ai,Aj))1§i7j§3 is not PSD since det(MSSDr) =
—7/25 < 0.
8|A;NA ; . .
2. Ms,,, = (m) 1<i,j<3 - (Tl/8 (Ai,Aj))1<i,j<3 is not PSD since det(Ms,,,) =
—47/81 < 0.

(‘Aimﬂ ACA;| is not PSD since det(Ms, ,) = —1/8 < 0.

Al Aj] )1§i,j§3

_ JANA | ) . : _
4. Ms,, = (min(|A,-|,|Aj|) Li 3 is not PSD since det(Ms,, ) = —1 <O.
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5. Mg, — A4 |- |AFOAG] —[ATNA, |- |Ai0AT]
- M Rpoe min([A;].JASTJA,TTAST)

) is not PSD since det(Mg,,,) = —16/9 <
1<i,j<3

P
. RYuQ - |AiﬂAj|.|Al‘-‘ﬂA5|+|A§ﬁAjHAl‘ﬂA‘;‘

) is not PSD since det(Ms,,,) = —4 < 0.
1<i,j<3

T Mo — VIANAJATNAS]— /1ATNA j].]ANAS]
Ry T\ JTANATTATNAT 1 TATNA [ TANAY]

) is not PSD since det(Ms,,, ) = —4 <
1<i,j<3

[AinA 2 —[AF 4] |AiNAS] : .
8. MRyc = ( A4, s o is not PSD since det(Ms,,.) = —1 <0.
LIS

is not PSD since

_ ((ANA[ATNAG| AT DA [ |ANAG]) (JAil- A +]A; |- A7])
RFleiss - Z‘Ai|~‘A,€‘~‘AjHA5'|

det(Mg,,. ) =—8/27<0.

)19',153

Remark 6. Note that from the non-PSD similarity measures cited in Section 2.3, Sokal and
Sneath 1 similarity matrix is the only matrix that we couldn’t show that it is not PSD by a
counterexample. It is interesting to mention that Gower and Legendre [36] concluded this
result by showing that /1 — Sg is not Euclidean for ® < 1 (see [36, Theorems 6 and 12]).

2.9 Similarity measures for numerical data

The focus of this chapter is the study of the positive semi-definite property of binary similarity
measures. However, one would ask about vector-based similarity measures. Unfortunately, it
seems difficult to identify classes of matrices that are PSD for numerical data. In this section,
we introduce briefly the case of numerical data, i.e., data represented as real vectors and we
give our approach to generalise the results on the similarity matrices taken from binary data
to numerical data.

If p is the number of characteristics, then the data space is given now by X = R”. Consider
two non-zero vectors x = (xp, ...,Xp) and y = (y1,...,y,) € R”. In [59], the authors distinguish

between two kinds of numerical similarity measures:

1. Measure derived from dissimilarity measure through a decreasing function.

2. Measure that is an increasing function of dot products. We recall that the scalar product

between x and y depends on the angle between the two vectors and their norms

<2y >= [lxl|. [yl cos(x,y)-
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It cannot be used directly as a similarity measure because it doesn’t verify the maxi-
mality property. However, we can consider the cosine of the angle between the two
vectors as a similarity measure. Actually, consider r(x,y) = cos(x,y) = m It is
easy to see that r(x,x) =1, —1 < r(x,y) = cos(x,y) < 1 and r(x,y) = r(y,x). Hence, r
is a similarity measure. Note that we can normalise r to take value in the interval [0, 1].
Some generalised similarity measures for numerical data based on dot products are the
following:
Y (xi+yi) Ly 20
(riyi) (141x,y,~0)
* Tanimoto similarity %,

¥ xiyi

\/):xiz.\/Zyi27

Ellenberg similarity : 5

* Cosine similarity :
and,

* Dice similarity : %

The binary cases of Ellenberg and Tanimoto similarities coincide; it is the Jaccard similarity
Sjac- The binary case of Dice is the Gleason similarity Sgjeus-
Some numerical similarity measures can be proved to be positive semi-definite using the

inner product of two real vectors. Consider the Cosine coefficient S ) (x,y) = %, and

the Dice coefficient §3) (x,y) = 2 that are proved to be three-positive semi-definite in

[xll+yl
[127]. However, we can prove easily that they are actually positive semi-definite. These are
easy consequences of the results given in Section 2.4, applied to numerical data. In fact,
given xp, x,....x,, € R”, the matrix defined by ((xi7xj>) I<ij<m is PSD since it is a Gram

matrix. It follows that the cosine similarity (%) is PSD as it is the Hadamard
W 1< j<m

product of a Gram matrix and (+> (PSD by Lemma 2.4.1). Similarly, the
1<i,j<m

-

|+ ]
of a Gram matrix and the Cauchy matrix.

Dice similarity (M> is positive semi-definite since it is the Hadamard product
1<i,j<m

Finally, we strongly believe that with a special choice of the measure u defined on a finite
set E in Theorems 2.4.5 and 2.4.7, we will be able to construct general PSD matrices that
will pave the way to prove the positive semi-definite of many numerical similarity matrices.
We hope that as well as providing insight into what makes this interesting and practically
important problem so difficult our work will prove useful for further development of use of

distances in machine learning area.
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2.10 Applications

We devote this last section to discuss some applications and motivation for the positive

semi-definite and definite property for similarity matrices.

1. The notion of metric between data points is important in machine learning, data mining
and pattern recognition. For example, the k-Nearest Neighbor classifier [21] and the
prominent K-Means [61], rely on the use of distance measurements between data points.
The performance of these methods rely on the quality of the metric. General metrics
exist (e.g. the Euclidean distance) but they sometimes fail to give sharp consequences
about the peculiar behaviour of the data of interest. We can improve the results when
the metric is designed specifically for the task at hand.

For instance, one can use Mahalanobis distance which originally refers to a distance

measure that incorporates the correlation between features:

dmah(xay) = \/(x_y)TQ_l (x_y)a

where x and y are random vectors from the same distribution with covariance matrix €.

In addition, it can also refer to more generalized quadratic distances, defined as

du(x.y) =/ (x—3) TM(x—y). @.5)

where M is any n X n symmetric positive semi-definite (PSD) matrix and x and y € R".
The positive semi-definite property ensures that d; satisfies the properties of a pseudo-
metric. Note that if rank(M) = r < n, then it induces a linear projection of the data into
a space of lower dimension r. Hence, when the original space is high- dimensional,
it allows cheaper distance computations. These nice properties explain why deriving

Mahalanobis distances from positive semi-definite matrices is interesting.

In fact, a distance model that has been successfully applied to image databases [109]
and that has the power to model dependencies between different components of features
or histogram vectors is provided by the class of quadratic form distance functions (2.5),
where M = (m;;) and the weights m;; denote the similarity between the components i

and j of the vectors x and y, respectively.
We note finally that learning Mahalanobis distance has attracted a lot of interest and it

is a major component of metric learning [108, 126, 133, 136].

2. A dissimilarity measure d can be derived from a normalised similarity measure s,

through decreasing functions. One can for instance consider d = 1 —s. However,
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such dissimilarity does not verify, in general, the triangular inequality. So, it seems
necessary to impose extra conditions on s with the use of other transformations. On the
other hand, it has been shown in [36] that if a matrix S = (s; j)1<;, j<m 18 a positive semi-
definite similarity matrix with elements 0 <s;; < 1 and s; = 1 then, the dissimilarity

(dij) 1<ij<m — (\/ - SiJ) 1<i,j<m (2:6)

is Euclidean. Consequently for all matrices defined in Section 2.5 verifying 0 <s;; < 1

matrix defined by

and s; = 1, their dissimilarity matrices defined above are Euclidean.

Consider the example of K-means clustering ([65]) which is essentially a method
of vector quantisation, that is popular for cluster analysis in data mining (see [49]
and the references within). More specifically, K-means clustering aims to partition n
observations into K clusters in which each observation belongs to the cluster with the
nearest mean, serving as a prototype of the cluster. Let X = {x; : i=1,2,...,n} bea
set of n d-dimensional points to be clustered into a set of K clusters, ¢x, k =1,...,K.
Generally, a K-means algorithm aims at finding a partition such that the squared error
between the empirical mean of a cluster and the points in the cluster is minimised.
Explicitly, if ;. denotes the mean of the cluster ¢, then the squared error between L
and the points in cluster cy is defined as J(cx) = Y., || Xi — i ||*- So now the goal

of K-means is to minimise the sum of the following squared error over all K clusters,

K
J(C)=kz,1 Yol

Xi€EC

In addition, K-means are appropriate to use in combination with the Euclidean distance
because the main objective of K-means is to minimise the sum of intra-cluster variances
(i.e. J(C)), and the intra-cluster variance is calculated in the same way as the sum
of Euclidean distances between all points in the cluster to the cluster centroid. So,
there is a close link between K-means and the Euclidean distance as the algorithm is
somewhat designed to calculate the mean of a set of data points, but the convergence of
the clustering process is guaranteed by the mean only if the data points are reassigned

to the nearest centroid by the use of the Euclidean distance.

Finally it is interesting to point out that positive semi- definite similarity measures can
be converted to the Euclidean distance using the transformation (2.6). An example of
that is the cosine similarity (See [106]).
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It is worth mentioning that we can still use K-means with other distance measures. As
in [112] where the author uses this algorithm with the Minkowski and Tchebychev

distances. However, in these cases, convergence is not guaranteed.

3. In evidence theory, the use of a distance between belief functions can be practical
as a definition of agreement between sources of information. Let X be a frame of
discernment containing n distinct objects. For a subset A C X, called hypothesis, a
belief function assigns a belief value to each hypothesis based on one or more pieces of
evidence (see [11] for a formal definition of belief functions). Many distances between
belief functions have been defined, among which generalised Euclidean distances play
amajor role. A generalised Euclidean distance between two belief functions m; and

mo, 1s of the form

d%V(mhmz) = \/(ml —mp) "W (my —my), (2.7)

where W is a weighted matrix. From the properties of W are derived the properties of
the associated distance dvzv. In particular, if W is positive definite , then dﬁ, is a full
metric distance. However, if W is only positive semi-definite, then d%, is a pseudo-
metric, which means that two distinct belief functions may have a null distance. In
the aim of defining a "full" metric between two belief functions which accounts for
the interaction between focal elements, an Euclidean distance of the form of (2.7) was
proposed in which the weighted matrix is Jac. It is worth noting that d%ac is proved to
be a metric distance (or a "full" metric) due to the positive definiteness of the complete
Jaccard index Jac [11]. In addition, d}ac can be extended by replacing Jac by any

positive definite similarity matrix. By Section 2.6, any matrix that belongs to the

Tversky family of similarity matrices is appropriate as a weighted matrix.

4. Kernel methods [110] are widely used in machine learning. The main idea behind

these methods is based on kernels or kernel functions.

Let X be a non-empty set. The idea is to define a kernel K : X’ x X — R such that for
any two points x and x’ € X, K (x,x") be equal to an inner product of vectors ®(x) and

(),
Va,x' € X, K (x,x') =< ®(x),P(y) >,

for some mapping ® : X — H to a Hilbert space H. Since an inner product is a measure
of similarity of two vectors, K is often interpreted as a similarity measure between
elements of the input space X. An important advantage of such a kernel K is that K

is often more efficient to compute than @ and an inner product in J. In fact, there is
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no need to explicitly define or compute a mapping ®. The kernel K can be arbitrarily
chosen so long as the existence of ® is guaranteed, i.e. K satisfies Mercer’s condition
(see [110]). This condition is essential to guarantee the convexity of the optimisation
problem for algorithms such as SVM’s and thus convergence in this case is obtained.

On the other hand, a condition which is equivalent to Mercer’s condition is that the
kernel K be symmetric positive definite. A symmetric function K : X x X — R is a

positive definite kernel on X if

n
Y cicjK(xi,xj) >0,
i,j=1

holds for any n € N, xy, ...,x, € X and ¢y, ..., ¢, € R. Equivalently, a kernel K is positive
definite if and only if for any N € N and any set of points (x1,x2, ...,x,) € X", the matrix
K := [K(xi,x})]ij € R™" is positive semi-definite. Noting that kernel methods are
essentially algorithms that take such matrices as input, the requirement of positive semi-
definiteness is important when seen from at least two perspectives as follows. First, the
usage of positive definite matrices is a key assumption in convex programming [12].
In practice, the positive definiteness of kernel matrices ensures that kernel algorithms
such as Gaussian processes or support vector machines (SVMs) converge to a relevant
solution. Second, the positive definiteness assumption is also a key assumption in
reproducing kernel Hilbert spaces (RKHS)[6, 107].

Any function K that creates a symmetric, positive definite matrix is a valid kernel.

Hence, similarity matrices given in Section (2.5) can be used as kernels.

It is worthy to note that some methods deals with the problem of learning with a
non- PSD similarity matrix in kernel machines. In Support Vector Machines (SVMs),
these methods can be divided into two approaches: algorithmic [91] and spectrum-
transformation [135].






Chapter 3

Positive semi-definite pth roots of positive
semi-definite doubly stochastic matrices

We saw in Chapter 2, that the property of being positive semi-definite has many applications
especially when we are considering similarity matrices. A particular form of a similarity
matrix can be a doubly stochastic matrix [130]. Moreover, some algorithms are proposed
to improve clustering by learning a doubly stochastic matrix from a data similarity matrix
[130]. In addition, exploring the structure of the spectrum of symmetric doubly stochastic
matrices can be helpful in many applications such as data clustering. We take the example
of a data clustering method introduced in [75] where the clustering algorithm takes as input
the consensus similarity matrix S created from whatever combination of clustering methods .
Then, § is converted into the doubly stochastic matrix P using the Sinkhorn-Knopp algorithm
[114]. Next, all the eigenvalues of P are computed, and the Perron cluster of P is identified.
Generally, the number of eigenvalues near 1 is the number of clusters. Note that stochastic
consensus clustering works on several well-known test data sets and can give better results
[75].

In this chapter, our problem of interest is to combine the positive semi-definite property
and the doubly stochastic property in some matrix A, then to consider the solution of the
equation X” = A, where p is a positive integer .

3.1 Introduction of the problem of interest

One of the most intriguing problems in matrix analysis is the calculus of matrix functions.
In particular, pth roots of matrices play an important role in many applications. Indeed,

finding roots of certain classes of matrices, and especially nonnegative matrices, are widely
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studied (see, e.g., [73, 74, 89, 125]). Recently, finding the pth roots of a stochastic matrix
have been discussed in [37, 38] as the computation of such roots has led to many interesting
applications in the area of financial mathematics[46, 132]. In fact, stochastic matrices arise
in Markov chain models. A stochastic matrix B = (b;;) appears as a transitive matrix over a
certain time interval to describe the transition probabilities from state 1 to state j. Often, a
transition matrix over a shorter time interval is needed but only a stochastic matrix over a
longer time interval is available. Such a transition matrix can be obtained by calculating pth
roots of the original matrix [17]. We will extend the analysis of the finding roots problem to
PSD doubly stochastic matrices.

We recall that for every A > 0 and for every positive integer p, there exists a unique X > 0
so that X” = A (see Theorem 1.2.9). Then the matrix X is called the positive semi-definite
pth root of A and is denoted by AY/P. The positive semi-definite pth root of a positive
semi-definite doubly stochastic matrix is quasi-doubly stochastic (see Lemma 3.2.2 below),

but need not to be nonnegative. This leads us to the following problem.

Problem 2. What are the necessary and sufficient conditions for a positive semi-definite

doubly stochastic matrix to have its positive semi-definite pth root, doubly stochastic ?

While the computation of the pth roots of a (not necessarily positive semi-definite)
stochastic (or doubly stochastic) matrix involves a lot of problems [41], like under what
conditions does a given stochastic matrix have a stochastic pth root? how many roots are
there? and how they can be computed, our problem of interest here is more restrictive, since
we are interested in the unique positive semi-definite doubly stochastic pth root of a positive
semi-definite doubly stochastic matrix. In addition, as mentioned earlier, such a matrix is
always doubly quasi-stochastic, so the problem is reduced to studying the nonnegativity of
the matrix. To the best of our knowledge, this problem was only considered by Marcus
and Minc [67] for the particular case p = 2 (i.e. square root) and their results are given in
Theorem 3.2.1 below.

We shall begin by establishing some notations.

Notations. Let M (n) be the class of all n x n symmetric real matrices and M (n) denote the
convex cone of all nonnegative elements in Mis(n). In addition, the set of all n x n symmetric
doubly stochastic matrices will be denoted by A} . Recall here that A} is a convex polytope
of dimension %n(n — 1), where its vertices were determined in [54] (see also [22]). On the
other hand, we shall denote by H, to be the closed convex cone of all n x n real positive
semi-definite matrices, and we also denote by K, := H,, (| A;, to be the convex set of all n X n
positive semi-definite doubly stochastic matrices. Finally, for any positive integer p, we
define
K)/P = {A € K, : A7 is doubly stochastic}.
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This chapter is organised as follows. Section 2 is concerned with giving new sufficient
conditions for the square root of an n X n positive semi-definite doubly stochastic matrix to
be nonnegative. In Section 3, we prove some geometrical properties of the set K,i /P More
precisely, our main result deals with proving that for n > 3, the set K,} /p 1s not convex but
star convex with respect to J,,. Next, we will identify a large convex set that sits inside K,% /P,
In Section 4, we shall use the theory of M-matrices to present a method for constructing
elements in K,} P, Then, in Section 5, we investigate in depth the way of finding elements
in K,% /P via the use of eigenvalues. Finally, the last section deals with the square root of all
positive semi-definite doubly stochastic matrices of order 3. In addition, a generalisation to

order n gives us a family of elements that belong to K,l 2,

3.2 Square root of a PSD doubly stochastic matrix

In this section, we shall give some new sufficient conditions for a positive semi-definite
doubly stochastic matrix of order n to have a doubly stochastic square root. As mentioned
earlier, the square root of a positive semi-definite doubly stochastic matrix is not, in general,
doubly stochastic as we can see in the example below.

Example 7. Consider the positive semi-definite doubly stochastic matrix defined by A =

. The square root of A is the doubly quasi-stochastic matrix

W — W — W[ —
1= el
S -

1 1 1
1/2 ? 1 §1 1 §1
A= ? ? + ?ﬁ ? - §\/§
3 3 z\/§ 3T+ Z\/z
with its (2,3)-entry % — 411 2 is negative. U

Remark 7. Note that in the previous example, A has a positive semi-definite doubly quasi-
stochastic pth root with negative entries for all even integer p > 2. We can prove that
by contradiction. Suppose that there exists an even integer py such that Al/po g doubly
stochastic. As py is even, py = 2k with k > 1 a positive integer. Hence, (A1/P0)k = A1/2 is

doubly stochastic, which is a contradiction.

In [67], Marcus and Minc gave the following sufficient condition for Problem 2 to be

solvable for the case p = 2.
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Theorem 3.2.1. [67] The square root of a positive semi-definite n-square doubly stochastic
matrix A = (a;;) is doubly quasi-stochastic. If a;; < anl,for i=1,...,n, then AV/? is doubly

stochastic.
Proof. See [67, Theorem 2] or [77, Chapter 5, Theorem 4.2]. OJ
Before doing a refinement of the previous theorem, we will prove the following lemma.

Lemma 3.2.2. Let A = (a;j) be an n X n positive semi-definite doubly quasi-stochastic matrix.
Then, A has a unique positive semi-definite doubly quasi-stochastic pth root B = (b;;) for

any positive integer p > 1.

Proof. Let 1,,,...,A, be the nonnegative eigenvalues of the positive semi-definite matrix
A. Then by spectral theorem, there exists a real orthogonal matrix V = (e, vy, ...,v,) whose

first column is e, and each of the last n — 1 remaining column sums is zero, and such that
VIAV = diag(1,15,...,4,).
It is easy to show that a pth root of A is given by

B = (biy) = Veliag(1, /Ty ., VAV,

since B” = A. Moreover, B being symmetric with nonnegative eigenvalues, is the unique

positive semi-definite matrix with A = B?. Next, a simple check shows that

Be,, = Vdiag(1, (/l_z, e C/QL_,,)VTen
= Vdiag(1,{/2,..., /2).(1,0, ...,0)T
=V(1,0,...,0)7 =e,.

Similarly, el B = el Vdiag(1,{/2,,..., /2,)VT = el . Thus, B is doubly quasi-stochastic.
[

In order to make a refinement of Theorem 3.2.1, let us firstly recall that if A = (a;;) €

M, (C) is positive semi-definite, then
aii:(Aﬁ7fi) 20; V1 élén,

with f; the ith column of the identity matrix Z,,.
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Theorem 3.2.3. Let A = (a;;) be a positive semi- deﬁnite n-square doubly stochastic matrix
with at least (n — 1) main diagonal entries < —5. Then there exists a doubly stochastic
matrix B = (b;;) such that B> = A.

Proof. By taking p =2 in Lemma 3.2.2, we conclude that B is doubly quasi-stochastic. Since
bj > 0foralli=1,...,n, in order to complete the proof, it remains to prove that b;; > 0, for
all 1 <i# j < n. Suppose that b, < 0 for some p # g, then

n
_ 2
App = 21 byj
]:

> Z bf,j (since bpy < 0)
j#4q
2
<Z b, J> (by the Cauchy-Shwarz inequality)
J#4q
1

n
— (since prj:prj—bpqzl—bpq>1).
J#4q J=1

Since B is symmetric, then bqp = bpy < 0 and so by repeating the same process on b, instead
of by, we also get agy > —. Since p # g, this contradicts the hypothesis. 0

Next, we give the following remarks.

Remark 8. Let A be a positive semi-definite doubly stochastic matrix and B := (b;;) be the
square root of A. It is worthy to mention here that a;; > % > 0 and b;; > % > 0.
In fact, from the equation A = B2, we get that a;; = ’}:1 blzj foralli=1,...,n. Now,

using the Cauchy-Schwarz inequality, we obtain

for every i = 1,...,n. Since B is always doubly quasi-stochastic matrix (see the proof of the

preceding theorem), then the preceding inequality becomes

a,,-sz >_

for all i = 1,...,n. The same process can be repeated but with B is now playing the role
previously played by A.
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Remark 9. It is worthy to observe that in the case of Marcus and Minc’s result given in
Theorem 3.2.1, the positive semi-definite doubly stochastic matrix A = (g;;) is taken such
that

1<Tr(A) <1+ L

-1’
since l <a; < n# foralli =1,...,n. In our case (Theorem 3.2.3), since % <a; < anl for
all i 7é rand % < a,r < 1, then A is taken with the condition that

1 <Tr(A) <2.

Of course, these conditions are not sufficient to have a doubly stochastic square root, as can
be easily seen in Example 7. In there, Tr(A) = 12 8 but A does not have a doubly stochastic

square root.
The next theorem gives a sufficient condition on the trace.

Theorem 3.2.4. Let A = (a;;) be a n-square positive semi-definite doubly stochastic matrix
such that Tr(A) < % Then, there exists a doubly stochastic matrix B such that B> = A.

Proof. Let the square root B = (b;;) of A be defined as in the proof of Lemma 3.2.2. Therefore
B is positive semi-definite quasi-doubly stochastic. Suppose that by, = b,, < 0 for some p
and g with p < g. Then,

Tr(A)=ai+...+app+...+aqq+ ... +an

—Zbk+ +Zbk+ +Zbk+ +Zb
k= k=1
n

k=1 i#{p.q} k=1
> Y byt Yobut Y, Y b
k#q k+#p i#{p.q} k=1
(o) ot () ¢ x H(Em)
n k#q k+#p i#{p.ay "
1 1 n—2
— (1 1
> _1( )+ — () +—
n 2_n+2
on(n—1)"

which contradicts the assumption of the hypothesis. 0
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Obviously, the trace condition of the preceding theorem is not necessary as shows the

following example.

! |
2030
0401
Example 8. Consider n = 4. The square root of the matrix B= | | (2) X (2) is B itself.
2 2
03 03

However, Tr(B) =2 > %. O

3.3 Some geometrical properties of the set K» /P

In this section, we shall explore some geometrical properties of the set K,i /P where all the
positive semi-definite doubly stochastic matrices that have positive semi-definite doubly
stochastic pth roots, lie. But first, we shall start with the following definition and propositions

which are needed for our purposes.

Definition 3.3.1. A subset I' of M (n) is said to be star convex with respect to a point

x € M (n), if the line from any point in the set " to x is also contained in I".

Proposition 3.3.2. Let p,n and m be any positive integers. If X € K,i/ Pandy e K,L/ P then
XaY ek’

Proof. AsX € Ki/P and Y € K/, then X!/7 and Y'/? are doubly stochastic. Finally, noting
that
Xy =X"Pey /P x\Poyl/ry. (x/Pay'/p),

(& J
-

p times

we have (X ®Y)Y/? = (X'/? ¢ Y'/P). Then, we conclude that (X &Y)'/? is also doubly

stochastic since it is the product of p doubly stochastic matrices. Hence, X Y € K,} f,’n [

As a consequence, we have the following corollary.

Corollary 3.3.3. Let p,n and m be any positive integers such that m < n. Then the set defined
by
K,i,/p@KX’; ={X®Y whereX € Knl/p andY € Kifn

. 1
is a subset of K, /P,

Proposition 3.3.4. Let p be any positive integer. If X € K,l/ P then, QTXQ € K,i/ P for any

n X n permutation matrix Q.
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Proof. Let X € K»/”, then X!/7 is doubly stochastic, this implies that 07 X'/7Q is doubly

stochastic, for any permutation matrix Q, since it is the product of three doubly stochastic
D

matrices. By noticing that (QTX 1/p Q> = 07XQ, we conclude that 07X Q € K,i/ P [

Finally, we have the following lemma.

Lemma 3.3.5. Let
1 1 1

y=y(x):= 3 + 84*)‘_1 ~3 34!
be a function of x which is defined on [2,+oc|. Then,
1. y(2) <0,
2. y is negative on [3,+oo|.
Proof.
1. A simple check shows that y(2) = —0.0163460353 < 0.

2. The derivative of y is given by:

1 1 S
Y =347 @ 53 @4 -3 ()
_x2 (mgz) 4= 1“23 ) 3 g 1n(2)3f'4"‘1)

(0 u(3)y)

Since the first term of the product in y' is positive, then y is positive if and only if

() _1n (%) 3+ >0, which implies that % — 1.606280561... > 3+ which in turn is
In(3)

equivalent to saying that x > ———— = 2.318132354..., so that clearly y is strictly
o

In(4)

"am(9)

increasing in [3,+oo[. Moreover, y(3) = —0.0166623670... and y goes to zero as x
tends to infinity, then we conclude that y is always negative in [3,+oo].

]

Next, we give the main result of this section which deals with certain geometrical
properties of the sets K, and K,i /P,

Theorem 3.3.6. Let p be any positive integer. Then the following statements hold.
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1. K, is convex for any n > 1.

2. 1(21 /p is convex.

3. Forn >3, Ki/p is not convex.

4. K,l/ P is star convex with respect to J,,.

Proof.

1. It suffices to note that K, = H,(\AS where H, and A are both convex in M (n).

Hence, their intersection K, is convex.
2. It suffices to prove that K21 /P is the line segment [, J>]. In fact, A is equal to the line

segment [I>,C;] where Cp = L 0 hence obviously, K> is equal to the line segment

[lr,J2]. Now let X € K, then X = al, + (1 — a)J; for some a with 0 < a < 1. Consider
now the matrix V, = /al, + (1 — {/a)J,. Using the binomial formula, we have,

V= ({’/512+ (1—- %)Jz)p

Z ) (Vab)* (1= Y/ayn)"™* (where (k) = (l,_p—,L),k.)

= ()l + Z () (Va)* (1= /)" "Bt~
=alh + Z 1—{]/_))177](]2

—an—an+ 3 (0) (00" (- v@)" s
k=0
=alh —al,+ ({VE-I-(I — {75))17]2

=al,—al,+J»
=al, + (1 —a)Jz.

Then, X'/? = ¢/al, + (1 — {/a)J>. Tt follows that X'/? € [I, J,]. Therefore, Kzl/p is
the line segment [I,J].
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3. For n =3, consider the following two positive semi-definite doubly stochastic matrices:

1 0 0 1/2 1/2 0
R=|0 1/2 1/2| and S=]|1/2 1/2 0
0 1/2 1/2 0o 0 1

A simple check shows that R'/? = R and S'/? = S. However

3/4 1/4 0

R+S
M::%: 1/4 1/2 1/4
0 1/4 3/4

has its positive semi-definite pth root with negative entries. Indeed, it is easy to check
that if Q is the orthogonal matrix given by

1/vV/3 1/V/6  1/V2
QZ: 1/\/§ —2/\/6 0 ’
1/vV3 1/vV6  —1/V2

and
1 0 0
D=0 1/4 0
0O O 3/4

then Q" MQ = D and hence M'/? = QD'/?QT . More explicitly,

1, 14-p P 1 Li—p7' 1 14— 1, 14— 1 —
§_|_64P _|_§3P 4-r §_3417 §_|_64P — 3P 4P
1/p 1 1 4-p! 1, 24-p! 1 _1,4-p!t
M'P = 1—347F 1+3477 3—%47F
1 1 g—p! 1 1,1 1a—p-1 1 1 4—p—1 1 1, -1
§_|_64P — 3P 4P §_§4P §_|_§417 + 237 47°P

Now by noticing that the (1,3)-entry of M'/? is equal to y(p) with y the function given
in Lemma 3.3.5, we conclude that M'/? has its (1,3)-entry negative for all p =2,3,....

For general n, consider the matrices R, = R&®1,_3 and S,, = S [,_3. It is easy to see
that Ry/” = Ry, Sp/” = S, and My, := RS — M@ 1, 5. But then My/" = MV/? &1,
has a negative entry for all p = 2,3, ..., which means that M, is not in K,i/ P for all

p =2,3,.... This concludes the proof that K,i /? is not convex.
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4. LetA € K,i/ P then there exists a positive semi-definite doubly stochastic matrix X
such that A = XP?. For 0 < a < 1, consider the matrix

W, = (mxm_mm).

Using again the binomial formula, we can write

= (YT=ax+(1 _mm)”

z 0 (v1=ax)' (0= vi=a)"

— (1 —a)XP+:i; ) (m)" ((1 - M)y_kxkjg—k
~ -+ T @) (v=a)' (- 1=a)

(as Xk is doubly stochastic so Xka_k = XkJn = Jn)
= (1—a)X? — (1—a)J +Z <1—a)k<(1— 1—a)>p_kJn

(1—a)X? — (1—a)J, (% “at+ (141 —a))pJn
(1= a)X? — (1 — a)Jn+ o
(1 —a)A+al,.

Each point on the line-segment [J,A] has a doubly stochastic pth root on the line
segment [J,X|. This completes the proof.

Using a similar proof, we obtain the following conclusion.

Corollary 3.3.7. Let p,n and m be any positive integers such that m < n. Then the subset
l/p @Kl/p of K, /p is star convex with respect to J,,, & J,_p,.

Next, we include an example in the sake of illustrating the previous corollary.
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Example 9. Consider the following 7 x 7 positive semi-definite doubly stochastic matrix

110000
L2 10000
t 20000
_ 3 1 3 1
Sl ORI B
RO I
RSB I L
00035 35 35 3

A simple check shows that

1 1
M= 5(R@B)+§(J3 ®Jg),

where | 1
35 0350

1 0 0 2

0 50 3%

R=|(0 1/2 1/2]| and B=| [ 2 | ?Z

7030

2 2

0 1/2 1/2 . .

07203

Using Example 8 and the proof of Theorem 3.3.6 Part 3) , we know that R € K; /P and
B e Ki /P for every positive integer p. In view of the preceding corollary, we conclude that
M is an element of K3l /p @Ki/ P which implies that M € K71 /P for every positive integer p,
by Corollary 3.3.3.

Next, we identify a large convex subset in K,i P,

Theorem 3.3.8. Let X| :=J,, Xo .= 1B J,—1,..., Xp—1 : =2 B2, X, :=1,, and define T to

be the convex hull of the matrices
{X1, Xa,..., Xn}.

. . .ol e
Then T is contained in K, /p for any positive integer p.



3.3 Some geometrical properties of the set K,i/ Pl 63

Proof. Consider the following orthogonal matrix U, defined by

1 ==l

Vn n(n—1) 0 0 0

1 1 —(n=2) 0 e 0

Vi \ain=1)  y/(n-1)(n—2)

1 1 1 —(n=3) 0
U, = Vi \/nin-1)  /(n-1)(n-2) +/(n-2)(n-3)

1 1 1
Vi e Vo)
\/n(n—l) \/(n—l)(n—Z) \/(n—Z)(n—3)

gl
Sl

Let A; = diag(1,1,...,1,0,...,0), foreachi = 1,...,n. A simple check shows that U! X;U,, =
——

i times
A;foralli=1,...,n. Hence, if X := x1 X + ... + x,,X},, then clearly, we have

X =xUMUL + ...+ x,U,AUT
= Up(x1A1 + 20 + oo + X, A UT

which implies
X = U, (diag (21,42, .., Au1,40)) U, (3.1)

where A; = Y}_,x;. Noticing that for each i = 1,...,n — 1, the coefficient x; is equal to

Ai — A;i—1 and the last one of course is x,. Thus, (3.1) is equivalent to the following
X=Mm-)Xi+L—3)X2+ ...+ (A1 — ) X1 + 22X, (3.2)

Now suppose that A belongs to 7', then there exist nonnegative numbers o, ...., ¢, with
Y ; a; = 1 and such that

A=0X1+ 00X+ 03X3+ ... + o1 X, -1 + 0,.X,,.

Clearly, A is a symmetric doubly stochastic by construction. Using the fact that )" ; o =1,
then by (3.1), an equivalent way of writing A is the following

A=U, (diag (Zn: o, Zn: o, Zn: a, ..., Zn: oci,an)) ur
=1 =2 =3

i=n—1

- Undiag(la.u%.u'ia ) "'7.un—17an) U,{,
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with p; = Y} 0. But then, the pth root of A is clearly given by

. 1 1 1 1
AP = U,diag (1,,u2/p,/.13/p,...,/.Lnﬁ,an/p> Ur.

Hence, by (3.2), an equivalent way of writing AP is the following
AV = (1= )X+ (=) e () = 07 X+ X

Finally, noticing that all the coefficients in the linear combination of AP are nonnegative
and they sum up to 1, then we conclude that AP s doubly stochastic, and the proof is
complete. [

As a result, we have the following corollary.

Corollary 3.3.9. Let A = {Ay,...., A} CR be suchthat 1 = A1 > A3... 2 4, > 0= A1
Then there exists a positive semi-definite doubly stochastic matrix A with spectrum A and

having a doubly stochastic pth root for every positive integer p > 2.

Proof. Tt suffices to consider X := x;X| + ... + x,X, € T, where x; = A; — Ay, for i =
1,..,n. u

3.4 Generating elements in K /P using M-matrices

In this section, we shall identify an interesting class of positive definite doubly stochastic
matrices with doubly stochastic pth roots by making use of the theory of M-matrices. Recall
([30]) that A € R™*" is said to be an M-matrix if A = s/ — B, where B is a nonnegative matrix
and s > p(B), the spectral radius of B. Moreover, when s > p(B) then A is necessarily
nonsingular. It is a standard property that the inverse of an M-matrix is nonnegative[7,
Chapter 6]. Furthermore, A'/? is also an M-matrix for all positive integers p by a result of
Fiedler and Schneider [30].

First, we begin by recalling the following result from Higham and Lin [41, Theorem 3.6]

concerning the existence of a stochastic principal pth root of A.

Theorem 3.4.1. If the stochastic matrix A € R"*" is the inverse of an M-matrix, then the

principal pth root of A denoted by AP exists and is stochastic for all positive integers p.

We can conclude the same for positive semi-definite doubly stochastic matrices as follows.
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Theorem 3.4.2. If the positive semi-definite doubly stochastic matrix A € A;, is the inverse of
an M-matrix, then the unique positive semi-definite pth root of A, AP s doubly stochastic
for all positive integers p.

Proof. First it is worthy to note that since A is positive semi-definite, the principal p” root
of A is the unique positive semidefinite p’* root of A (see [60, Chapter 1]). By Theorem
3.4.1, the principal pth root, A/ exists and is stochastic for all p. Take M = A~!. Since M
is an M-Matrix, then M = sI — B with B nonnegative and s > p(B). Clearly, M" = sI — BT
with BT nonnegative and s > p(B”) = p(B). Hence, M” is an M-Matrix. It follows that
MT = (A~1)T = (AT)~1. Hence, (AT)!/? exists and is stochastic for all p. Now the proof
can be achieved by using the fact that (A'/7)T = (AT)1/p, O

Next, we give the following example.

Example 10. Consider the matrix

1 1 11
36 6 6 6
111 11
6 3 6 6 6
— |1 1 1 11
A=1% 5 3 5 5|
11 1 11
6 6 6 3 6
11 1 11
6 6 6 6 3

for which A~! = 615 — S, where S is the 5 x 5 matrix whose all entries are 1. Clearly, A lis
an M-matrix. Hence, A has a doubly stochastic pth root for all positive integers p.

Next, we use the preceding theorem to present a simple but essential algorithm for
constructing elements in K,i P,

Theorem 3.4.3. For any c > 1 and for any n x n symmetric doubly stochastic matrix B, let
M be the matrix defined by M := cl,, — (¢ — 1)B. Then M~ is a positive definite doubly

stochastic whose pth root is doubly stochastic, for every positive integer p.

Proof. Since ¢ > p(B) = 1, then clearly M is an invertible M-matrix. At this point, we aim
to find its inverse M~ !. First, we start with some elementary auxiliary material. For all k > 0,
it holds that

k k+1
1 —1 —1 —1
(In—c B) (1,,+C—B+...+ (C B) ) 1, - (c B) .
C C C C
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Then, it follows that

that is,

since p (<-1B) < 1. It follows that

c—1 N\ ' & fe—1\F
(o) )
c =\ c

Since B is doubly stochastic, we deduce that the series in the right hand side of the preceding

equation, has each row and column sum equal to

c—1 (c—1)2 < /c—1\* 1
1+ +( )+...:Z( ): =c.

2
c c =\ c

Finally, we note that M can be rewritten as M = c(I, — -1 B), so that M~ = (1, — <1B)~1.
Thus M~ is positive definite doubly stochastic matrix. In view of Theorem 3.4.2, M~ ! has a

positive definite doubly stochastic pth, for all positive integers p. [
The following examples illustrates the previous theorem.

Example 11. For any ¢ > 1, consider the n x n M-matrix M, defined by

M. = cl, — (¢ —1)J,.



3.4 Generating elements in K,i /p using M-matrices | 67

Its inverse M ! is given by M ! = %Jn + %Im as shows the following inspection:

~1. 1
MM = (cI,— (c—1)J,) (C Ju+ Eln>

c
—1)? —1
LY AN Chull) o S Gl V)
c c
=(c—1)h+1L,—(c—1)J,
=1,.
Thus M I'is an element of K,i /P for every positive integer p. 0

Example 12. For any ¢ > 1, and for any n X n symmetric permutation matrix P, consider
the n X n M-matrix M_p defined by

Mo :=cl,—(c—1)P.

From the proof of the preceding theorem, we know that
(ln—c P) = (C ) Pk
c =\ c
oo k
—1
Gy R
k=0, k odd ¢ k=0, k even
2s+1 - 1 2s 5
P S+ + Z < > P

)
(c—1>zs+lp+i (C—1> I, (since P*=1,)
)

)
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As aresult, for any ¢ > 1 and for any permutation matrix P, it holds that the matrix MC_P1 =

(1/c) 2ﬁ1 [C:—lP +1] = 555 [%P +1,] is an element of K\'? for every positive integer p.
U

As a consequence, we have the following.

Corollary 3.4.4. Forany 0 <a < %, and for any permutation matrix P, it holds that aP +
(1—a)l,is in K,,],/p for every positive integer p.

Proof. Tt suffices to exploit the matrix M, = 55 [<-1P+1,] given in the previous example.

Indeed, in this matrix, if we first let ¢ tend to infinity, we obtain the matrix %P + %In while if

we let ¢ tend to 1, we get the identity matrix /,. By continuity, the proof is complete. [

3.5 Constructing elements of K, /” via the use of eigenval-

ues.

In this section, we will construct elements in Kn1 /p by making connection with the symmetric
doubly stochastic inverse eigenvalue problem (SDIEP) (see Section (1.4)). First, we recall
that if A is a symmetric doubly stochastic matrix, then by spectral theorem, there exists
an orthogonal matrix V whose first column is e, and such that A = Vdiag(1, 45, ..., 7L,,)VT.
Therefore, if A is positive semi-definite, then its unique positive semi-definite pth root is
given by

AP = vdiag(1,A)7, ..., 0 "WV,

Thus, for a fixed such V, one could explore the relations that the eigenvalues {1,4;,...,4,}
should satisfy in order for A and A'/? to be doubly stochastic.

In connection with this, recall that a principal method to solve the (SDIEP), relies on
taking a real diagonal matrix A = diag(1,4,,...,A,), with =1 < A; < 1fori=2,....,n, and
an orthogonal matrix V with first column e,, and then exploring the conditions under which
A = VAVT is doubly stochastic. As a conclusion, one can see an obvious intersection
between (SDIEP) and constructing elements in K /»

Among all such orthogonal matrices V, those of interest to us are the so-called Soules
matrices. Indeed, Soules [122] used the same procedure just described with a particular
matrix Vg, later known as a Soules matrix, and obtained the following theorem (see [122,
Theorem 2.5]).

Theorem 3.5.1. [I122]If1> A, > ..> A, > —1 and

1 n—m—1 O An_oki2
Mt >0, 3.3
n' am+1) 2 kz’](k+1)k_ (33)
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holds withn =2m+2 if n even and n = 2m+-1 if n odd, then there exists an n X n symmetric

doubly stochastic matrix D such that D has eigenvalues 1,25, ...., Ay.

It follows from the preceding theorem that for any 1 > A, > ... > A4, > 0, then (3.3)
is valid and hence the symmetric doubly-stochastic inverse eigenvalue problem has so-
lutions i.e. there exists an n X n symmetric doubly-stochastic matrix X such that X =
Vidiag(1,12,...,4,)V]. But then as 1 > lzl/p > > l,}/p > 0 for any integer positive
p, then Y = Vidiag(1, lzl /p yeee lnl /p )W[I is also a symmetric doubly-stochastic matrix with
Y = X?. Thus, any n X n positive semi-definite doubly stochastic matrix X which can be
obtained from the preceding theorem, is an element of K,} /P for any positive integer p.

In [27], Elsener et al. took a further step and gave the following definition.

Definition 3.5.2. Let S € R"*" be an orthogonal matrix with columns (ry,r,...,r,). The
set {r1,...,r,} is called a Soules basis and S is called a Soules matrix if the following 2

conditions are satisfied:
* 7y is positive,

* for every diagonal matrix A := diag(A;,42,...,4,) with A} > A, > ... > 4, > 0, the
matrix Ay = SAST is nonnegative.

Hence, this leads naturally to the following theorem.

Theorem 3.5.3. Let S be an n x n Soules matrix whose first column is ry = e,. If 1 > A, >
.. = Ay > 0, then the matrix given by A = Sdiag(1,A;,...,2,)ST is in K,l /P for any positive

integer p.

Proof. As ri = e,, A is doubly stochastic by [27]. The p'” root of A is given by
AVP = sdiag(1,A)/7, ..., A0/P)S".

Since S is a Soules matrix, and 1 > 121 /p >..> 7Ln] /p =0, then A1/7 is also doubly stochastic.
Hence, A has a positive semi-definite doubly stochastic p" root for every integer p > 1. [

In the same paper [27], the authors also characterised all Soules matrices starting with a
fixed positive vector x € R". Thus, for x := e, one can find all corresponding Soules matrices
and hence, in principle this leads to finding all elements in K,} /P (for any positive integer p)
that can be obtained in this fashion. We illustrate this, for the case n = 3. First, in order to

state their characterisation, we require the following definition which can be found in [26].
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Definition 3.5.4. Let N = (N1,N»,...,N,;) be a sequence of partitions of <n >={1,2,...,n}
with N; = {N; 1,N;2,...,N;;}, foreachi € {1,2,...,n}.
If for each i € {2,...,n}, there exist indices j,k,/ with 1 < j<i—land 1 <k <[ <i,
such that
Nic1/Nic1,j = Ni/{Nix, Nis}

and
Ni—1,j =NigUN;y,

i.e. N; is constructed from N;_; by splitting exactly one of the sets in N;_| into two subsets,
then N is said to be a Soules-type sequence.

Example 13. For the case n = 3, we have three possible Soules-type sequences.

e Case 1: N = (N1,Np,N3), where
Nl :{17273}7

Ny = {{172}7{3}}7
and

Nz = {{1},{2},{3}}.

e Case 2: N = (Ny,N3,N3), where
Nl - {17253}7

NZ = {{173}, {2}}a
and,

N3 ={{1},{3},{2}}.
» Case 3: N = (N1,N,,N3), where

Nl - {17233}7

No = {{2,3},{1}},
and,

Nz ={{2}, {3}, {1}}.
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We can now expose the characterisation of Soules matrices due to Elsner, Nabben and
Neumann [27, Theorem 2.2]. First, we will define for any x € R" and for a any subset N of
X ieN
{1,2,...n}, xx=4"
0 elsewhere
Theorem 3.5.5. [27] Let x € R" be a positive vector and let S be a Soules matrix with
columnsry, ry,. .., r,, where rj =x. Then there exists a Soules-type sequence N of

partitions of {1,2,...,n} such that r; is given(up to a factor of + 1) by

1 XN, 2 xx;, |13
(n P T 9 ) G

i = 2N 2N
g, B+ o, 13 T B T, T3

where s and t are those indices in {1,2,...,i} for which sets N; ; and N;; do not coincide
with one of the sets N;_1 j,j=1,...,i— 1.

Conversely, if x € R" is a positive vector with || x ||o= 1 and N is a Soules-type sequence
of partitions of < n >, then the matrix S = [ry,ry,...,ry| with ry = x and ry, r3,..., r, given by

( 3.4) is a Soules matrix.

Example 14. For the case n = 3, and for r; = e3 > 0, we now find all elements in K,l /p that
can be obtained from the technique just described. First, using the characterisation giving in
Theorem 3.5.5, we construct all possible Soules matrices S with columns (r1,7;,73). Indeed,
there are only 3 Soules matrices, up to r, and =£r3, giving by

1/vV3 —1/V/6 1/V2 1/vV3 —1/v/6 1/V2
Si:=|(1/V3 —1/V/6 —1/vV2|,S:=|1/V3 2/V/6 0 ,
1/V/3 2/V/6 0 1/vV3 —1/V/6 —1/v2

and

1/vV3 2/V/6 0
Sy:=|(1/V3 —1/V/6 1/V2
1/vV3 —1/v/6 —1/V2

As aresult, by Theorem 3.5.3, the sets defined by
E; = {Sidiag(l,/lz,lg,)S? with1 >, > A3 > 0},

fori =1,2,3 are subsets of K31 /P for all integers p > 1.
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However, if the eigenvalues {1,1;,...,4,} are not taken in the decreasing order, then our
knowledge concerning constructing elements of K,l /p using this procedure, is certainly less
and more exploration in this direction is needed.

In the case when considering an orthogonal matrix R which is not a Soules matrix, it
is necessary to investigate the conditions under which the matrix Rdiag(1, 45, ..., A,)RT has
a doubly stochastic pth root and for what value of p > 1, this may happen. It is worthy
to mention here that this can be done on a case by case basis as it appears that there is no
systematic way of dealing with a general case. For illustration, we will give the following

example.

Example 15. Let 1 > A, > A3 > 0, and consider the following orthogonal matrix

1/V3 1/vV2 —1/V/6
R=|1/V3 —1/vV2 —1/V6
1/V3 0 2/V6

Using the characterisation of Elsener et. al given in Theorem3.5.5, R is obviously not a

Soules matrix, and a simple matrix multiplication shows that

RAR" = Rdiag(1,A5,A3)R"

beihedt d-bhein 1-in

e
1 1 1 1 2
373h 373k 313k

and

=
>
=z
]
=
~
I
=
=
)
()]
=
N
Dy
>
W=
=
~
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At this point, the matrix defined by Rdiag(1,2,,A3)R’ is doubly stochastic and has a

positive semi-definite doubly stochastic pth root if and only if the following system holds
1 1 1
3-2htehs 20
T-2hr+iA7 >0
1

>N =>A3 >0.

It is worth noting here that for the list (1, i, 0), a simple check shows that

1 1/p

Rdiag 1’<Z) L0 |RT >0
1 1/p

Rdiag 1,(1) ,0 | RT

has negative entries for all p > 4. While, for the list (1, %, %) an inspection shows that for all

INYP 1\ VP
Rdiag 1,(1) ’(Z) RT >o0.

Finally, for the list (1 1 0), a simple check shows that

1D
. 1 T
Rdiag | 1, > ,0 R >0,
1 1/p
Rdiag 1,(5) ,0 | RT

has negative entries for all p > 2.

for p =1,2,3. However

p > 1, the matrix

however

It is worthy to mention here the following observation.

Observation 3.5.6. If S is any Soules basis, then the process of permuting its rows results in

another Soules matrix. However, permuting its columns may not result in a Soules matrix.

Proof. Suppose that for every diagonal matrix A := diag(A;,42,...,4,) with A} > A4, > ... >
A, > 0, the matrix Ay = SAST is nonnegative. Therefore, for any permutation matrix Q, it
holds that OSAST QT is nonnegative. Thus, QS is a Soules matrix. However, SQ may not be

a Soules matrix as can be shown in the following example. Indeed, for the case n = 3 and
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with 1 > A, > A3 > 0, consider the matrix S given by

1/vV3 —1/vV6 1/V2
Si=|1/v3 —-1/\/6 —1/v2],

1/v/3  2/v6 0

which is a Soules matrix given in Example 14. Now permuting columns 2 and 3 in S
1 00

amounts to multiplying S to the right by Q= | 0 0 1 |. Another simple check shows
010

that

S10AQTS] = §,0diag(1,22,43)Q" ST

N
b e iheih b1
1 1 1 1 1 2
3730 373M 3T5A

and hence for A, = 1 and A3 = 0, the matrix SQAQ” S lT has negative entries. This proves that
S10 is not a Soules matrix. In fact, S1Q = R, where R is the matrix given in Example 15. [

As a conclusion, we have the following observation concerning Soules matrices for the

case n = 3.

Remark 10. By example 14 and using the previous observation, it is enough to take into
account only S; as a Soules matrix since S; and S3 can be obtained from §; by permuting

some of their rows. Therefore, the sets defined by
Ey := {Sidiag(1,22,23)S] with 1 > A, > 23 >0}

and
Eip:= {QE 10", where Q runs over all 3 x 3 permutation matrices}

are subsets of K31 /P for any positive integer p. Thus, the union E; |JE¢ is the only subset of
K; /P that can be obtained using the concept of Soules bases. U

As mentioned before, it appears that there is no systematic way to deal with a general case
of an orthogonal matrix O to define the sets of all positive semi-definite doubly stochastic
matrices, given by Odiag(1,2,,...,A,)07 with 1 > A, > .... > A, > 0, that belongs to K,}/p

for a positive integer p. Our objective in the next section is to define the set K,i /p by making
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use of general orthogonal matrices for the particular case of n =3 and p = 2 then make a

generalisation to obtain at least a family of matrices that belongs to K,i /2 for any n.

3.6 A family of K /2 via the use of eigenvalues.

In this section, we will make use of the eigenvalues to characterise K31 2 A generalisation for
any n, gives us a family of PSD doubly stochastic matrices having doubly stochastic square
root. Firstly, let us denote by

1 1
a; = (——tz — Et\/ — 372 +2) ,

2
1
bt = —a; — 57
1 1
= (—5t2+5t\/ —3t2+2>
and,
1
dt = —C— 57

V6 /6
forany r € [_T’T] .

3.6.1 A method to define K,

Next, we give orthogonal matrices of order 3 that suffices to diagonalize all the positive
semi-definite doubly stochastic matrices. For the purpose, consider the following orthogonal
matrices given by

t \V2/3—1?
232 —\2/3-12—V/3¢2
2

2
V232 —/2/3—12+V 312
2 2

01t =

S-S S

where t € [—\/TE,O] and,

AN Y

1232 \2/3-12—V/3¢2
2 2

V232 A2/3—12+V 312
2 2

02t =

Y

S S S
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where 1 € [O, ?}

Proposition 3.6.1. Oy; witht € [—%,O} and Oy witht € [O, ?} diagonalize all symmetric

doubly stochastic matrices of order 3.

Proof. Let U = [e3]||v2]|v3] be an orthogonal matrix of order 3, with first column e3 =
\/%(1, 1,1). If vo = (a,b,c)7, then a +b+c = 0 since e’ .v, =0, and a® + b* +c? = 1.

Without loss of generality, suppose that a is equal to some parameter ¢, then we have two

cases:

L b= =250 and ¢ = =22 with 1 € [ 48, 48]

2. b= and ¢ = 22 withr e |38, 9],

—1—V2-312 | _ —t+\/2—312)T
2

Case 1: v, = (1, 5 ,C = . By a similar manner, we have two possible

cases for vs.

i) If v3 = (x, _"_‘/22_3"2, _x+\/22_3x2 )T, with x € [—\/Té, ‘/Té] By a simple computation of

vl .v3 =0, we obtain x = \/2/3— 2 if 1 € [~ ¥2,0] and, x = —\/2/3 — 2 if t € [0, ¥2].

Hence, in this case

fort € [—*/76,0] and

fort € [0, \/Tg]

i) Ifvs = (x, —x+\/22—3x2 , _x_‘/22_3x2 )T. By a similar computation, we obtain x = —+/2/3 — 2
ift € [—‘/TE,O] and, x = /2/3—12ift € [0, \/Té] Therefore,

t —\/2/3—12

2232 A/2/3-124V32
2 2

1232 A/2/3-12—V312
2 2

U=Wy; =

S S-S

>

fort € [——,0] and,

w
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t V2/3—1?

L1232 —4/2/3—12+V312
2 2

142232 —\/2/3-12—V/3i2
2 2

sz =

Y

S - sk

fort € [O, \/Tg] . However, W, is obtained from Oj; by multiplying its third column by
-1, and Wy, 1s obtained from Oy; by multiplying its third column by -1.Therefore, it
suffices in this case to consider O(; and Oy;.

—f4+/2 342 i _ 32 .. . .
Case 2: v, = (1, "THV230 o = ~L-V230)T By a similar way as described in the first case,

It suffices here to consider the two following orthogonal matrices:

1
7 t \V2/3 12
7 L V232 —V/2/3-124V32
It = V3 2 2
1 /232 —\/2/3—t2—\/3?
3 2 2
where t € [—\/TE,O] and,
% t —/2/3 12
| V232 V/2/3-124V32
Iy = % 2 2 )
| V232 /2/3-12=V32
V& 2 2

where t € [0, \/Té] . Multiply the second column of Zj; by -1 and then take k = —¢. Therefore

ke [0, @] , and the matrix obtained is Wp,. Similarly, multiply the second column of Z;; by

-1 and take k = —t. Therefore k € [—@,O} , and the matrix obtained is Wj;. As previously,in
this case, it suffices to consider Oy; and O;.
And the proof is complete. [

Next, we give the following remark.

Remark 11. Note that Oy ;) is obtained from Oy(,_q) by multiplying its third column by
-1. Hence,

O1u=0ydiag(1,22,43) 07 ,_g) = Ox—g)diag(1,42,23) O3 ,_g-
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Note also that 01 (1= ¥5) is obtained from 02 by multiplying its second column by -1.
=73

(=)
Hence,

Ol(t:_é)diag(l,lz,7L3)01T([:_ﬁ) = oz(t:@diag(l,/lz,Ag)og(t:ﬁ)

Therefore, given (1,A,A3) with 1 > A, > A3 > 0, the two family of matrices

H, = {01,diag(1,lz,),3)0{t, t E]—?,O] }

and

H, := {OZ,djag(l,lz,)@)Osz re ] 0 ?] }

are positive semi-definite doubly quasi-stochastic matrices with spectrum (1,4;,43).
To characterise the doubly stochastic matrices among H; U H,, we need to investigate

when
6
Ovdiag(1,22,23)07. > 0, te]—g,ol
and
6
02tdiag(17127)t3)05t >0, S ] 0, \/T_] .

For the purpose, we prove the following propositions.

Proposition 3.6.2. Let 1 > A > A3 > O and t € } —@,o} . Then Ovdiag(1,22,43)07, > 0
if and only if

ol

. Forte}—é,—

1
3 +ci Ay +diAz > 0.

B

e Fort € [—T,O} ,

1 1 1
3 + (2 - 5)12 + (2 + 6)13 > 0.

Proof. Let A = (a;j) = Oltdiag(l,lz,%)O{t for some ¢ € [—%,O]. A is positive semi
definite matrix, then a;; = az; = a3z > 0. It suffices to study the sign of a3, a;3 and a3
given by

1
apn =3 +a; Ay + bi A3,
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1
a3 =3 +cida+diAz,

and,

1 , 1 5 1
a23—3+7l,2(t 2)+l3( t +6).

A simple check shows that,

e Fort € } —?, —% [, we have a3 < ajp and a;3 < az3.

V6

* Fort = =%, a3 = ax3 < ap.

e Fort € } —@,O}, a3 < ayz <L dapp.

Therefore, A > 0 if and only if aj3 > 0, forz € [—‘/Tg, —‘/?6 [ and if and only if a3 > 0, for
‘e [—%5,0} .
[

Proposition 3.6.3. Let 1 > A > A3 >0andt € }0,@
Oxdiag(1,A2,23)0% > 0 if and only if

. Forte}g,é],

| S

,and 1 > Ay > A3 > 0. Then

1

3 +a; Ay +bAz > 0.
* Fort 6}0,%6] ,
L ( I)M (—*+ 1) >0
3 v T 6=
Proof. Let B= (b;j) = Oy.diag(1,A2,A3).0% for some ¢ €]0, @] B is positive semi definite
matrix, then b1 = by, = b3z > 0. It suffices to study the sign of b2, b13 and by3 given by

1
by = 3 +a; Ay + by 23,

1
biz = 3 +cida+diAz,

and,

_1 , 1 5 1
b23—3+7l,2(l‘ 2)+l3( t +6).

By comparing the entries of B, we obtain the following.

e Fort € } —% — \/TE}’ we have b1y < by3 and by < bys.
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* Fort = é, b12 = b3 < by3.

. FortG}O \[] byz < b1p < bys.
Therefore, B > 0 if and only if b1, > 0, fort € ] ‘/?6, ‘/Té} ,and by3 > 0, fort € } ,%] And
the proof is complete. O

As a conclusion we have the following theorem.

Theorem 3.6.4. Let 1 > Ay > A3 > 0. Define Ey,, Eo;, E3; and Ey4, as follows.

1. Ey = {Oltdlag(l 1’2713)011‘7 t E]_i _i |:/ +Ct\/_+dt 2'3 > 0}7

2. OI,dlag 1 12,13)01[, te [—%, ]/§ ( )\/_+ \/)T3>0}

Ey = {
3. E {02zdlag (1,22,23)0%, fE]‘/Tg,‘/Tﬂ /%+az\/l_z+bz 3 20},

Ondiag(1,22,43)0%, t e}o,%é] /%+(t2_%)\/,1—2+(_t2+%) = 20}_

Then K — Elt UEZ[ UE3[ UE4Z‘

Proof. Let M € Ey;. Then there exists t € [—%67 —% [ such that M = Oy,diag(1,,, ?L3)01Tt

and % + vV A +di+/ A3 > 0. Since M is positive semi-definite, then there exists a positive
semi-definite matrix N such that M = N2. Therefore, M is given by

N = (nij) = 01,diag(1, \/}L_z, \/A_3)01Tt

By construction, N is doubly quasi-stochastic. Since, % +eiv +d,\/7t_3 > 0 then by
Proposition 3.6.2, N is nonnegative; Therefore N is doubly stochastic. Hence, M is positive
semi-definite doubly stochastic matrix with doubly stochastic square root. Similar arguments
can be employed for M € Ey;, E3;, and Ey;.

On the other hand, consider a positive semi-definite doubly stochastic matrix with
eigenvalues 41,1y, A3. Then there exists 7 € [—@, 0] such that M = Oy,diag(1, A,, /lg)Oth,

ort e [O, \/Tg] such that M = Oy, diag(1, A2, A3)OL.. Without loss of generality, suppose that
M = Oy,diag(1,22,23) O], for some 1 € [ Y6 0 } Then

M1/2 = Oltdiag(17 \/2’_7 \/2’_3)0{t
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By Proposition 3.6.2 , M2 >0 if and only if

. %+ct\/7t_2+d,\/l_3> 0,ifr € [_@a_@[

(O]

AP DVt (P DV 2 0ifr e [—380].

Hence, M € Ey; if t € [—‘/Té,—‘/?é [ or M € Ey ift € [—‘/?6,0} . Similar argument can
be employed for M = Oy diag(1,12,A3)0%, for some 1 € [O, Lg} . Using Proposition 3.6.3,

we conclude that M € E3, for ¢t € } V6 \f} or M € E4 fort € [O, g} . And the proof is
complete. [

Example 16. The positive semi-definite doubly stochastic matrices with spectrum (1,1,0)
and doubly stochastic square root are given by
/ 3 +c¢ > O} 0

6 11
Ey = {Ondiag(l,l,O)O?},te [—f 0] /zz Ft32 0} {Onchag 1,1,0)0],.1 = —

6 V6 1
E3,={OQ,dlag(l,l,O)Og,t€‘|{7{1 /3+at>0} {OQ,dlag(l,l,O)Ozf,t—\:{}

°}

V6
-

Elt = {Oltdlag(lalao)O{za t €‘|7 %

0\%

2

al

and,

6
E4,:{Oztdiag(l,l,O)Og,,IE]O,{] /t2—+ >0} {OQ,dlagl,l,O ol t=

o\s

Therefore, we have the three following elements in K3l /2 with spectrum (1,1,0):

1/2 1/2 0 1 0 0 1/2 0 1/2
vo=|12 172 0. B =0 1/2 1/2|,and Eyn =] 0 1 0

3 L

0 0 1 0 1/2 1/2 1/2 0 1/2

1
6

QN—



82 | Positive semi-definite pth roots of positive semi-definite doubly stochastic matrices

3.6.2 Generalization to order n

In this section, we give a family of positive semi-definite doubly stochastic matrices that

belongs to K,l /P for any n. For this purpose, we consider the particular orthogonal matrix,

1 1

1 1 1

Vi fan—1)  /n—1)(n—2) NG

1 1 1 1 —1

Vi fan—1)  \/n—1)(n—2) V6 V2

1 1 1 _2 9

Vi \/u(n=1)  \/(n—1)(n-2) V6
V=1 : :

1+ . 0 0

Vo \/u(n—=1)  /(n—1)(n-2)

L —(o2) 0 0

ViV e

1 =

NG 0 0 0

n(n—1)

which is a Soules matrix of order n [122]. Therefore for every diagonal matrix A =
diag(1,A2,...,A4,) where 1 > A, > ... > 4, > 0,A=V,AV] ¢ Kri/z. Using Oy; = (e3|x2|x3)
and Oy, = (e3]y2]y3), we construct two families of orthogonal matrices Vy; and V5, of order n.

For n > 3, we construct V}; by considering the first n — 2 columns of the Soules matrix V,,
X2 X3

and the last 2 columns | = | and | _ | to be the n columns of Vj;. Similarly, we construct
0 0
V»; by considering the first n — 2 columns of the Soules matrix V, and the last 2 columns

Y2 Y3

0
and | _ | to be the n columns of V,;. A simple matrix multiplication shows that the

0 0
matrices A = V, AV, and B =V;,AV[[, with € ] —\/Tg,o] differ only by the 3 x 3 principal
submatrix formed from the first 3 columns and the first 3 rows of A and B. Similarly, the
matrices A and C = VZ,AV2€ witht € } 0, ﬁ} differ also only by the 3 x 3 principal submatrix
formed from the first 3 columns and the first 3 rows of A and C.

Hence, the positive semi-definite matrix B (respectively C) has nonnegative off diagonal
entries except b2, b13 and by3 (respectively ¢y, c13 and ¢p3) given by:

1 1
mlz +...+ mﬂw—z +aidp—1+bidy,

1
bpp=cnn=-+
n
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1 1 1
biz=ci3= . + mh‘i' ot mln—z‘i'ctln—l +di Ay,
and,
o1 1 1 21 2,1
b23—C23—n-l-n(n_l)lz-i-...-i-(4)(3)1,[,2-1-0 Z)A‘nil-l_( t +6)ﬂ,n.

In the following propositions, we investigate when the matrices given by VltAVE and VZ,Asz

are nonnegative.

Proposition 3.6.5. Let n > 3 be any positive integer and let 1 > Ay > .... > A, > 0. Let
te } f O} Then VhAvlf > 0 if and only if

1
LI S YIS T L dAy >0,

1 1 1
oAt ———Ay o+ (£* — E)Aw_l + (=12 + 8)/1,1 >0,

1
n nn-—1) (4)(3)

forre |-¥8,0].

Proof. By a simple check, it suffices to notice the following inequalities.
+ Forr e |~ %8, 58] b3 <brpand by < b,
e Fort = —i , b1z = b3 < by

e Fort E} \[ O} brz < b1z < bya.

o5

As aresult, B > 0 if and only if b3 > 0, for ¢ € } _\/TE’ — [, and if and only if b3 > 0, for

te [ ‘[ } This completes the proof.
[

0. Let

vV

An

v

Proposition 3.6.6. Let n > 3 be any positive integer and 1 > Ay >
te }0, \/Té] Then, VZtAVg > 0 if and only if

1 1
At

ln—Z ‘I'at}“n—l +btﬂ‘n > 07
n nn—1)

L
(4)(3)
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fort € ] %7\/?6} , and,

1 1 1 , 1 , 1
I S I . Y VAt + (=2 )y >0,
n+n(n—1)12+ +(4)(3))Ln z—l—(t z)ln 1+( t +6)7L 0

fort e ]0, \/Tg} .
Proof. A simple check shows that:

e Fort € } \/Tg, \/TE} ,c12 < c13 and cpp < 3.
* Fort = é, C12 =23 < C13.
* Fort 6}0,%6[, 3 < c12 L C13-
As a consequence, C > 0 if and only if ¢ > 0, for ¢ € } %, é] , and if and only if cr3 > 0,

fort ]O, \/Tg} . This completes the proof.
O

Using the Propositions 3.6.5 and 3.6.6 and, we can define a family of positive semidefinite
doubly stochastic matrices with spectrum (1,45, ...,4,) where 1 > 1, > ... > 4, > 0, having
doubly stochastic square root.

Theorem 3.6.7. Let n be any positive integer and let 1 = Ay > Ay > ... > A, > 0. Define Fy,
F»y, F3; and Fy; as follows.

5 V6
—Flt:{vhdiag(mz,...,/mn)vg,re —%,—‘%—

[ such that

1 1 1
Z—f-m\/}z_{“f‘m\/ An—2“|’cl V )'n—l"i_dl\/)t_n}o}a

6
— By = {Vl,diag(l,lz,...,)Ln)Vlf,t S [—%,0] such that

1 1 1 1 |
Z+n(n—1)\//l_2+"'+m ln—2+(f2—§) ln_1+(—t2+6)\/k_nzo},
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\/_
?;

(o)}
%
(@)

_F3l‘ = {ngdiag(l,).z,...,ln)VZY;,t €

] such that

1 1 1
— 4 \/Tz-'-...-FW\/An_2+a[\/ln_1+bt Afn}()}a

n nn—1)
and,
6
—Fy = {Vg,diag(l,ﬂ,z, AVt e ] 0, % such that

L L ot A+ (P A+ P+ VA =0

n an—1D YT T @@V 2/ V-l 6V =T
Then Fy;, Fy;, F3; or Fy are subsets ofK,ll /2.
Proof. Let M be a matrix in Fj,;. Then there exists ¢ € } _\/Tg, —@ [ such that

M = Vi diag(1,4,,..., A, V]L.

M 1is by construction positive semi-definite doubly quasi- stochastic. Then there exists a

positive semi-definite doubly quasi-stochastic matrix N such that M = N2. N is then given by

N = Vydiag(1,v/ A2, ..., v/ A VL.

Since

1 1 1
Z—Fn(n—_l)\/l_z—f—...—*—m\/ )Ln72+ct V A‘nfl‘i‘dt\/k_n}()v

Then by Proposition 3.6.5, N is nonnegative. Therefore, M is positive semi-definite doubly
stochastic matrix with spectrum (1,4;,...,4,) and having doubly stochastic square root.
Similar arguments can be applied if M belongs to F,, F3, and Fy,. [






Chapter 4

The symmetric doubly stochastic inverse
eigenvalue problem

4.1 Introduction

We saw in Chapter 3 that there is an obvious intersection between constructing elements in
K /P and SDIEP. Let 6 = {1,A2,...,A,} be alist of n real numbers. Recall that, if there exists
a symmetric doubly stochastic matrix A with spectrum &, then we say ¢ is symmetrically
realisable and that A realises ¢ . The problem of characterising all symmetrically realisable
lists is referred to as the "Symmetric Doubly Stochastic Inverse Eigenvalue Problem”, or
SDIEP. Equivalently, this problem can also be characterised as the problem of finding the
region ®; of R"such that any point in @, is the spectrum of an n X n symmetric doubly
stochastic matrix.

Since doubly stochastic matrices are nonnegative, then obvious necessary conditions for

SDIEP are those concerning the nonnegative inverse eigenvalue problem (see Section 1.4):

1. 0 <|A| <1 as the Perron-Frobenius "theorem insures.
2. si(0) =14+ A5+ ...+ Ak >0,k
3. sp(0)™ < n" sy, (o) for all positive integers k and m, by JLL conditions.

Until now, the SDIEP has only been solved for the case n = 3 by Perfect and Mirsky
[97] and remains open for the cases n > 4. Some partial results concerning SDIEP can be
found in the literature (see [53, 58, 79, 81, 82, 85, 97, 99, 103, 122, 140] for a collection of
most sufficient conditions for the SDIEP and [84] for some necessary conditions for SDIEP).
So far, there are two principal methods to solve the SDIEP. The first one consist on taking

a diagonal matrix A = diag(1,4,,...,4,) and an invertible matrix P, and then exploring the
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conditions under which A = P~ AP is doubly stochastic. However, when A is symmetric,
then there exists an orthogonal matrix Py with first column e, such that A = POAPOT (see
[80, 113]). Therefore one could establish an orthogonal matrix Py and explore the conditions
under which POAPOT is symmetric doubly stochastic. Indeed, in the spirit of finding elements
in K;/ P we used this method in Section 5 and 6 of Chapter 3. The second method falls
into the category of constructing new doubly stochastic matrices from smaller size matrices
with known spectra. Our work here falls under the second category. Given some earlier
results concerning spectral properties of doubly stochastic matrices [29, 82, 83], we will
show how to use this results as a tool for deriving recursively new sufficient conditions for
the symmetric doubly stochastic inverse eigenvalue problem.

This chapter is organised as follows. In Section 4.2, we collect some preliminary results
concerning eigenvalues of doubly stochastic matrices that we will use for our purpose.
Moreover, we will recall some earlier results for SDIEP. In section 4.3, we will use the
recursive technique for constructing symmetric doubly stochastic matrices to elaborate two
new sufficient conditions for the inverse eigenvalue problem of doubly stochastic matrices.
We give also a counterexample to Theorem 9 in [1]. In fact, the authors in [1] used similar
techniques as in [82, 83] to obtain a recursive method for constructing doubly stochastic
matrices. It is asserted of finding a new sufficient condition that improve the Soules condition
introduced in [122]. We will show by a counterexample that this refinement is incorrect
where 7 is odd and we present an alternative statement though in this case it will not be an
improvement of the results in [122] but rather a new independent sufficient condition.

In the sequel, we shall make the convention that a summation over the empty index set is

defined to be zero.

4.2 Preliminairies and overview of some results

The results in this chapter fall into the category of constructing new doubly stochastic
matrices from doubly stochastic matrices with known spectra. For this purpose, we present in
this section auxiliary results concerning spectral properties of certain block doubly stochastic
matrices that we will use to construct the recursive sufficient conditions for the SDIEP. We
start with a frequently used lemma appears in Fiedler [29, Lemma 2.2], which has been

repeated in many situations in the study of the nonnegative inverse eigenvalue problem.

Lemma 4.2.1. [29] Let A be an n X n symmetric matrix with eigenvalues Ay, Ay, ..., A, and
let u be the unit eigenvector corresponding to Ai. Let B be an m X m symmetric matrix with

eigenvalues 1, W, ..., Wy, and le w be the unit eigenvector corresponding to |y . Then for
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any p, the matrix C defined by

C— A puw’
B pqu B ’

has eigenvalues Ay, ..., Ay, Ly, ..., Wy and 1,7 where 11, are the eigenvalues of the matrix

Mop
p

Then in [16], the authors generalise this Lemma to k diagonal blocks (with £ > 2) instead
of two with corresponding k symmetric matrices. A generalisation for all square matrices
and not just the symmetric ones can be found in [83, Theorem 2.3]. Its proof relies on a
result which is presented in Perfect [96] and is due to R. Rado. As a specialisation applied to
doubly stochastic matrices, we have the following theorem from [82, 83].

Theorem 4.2.2. Let A be an n X n doubly stochastic matrix whose eigenvalues are given by
1,A2,..., Ay and let B be an m x m doubly stochastic matrix with eigenvalues 1, s, ..., Wy
Then for any p > 0 and for any o« > 0 such that p and o do not vanish simultaneously, the
(m+n) x (m+n) matrix C defined by

i) Form > n,

C

1 oA penel
o+ B\ pewey (a+p”E)B

mn

is doubly stochastic with eigenvalues

| &v/mn—pn @, a o/mn+p(m—n) o/mn+p(m—n)
7a ﬁmn‘i‘pm’a—‘r pnr:ln 21..-, (X—i—\?% s a ﬁmn—i‘pm “27-.-, a ﬁmn_"_pm m-e
ii) Forn > m,
n—m T
co lpn (a —I—p\/r;—n)A penen,
OH—\/% peme;, oB
is doubly stochastic with eigenvalues

| Q/mn—pm Oc\/mn—kp(n—m))L Oc\/mn—kp(n—m))L o o
Toymn+pn’ aymit+pn 277 aymitpn " at j"%,uz,..., o+ j’%um

Remark 12. An alternative proof can be achieved from Fiedler [29]. Indeed, the proof of
Lemma 4.2.1, is essentially the same as the proof of Theorem 4.2.2. One simply replaces
the symmetry assumption in Fiedler’s paper by the property that the algebraic and geometric

multiplicities of the eigenvalue 1 of any doubly stochastic matrix are the same.
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We note that in [82], the author shows how the previous theorem can be a tool for
extracting new sufficient conditions for the inverse eigenvalue problem of doubly stochastic
matrices (DIEP, RDIEP and SDIEP).

By a similar manner, we have the following two lemmas that can be found in [1] and

which constitute the basis for their results.

Lemma 4.2.3. Let A be an n x n doubly stochastic matrix with eigenvalues 1,1, ..., Ay.
Then, for any 0 < r < 1, there exists an (n+ 1) x (n+ 1) doubly stochastic matrix C with

eigenvalues given by 1,1 — ”niln LIy = A

1—r
Tmen (5F

eigenvalues 1,1 — 2ty =rp, | nor), O

APy
Proof. Tt suffices to check that the matrix C = < r\l/ﬁ "A> is doubly stochastic with

Lemma 4.2.4. Let A be an n X n doubly stochastic matrix with eigenvalues 1,1, ..., A,. In
addition, let B be an m X m doubly stochastic matrix with eigenvalues 1, L, ..., Wy. Then for

any 0 < r <1 and n > m, there exists an (n+m) X (n+m) doubly stochastic matrix C with

l-o _ 1—r
m ~  n

eigenvalues given by 1,0t +r— 1,03, ..., Ay, rlio, ..., r Uy, where

Proof. Take in Theorem 4.2.2 Part i), p = (1 — (x)ﬁ then p > 0 for any 1 > o > 0.

m b
Then the matrix C = _ Vi " s doubly stochastic with eigenvalues
(=r)/m \?‘/ﬁemeT rB
n n
Loa+r—1,0A, ..., 0 A, rlo, ..., Tty H

Next, we give some earlier results in the theory of symmetric doubly stochastic inverse
eigenvalue problem. We recall the first known sufficient condition for the SDIEP, which is

found in [97] and known as Perfect and Mirsky’s condition.
Theorem 4.2.5. [97]If1 > A, > ....> A, > —1 and

1 1 1
-+ A+

A3+ ... + Lln >0 4.1)
n nn-—1)

(n—1)(n—2) 2.1

then there exists a symmetric doubly stochastic matrix D such that D has eigenvalues

1,22, 0o, Do

Perfect and Mirsky [97] used the constructing idempotent system method to obtain
the sufficient condition (4.1). They proved also that for n < 3, the condition (4.1) is also
necessary (see also [80] for a geometric solution to this problem). The inverse eigenvalue
problem for 4 x 4 symmetric doubly stochastic matrices of trace zero is completely solved in
[97].



4.2 Preliminairies and overview of some results | 91

Theorem 4.2.6. [97] Let 1 > Ay > A3 > Ay. Then (1,A2,43,A4) is the spectrum of 4 x 4
symmetric doubly stochastic matrix of trace 0 if and only if 1 + A, + A3+ A4 = 0.

Mourad also gave a geometric solution to the above case [81].

In 1983, Soules [122] uses the particular orthogonal matrix V,, (see Chapter 4) to get
Perfect and Mirsky’s condition. In fact, it is proved there(see [122]) that the symmetric
matrix M = V,AVI has nonnegative off diagonal entries while the ith diagonal entry of M is

.y ( ! )x +(i_1)z
mij = — k2t | —— | An—it2,
" n el (k—1)k) ™ + i it

fori =1,...,n. Moreover the m;; are increasing so the smallest one is m;. Hence, if m;; > 0

given by

then, M is doubly stochastic and o is realisable by M.
Soules refined Perfect and Mirsky’s condition and obtained the following theorem that
we saw in the previous chapter. We will repeated here for convenience and completeness.

Theorem 4.2.7. [122][Soules’condition]
If1>h>..>A4>—1and
1 n—-m—1 O An 242
M+ Y = >0, 4.2
n am+1) 7 k;(k+1)k_ *2)
holds withn =2m+2 if n even and n = 2m+ 1 if n odd, then there exists an n X n symmetric

doubly stochastic matrix D such that D has eigenvalues 1,2, ...., Ay.

Remark 13. The proof of the preceding theorem is done by constructing from V,, another
n X n matrix Vg, then constructing a symmetric matrix N = VSAVST whose off-diagonal entries
are all nonnegative and its smallest diagonal entry is given by the left-hand side of (4.2). So
if (4.2) is valid then we obtain the symmetric doubly stochastic matrix D mentioned in the
preceding theorem and so its trace is nonnegative. Consequently, if 1 > A, > ... > 4, > —1
and (4.2) is true, then 1 + A, +...+ A4, > 0.

Observation 4.2.8. Perfect and Mirsky’s condition implies Soules condition and the inclusion

Is strict.

Proof. If 0 = {1,A3,..,A4,} with 1 > A, > .... > A, > —1 satisfies Perfect and Mirsky’s

condition, then we have

l_'_ 1 1
n nn—1) (n—1)(n—2) 2.1
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Since A, > Ajfor j=3,...,mand A,_p; > A,_; fori=1,...,m—1, then

1 n—m—1 u 1_2/(_._2
I — ) n
n nlm+1) " k;(kﬂ)k

1 1 1 1 n—2(k—1)
_n+(n(n—1)+(n—1)(n—2)+“'+(m+2)(m+1)>’12+,§1 (k+ Dk
1 1 1 1 2 A (k—1)
2 a(n=1) 2+(,1—1)(,1—2)7L3+““+(m+2)(m+1)7L""’1”L,§1 (k+ Dk
>0

Therefore, o verifies Soules condition. However, (1, %, 0, %) verifies Soules condition but

does not satisfy Perfect and Mirsky’s condition . Hence, the inclusion is strict. [

Many sufficient conditions appeared for SDIEP after Soules condition but no one is de-
fined to be a refinement of Soules condition (see [58] for inclusion relations and independence
between many sufficient conditions).

4.3 Recursive sufficient conditions for SDIEP

In this section, we will construct recursive sufficient conditions for the SDIEP of a special
importance by using the preceding techniques of combining two doubly stochastic matrices
to obtain a doubly stochastic matrix with a large spectra. But first, we give the following

simple lemma which is very useful for us and will be used later.

Lemma 4.3.1. Let n > 1 be a positive integer. Then, the following statements hold.
o1 1 1 1 _
Dty TToatna=1

ii) Let p be any positive integer which is greater than 1. If n > 2P, then

L P S k.
n nn—1) 7 2r(2P+1) o
m
iii) For any positive integer m > 1, it holds that '), (kJrll)k =1- m+r1 = miﬂ Consequently,
k=1

m
for any positive integer m > 2, we have ¥, —-— =

m__ 1
1 2°
= (k+1)k = m+
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m—1
iv) For any positive even integer m > 2, it holds that Z + Iz
=y

m—2
positive even integer m > 4, we have Y. -

o TR

1
m  m(m—1)"

B

Proof. 1) The left hand side in Part i) can be rewritten as

g (i)

& kok+1
1

z(

= 1.

e

11) From Part i), we can write

1

N 1 - 1 N 1 R )
2727 —1) (2P —1)(2p—=2) 7 3x2 2x1 20 2
It follows that
1+ 1 - 1 +2P—1
n nn—1) 7 2P(2P+1) 2r
1+ ! +..+ ! + ! +...+ L
n nn—1) 7 20@2r41) 202r—1) T 2x1

iii) It follows easily from the first part.

iv) For m = 2, the assertion is true. Suppose m > 2, then from Part 1), we certainly know

m l
that kzl k+1)k =1- % = . Therefore, Z k+1 Z —|—kZm k+1 = %, and thus
2
we obtain
mol P _m—1 | 1
Z —(1=—)=—.
k= m (k+1)k k=1 k+1 m 7 m

1
- Hence, for any
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4.3.1 Inaccurate refinement of Soules

In a recent paper [1], the authors used Lemma 4.2.3 and Lemma 4.2.4 to obtain a recursive
method for constructing doubly stochastic matrices for the inverse eigenvalue problem by
distinguishing between the cases n even and n odd. In addition, it is claimed that these new
sufficient conditions improve Soules condition in both cases.

Theorem 4.3.2. [I]Letn>5.If 1> > ....> A, > —1and

1 LPI ol ) Y P >0 4.3
PR gt B we® Y
for n even (|.| stands for the integer part) and
1 n-1 il — [#] % An— 4k+4
A (e eh 0

for n odd, holds. Then there exists an n X n symmetric doubly stochastic matrix C whose

eigenvalues are 1,A5,3, ..., A,.

Next we give a counterexample to the preceding theorem in the case when n is odd. For
this purpose, let us recall the refinement of the JLL condition in a special case of n odd and
Tr(A) =0, due to Laffey and Meehan [56] stated as follows.

Lemma 4.3.3. [56] Let n be an odd integer and A be an n X n nonnegative matrix with
Tr(A) = 0 and let its spectrum be 6(A) = (A1,...,An). Then

(n—1)s4 > s3.

Consider now the following list of real numbers ¢ = (1,1,1, -3, %, —%, —1). Tt is easy
to see that ¢ satisfies (4.4). Hence, by Theorem 4.3.2, there exists a 7 X 7 symmetric doubly
stochastic matrix A with spectrum ¢. On the other hand, ¢ can not be the spectrum of any

7 x 7 nonnegative matrix, since otherwise, by Lemma 4.3.3, we have
654 > S%a

that is,
248 _ 256

>
9 9
This leads to a contradiction.
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More explicitly, the authors in [1] claimed (without justification) that when 7 is odd, and
(4.4) is verified, then we have

23]
1+%—[%]l%+[4} 1 An—agya 4.5)
() [P e = ekt 1k ™
and 1
R e i i L PUTIR N B/ SRS
R I L S — 2k ), (4.6)
S E T A vk
where @ = =20t g — DAY Ty gt if (4.4) s valid then it holds that
n+3
1 n—1 ztl _ (243 S L T
0<—+ M+ 2ty ot
St e et A G
nt3)_
Dl [0 R P A
2 (R & ek Dk
n n ni3] g
— 1+#_[%3]llg+[4} 1 Aara
s MPleT & ekt Dk

As « is positive, then this shows that if (4.4) is valid then inequality (4.5) is always true.
However, inequality (4.6) may not necessarily be true when (4.4) is valid, as can be easily
checked for the list 0 = (1,1, 1, —%, —%, —%, —1) that satisfies (4.4) and does not verify
(4.6).

4.3.2 An alternative sufficient condition when 7 is odd

In this section, we will present an alternative sufficient condition for the odd case by using
the same recursive method for constructing doubly stochastic matrices. However, this will
not be an improvement of Soules condition, but rather an independent condition as we shall

prove. Before doing so, we need the following auxiliary lemma.



96 | The symmetric doubly stochastic inverse eigenvalue problem

Lemma 4.3.4. Letn > 5beoddandlet1 > Ay > .... > A, > —1. Then

1 n—1 nfl _ [a4d) ~ A
I G TS -
ntly_
1 -1 4 st I
n ' nn+1) (n=D)(n+ 1) () )T A (e Dk

Proof. We distinguish between the cases n = 4m+ 1 and n = 4m+ 3 (since n here takes only
odd values).
For n =4m+ 1, we have

1 n—1 vy
I J A
i DR (2m+1)( +1) 4+Z (k+1)k

%4‘ n(nnlll)lz + T 1’1)1(’% n 1)14 + i ?}:;—;ﬁ—;lﬁ (since A4k 14 < Apaxy3)
:%—i_n?njrll)lz—'_(2m+1n)1(m+1)/14+ m( 1+1) 4+t Z o 4k;13c
_%—i_n?nji—ll) 2t (’;H_l 4+Z IZ—:I;H
- %+ n:n:rll))Lﬁ (2m(2rln—|— 0 2L> At le ?1:43%2
= %J“ n(nnji—ll)}tz * 2m(211n—|— pht ﬁl“ +’,§ ?kfﬁi (since A4 < 42)
_ n=l _[mtl) "]
:%+n(rln+ll)12+(n—l)4(n+l)/12+ (f%) {% 42 An— 4k+3
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For n = 4m + 3, we have

1 n—-1 1 ~ An_aia
- A A
n+n(n—|—1) 2+2m—|—2 4+,§’1(k—|—1)k
1 n—1 1 m 7L,4k+4
T | A In—dk+4
PRSPy 2+((2m+2)(2m—|—1)+(m—|—1) 2m+1)) 4+k§(k+1)k
1 n—1 1 m i l,4k+3
<—+ Ao+ Ao+ +)
=0 a+ D) Cm+2)2m+ D) T m+ ) 2m+ 1) ,;l(k+1)k
n+l
1 n-1 4 2l [z S A s
n nn+1) (n—=1)(n+1) ("—21)[%] = (k+1)k
Thus the proof is complete.
[
Theorem 4.3.5. Letn > 5 be odd and let 1 > Ay > .... > A, > —1. If
n+3
I n-1 el (3] " 444
P — 4+ nmiER >0, (4.7)
noon(n+ 1) (M) [ L Gk

then there exists an n X n symmetric doubly stochastic matrix C with eigenvalues 1,1, A3, ..., Ay.

Proof. As n odd, then by (4.7), we know that

1 1 ntl _ rnt3 -1 A
0 - n A«Z‘i‘ Z,+1 [ni3])~4+ n—ak-+4
n n(n+1) (5) ["5°] o1 (k+ 1k
n+3
1 n—1 nfl (a3 ] —4k+4
- Ay + -2 4 5+ no At (since A4 < A3 and its coefficient is > 0)
T NI L
i3y
_ ((”—1)/12+(”+1) 1 +%_[%]7L3+[ O Maia
)BT ER T A ek
nt31_1
ol A +%—[n4i3]l}t3+[ u 1 Ayapsa
s [ e =LA
where o0 = % > (. In order to apply Theorem 4.2.7, we first show by contradiction

that % > —1 and % < 1 (since the A; are in the decreasing order). Suppose that % < -1,
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that is, 224, + (n— 1) + (n+1) < 0. It then follows that, ; + ;=52 + 374, < 0, and

hence (4.7) implies that

1 n—1 ntl _ [nd3) Akd 1 n—1 2
— Mot At + NI > 0> — + :
non(nb1) 7 ()R A (et k n oan+ )2 nt1"
that is,
n+1 n+3 [%?}—1
T_[T]l Ai—dipa 1 2
CHEIT & Grne 2 e
Since 1 > A, > ... > A, > —1, then we can write
Qil<_[ﬂi§] [2?1_1 A 1 2
0< -2 412 2 Ay — 2
e E 2T A Dk 2 A
37 (M2

e
nbl _nd3) mid)_ g 1 2
A O b
(") %57 l ntl

n—3
:zz(n_Fl)(AZ%_zn)

So A2 + A, > 0, and this implies that 0 > 2nA, + (n— 1)A+ (n+1) = n( + A,) +n(1 +

An) +1—2A; > 0, and we get a contradiction. Therefore, % > —1. Suppose now that % > 1,

that is, 2nA3 — (n — 1)A, — (n+ 1) > 0. But this implies that 2nA3 — (n— 1), — (n+1) =

(n—1)(A3—A2)+ (n+1)(A3 — 1) > 0, and we also get a contradiction. Therefore, % <1
n+1 n+1

and hence by Soules condition, there exists an (*5-) x (“4~) symmetric doubly stochastic

matrix A with eigenvalues 1, é)g, é)LS, e é/ln. On the other hand, by (4.7) and Lemma
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4.3 4, we have
n+3
T B B 7 e
n ) 2T ) E T A ke Dk
n+1
1 n—1 4 it — [ S s
< - A+ Ay + 2 4 A+ z
n n(n+1) (n—1)(n+1) (%) [Qi'] = (k+1)k
il
_ ((n+l)),2+(n—l)) 1 _'_nT_[nzLil]h‘_{_[ 7] ]/ln74k+3
2n b () [ i (k+1k
| omst oty g
=r| =t [nil]_M+ ol B
()l & rk Dk

where r =

(n+1) Ao+ (n—1)

. Next, we prove that r is positive. Indeed, by (4.7), we know that

2n
23]
n—1 ;Lz—f—%_[%]lgl—f—[‘l} )Ln—4k+4
n(n+1) (") %] ot (kD
n+3
1 ntl _ [n43 ["5°]-1
- )Lz—i— i 1 [ni3]2'2+ 12
nn+1) (1) (222 = (k+ 1k
(since A, > A4 > ..., and their coefficients are > 0)
n+3
R T el ) I RS S P
an+1) (M) [5P] & (k+Dk
n-| +”2i1—[”4i3]+1_ ! A
1) (P
—1
.
n

So obviously A, # —1, and it follows that (n+ 1), +(n—1)=1+(n—1)A+(n—2)+
22 > 0 for n > 4. This implies that r > 0. Also, as (n+ 1)l +(n—1) <n+1+n—1=2n,
then r < 1. Next, in order to again apply Theorem 4.2.7, we shall show that ’l—r" > —1 and
k—f < 1 by contradiction. Suppose that ’l—r" < —1, thatis, 2nd, + (n+ 1A+ (n—1) < 0. It
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follows that, % + n("ntll)/lg + %/ln < 0. From (4.7), we get

1 n—1 ntl _ [n43)] T A ke 1 n+l 2
- Ao+ -2 iy} no 0> = A 2
n e ) 2T E T A ek T n - A
that is,
n431_1
n—1 n+1 M_[w] bl Ap—sira 1 2
Ay + =2 Ly noEt A, — A >0
(n(n—i—l) n(n—l)) 2T EN T A ke 2T
Since 1 > A, > ... > A, > —1, then we can write
n+3
n—1 n 1 nil _ndd) o 5L 0 g 2
0 Ao+ -2 Ly} Ap— A
(n(n+l) n(n—l)) S ST T M A N T S 1
+1 n+3 [’1%3]*1

n—1  n+l 1 1 11 12

A\ nn+1) n(n-1) " [23] %JF =] 2)’12 (E_ —1)1"
n—>5

BECE R

For n =5, we have 0 < 0 a contradiction. If n # 5, we have A, + A, > 0, and it then follows
that 0 > 2nA, + (n+ DA+ (n—1)=n(Aa+A,) + (n— 1) (1 +A,) + (A2 + 4,) > 0, and we
have a contradiction. Suppose now that % > 1. This implies that 2nA3 — (n+1)A; — (n—1) =
(n+1)(A3—2A2) +(n—1)(A3—1) > 0, and we again get a contradiction. Therefore, by
Soules condition (1), there exists an (“51) x (“5') symmetric doubly stochastic matrix B
with eigenvalues 1, %14, %16, - %/ln_l.

Finally, applying Lemma 4.2.4 with A = A and B = B, we obtain an n x n symmetric
doubly stochastic matrix C whose eigenvalues are 1,1,, ..., A,,.

]

Notation. We will say that New condition 1 holds if (4.3) is satisfied when 7 is even, while
(4.7) is satisfied if n is odd.
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Observation 4.3.6. For n even, Soules implies New condition 1. For n odd, Soules and New

condition 1 are independent.

Proof. Let n be even. Suppose now that o satisfies Soules condition. Since
A}’L—4I'Z)L}’L—Zl'7 lzlvzav[nj_z} -2

and
A > A, i=6,8,.,n— 2] +2,

then ¢ obviously satisfies New condition 1. For the second part, it suffices to check that for

n =17, the list (1,0,0,0, —%, —%, —%) satisfies New condition 1 and does not satisfy Soules

condition, while the list (1,0,0, —13—4, —%, —13—4, —13—4) does the opposite i.e. it satisfies Soules

condition and does not satisfy New condition 1. [

Notation. For convenience, we shall denote by PM, S, N the sets of all n-tuples ¢ satisfying
Perfect and Mirsky’s condition, Soules condition and New condition 1, respectively.

Observation 4.3.7. The Venn diagrams of the point sets PM, S, and N are the following:

* for n even:

We illustrate the above diagram by the following simple examples:
1. (1,0,0,0,0,0,0,—1) € PMNSNN.
2. (1,0,0,0,0,0,—1,—1) € (SNN)\ PM.
3. (1,0,0,0,0,—§,—1,—1) € N\ (PMUS).
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* fornodd:

N

We illustrate the above diagram by the following examples:

1. (1,
2. (1,
3. (
4. (
5.

1,0,0,— —ﬁ,—ﬁ —3)ePMNSNN.
1,0,0,— &, — . —15. —55) € (PMNS)\N.
1,0,0,— 3, —3, —3,—3) € S\ (PMUN).
1 0,0,0,—7,—%,—%) €N\ (PMUS)
1,0,0,0,0,—1,—2) € (SNN)\ PM

4.3.3 The recursive approach to SDIEP

In this section, we will go a step further by doing another recursive phase in constructing
doubly stochastic elements using Lemma 4.2.4 to conclude by a important conjecture that
yields to infinite independent sufficient conditions for SDIEP. It is worthy to point out here
that, the technique used in each case of the following proofs is similar to that of Theorem

4.3.5 with only minor difference. First, we present the following auxiliary lemma.

Lemma 4.3.8. Let n =4m+ 1 > 9 where m is a positive integerand 1 > Ay > ... > A, > —1.

Then
ni7] -1
1 n-—1 2(n—1) - 5 An—s8i+8
—t Mt A+ n n As +
n nn+1) (n+1)(n+3) (%3)[%] = (k1)
1 a1 4 T 5]
1 . _~ 4 8 A
S0 ) 2 e D ) 2 a1 ey )
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Proof. Asn=4m+ 1, we have

n+17
1 —1 2n—1 nid _qniry o oty o
4 n 2‘2_*_ (n ) )L4+ i+3 [n_?_7]18+ n—8k+8
n nn+1) (n+1)(n+3) (22 (2] = (k+1)k
n+7
1 n-1 1 m—1 nid _uiry o P,
Tt 1 2+(2 mt1) 2 1)7L4+ 53 [ni7]18+ l?SIiJrli
n n(n+1) m(2m+1)  2m(m+1) (T)[T = (k+1)
n+7
1 n—1 1 m—1 ni3 i1y Pdly o
<—+——Mpt Ao+ Mg+ 2 8 s+ LA
“n o+ 1) 2mCm A+ 1) 2m(m+ 1) (23 2T A (ke Dk
Next, we distinguish between the cases m odd and m even.
Case 1: Form =2p+1, then n = 8p + 5 and hence
n+7 n+3
= =p+1.
e
Therefore,
n+7
1 n—1 1 m—1 u—[u] [T]ill_gk 7
-+ Ao+ Ao+ Mot A B A+ L
n D) 2m2mA 1) 2mm+ 1) (Y (2 )T A (ke 1k
1 n—1 1 m—1 1 2 A 8ki7
_;+n(n—i—l)kz_'_2m(2m—|—1))'2+2m(m—|—1))t4+2p+2 8+kzl(k+1)k
1 n—1 1 m—1 1 p
= A A A A
2 )2 2o 1) 2 2mm 1) 4+<(2p+1)(2p+2)+(2p—|—1)(p—|—l)> 8
iln78k+7
= (k+ 1)k
1 n—1 1 m—1 1 p
< - A A A A A
S e 0 T 2 0 e M T 2p ) ep ) T 2 D )
ln—8k-&-7
+k;(k+1)k
1 n-1 1 1 14 2 A8k
=0t 02 a2 G e D A G Dk
1 n-1 4 2 = PN =iy IS
=+ Ao+ o+ ——Aa+ A+ .
n o)) =D+ 1) a1 () 283 & (k- Dk

Case 2: For m = 2p, then n = 8p + 1 and in this case, we have

[n+7] - [n+3

= 1= 1.
3 3 }4— P+
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Therefore,
1 n—1 1 m—1 ntd [t el B
;+n(n+l)lz+2m(2m+1)12+2m(m+1)l4+(%)[% Ay + ; (k+ 1)k
_ii+n€nj|—11)lz+2m(2rln+l)lz+2mn(1rr7—:1)/14+ (2p—|—ll;(p—|—l) 8+Z (k—fﬁ;;c
_% Fnjl—ll)lz+2m(2;1+l)lz+2mn(1m_—i{1)/l (2p+ll;(p+l)18+p(p1—l—l)}bg
B
-1

:;+n€nii-ll)lz+2m(2;1+l)lz+2mn(1m_—i1) 4+p(12)[_7'_—:1) 8 f’zm

: n-| ! m—1 1 8k+7
= - A A A n
n+n(n+1) 2+2m(2m—&—1) 2+2m(m+1) 4+<2p(2p+1) > 8+Z (k+ 1)k

1 n—1 1 m—1 1 —8k+7
<= A A A Tt 2 "
= e T e ) T e ™ e 0™ T 2 S+k;(k+l)k
1 —1 1 1 1 Ly
— Mot —at =g+ Y, kLT

n n(n+1) 2m(2m+1) 2m 2p = (k+1)k

L Y S P Y bl Zn-8ki7
T+ )T =D ) a1 (s 3T A Rk

Thus the proof is complete. ]

By substituting in Lemma 4.2.4, the doubly stochastic matrices obtained when New

condition 1 holds, we have the following theorem.

Theorem 4.3.9. Letn> 8 andlet 1 > A > .... > A, > —1. If

11 2 [z & Angkss
—+ My A+ B g+ L >0, (4.8)
(D & Kkt Dk
forn=4m,
n67_q
1 1 —2) ] B A siss
S| A+ A >0, 49
R I Gl R S T
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forn=4m+2,
n+5
1 n—1 2 ntl [@] [52]-1 A_siss
s Mot — Dt e s A B8 >0, 410
non(nt )7 Dk 1T () (23] S (ke Dk
forn=4m+3, and
ni7
1, n-1 2(n—1) 13 _ 2] vy 8k+8
~+ Ao+ A+ B2 Ao L 20, @
n n(n+1) 2 (n+1)(n—|—3)4 (3 [T ; (4.1D)

Jor n =4m+ 1 hold, then there exists an n X n symmetric doubly stochastic matrix with

eigenvalues 1,2, ..., A,.

Proof. The proof is similar to that of Theorem 4.3.5. First suppose that n = 4m. By (4.8),

we have
[n4]

82 lln 8k+8 >0

— b

where a = % > 0. We show by contradiction that o¢ > 0. Suppose that & = 0. Then,

Ay = —1, which implies that A3 = .... = A, = —1. It follows that
o4
1 2 — 24 U A sers
——|— 7Lz+ 14—1—2—8184- i <0,
G & k+Dk
and this contradicts (4.8). Equivalently, we have
n+4
U T S I R s I W
ata Mt [n—?-4]_l8+ e >
503 () 5] @ = o(k+1)
and hence \
n+
111, r—[md By,
7+7—7L3-|—4n [n84]—l7—|— /: 81?_]7{_
2 2@ (5[5 o moalk+1)

We first show by contradiction that % > —1. The proof of this, is virtually the same as
earlier with only minor difference. Indeed, suppose that %" < —1, thatis, 24, + A, +1 < 0.
It follows that, % + %12 + %ln < 0. From condition (4.8), we conclude that

L

[—§ v - 8k+8 11 2
5 Z >0>—+—7Lz+—7tn,
[T e n o n n

i)

1 n
—+ lz-i— 144-4-4(l
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that is,

n n+4 n+4
e I e B B | 1 2
:< +( ot e Ty [t

(using Lemma 4.3.1, Part iii) with m = [%4] — 1)

2n

Therefore A + A, > 0. It follows that 0 > 24, + A, + 1= (A, + 4,) + (1 + A4,) > 0, and we
have a contradiction. Next, we show that % < 1 by contradiction. If % > 1, then clearly
243 — A2 —1 > 0, and we get a contradiction. Thus, by New condition 1, there are (5) x (5)
symmetric doubly stochastic matrices A and B with eigenvalues 1, éM, é?%, cey é?tn and
1, é)@, é?@, vy é/ln_ | respectively. Now applying Lemma 4.2.4 with A = A, B = B and
r=o= %, we obtain an n X n symmetric doubly stochastic matrix C whose eigenvalues
are 1,A5,..., A,

For n = 4m+ 2, using (4.9), we conclude that

o5l llﬁ_"%z—[%]ilgjLT 1 Ap-sic+g
N S SC =R,
and 6
ni6) g
T, 51 lx3+n4i2_[%]lb+[8] 1 sy
N L s =R G

where o = 1+27L2 > (0. We show that % > —1 by a similar argument as in the previous case.

Suppose that % < —1, thatis, 24, + A> + 1 < 0. It follows that, % + %lz + %/’Ln < 0. Then by
(4.9), it holds that

11, 2m-2), 2o BT o 11, 2
LY} P | 50> —t Ayt
" n 2+n(n—|—2) 4+(”4i2) [0 i = (k+1)k ~ o 2+n)¥"’
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that is,
nt61_q
2(n—2) ) %_[%uﬁ[ o A sers 1,2, >0
n(n+2)"" " (1F2) [0 = (k+1)k 27" n"

_ nt2 _rat6y  [0)-1
0< iEZ+3+ (252) {%} L (k+11)k at gk
nt2 _ [nt6]  [n+6
(s 2oy
(using Lemma 4.3.1, Part iii) with m = [%] —1)
="+ ).

Hence A, + A4, > 0, and it then follows that 0 > 24, + AL, +1 = (A +A4,) + (1 +4,) >0,
and we have a contradiction. Note that % < 1 by a similar argument as in the previous
case. Thus, by New condition 1, there are (5) x () symmetric doubly stochastic matrices
A and B with eigenvalues 1, éM, é%, e é?tn and 1, é?g, é?@, - é?tn_l respectively. Now
by applying Lemma 4.2.4 with A = A,B=Bandr=o= 1+2/12 , the proof of the second part
can be achieved.

For the case n = 4m + 3, using (4.10) we can write

Ion-l R i PR S WO
0<—+ Mot —— g+ et -
“n )7 a1 (D =5 & ke k
n+5
1 n-1 2 mel ) R s
=+ ht——h+ A3 2+ <
“n D)7 a1 (D =5 A ke k
n+5
T T SO == Gy =1 S R b it I TN
=a| gt At S A+ E )
T e & ek

where o0 = % > (. As earlier, we shall show now that % > —1 by contradiction.

Suppose that % < —1, thatis, 2nA, + (n— 1)y + (n+ 1) < 0. It follows that ,ll + n(nn:rll))'z +
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—2_1, < 0. From (4.10), we conclude that

n+1
n+5
1 n—1 2 ntl _pntsy o IRl 1 n—1 2
- A M+ 282 B8 > 0> —
n+n(n+1) 2—i_n—f—l 4+(%)[%] 8 = (k+1)k — >n+n(n—|—1) 2—’—n—kl
that is,
n+5
2 bl _(es) o BT g 1 2
+ + ey - >0
n+ 1 () ,;2 (k+ 1k AT
Since 1 > A, > ... > A, > —1, we have
n+5
0< + -4 S+ Ao+ S n
ERRA e M ey b ey
e el = P = et O o2
_ L DY J
(n+1+<%[%ﬁ 5] 2 )R
(using Lemma 3, Part iii) with m = [%{2] — 1)

Hence A + A, > 0, and it then follows that 0 > 2nA, + (n— DAy + (n+1) =n(Ay + A,) +
n(1+24,)+1—2, >0, and again we get a contradiction. In addition, % < 1 by a similar
argument as in the proof of Theorem 4.3.5. Therefore by New condition 1, there exists an
(") x (%) symmetric doubly stochastic matrix A with eigenvalues 1, I3, 105, L0,
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Now from (4.10), we can write

n+5
1 —1 2 ntl _ [ntS [%52] -1 A
0< - +-= 2 A4+ 3+1 [n—?—S]A'S_l_ S
n nn+l) n+1 () =22 = (k+1)k
_ n+51_q
1 n—1 1 n>3 o il o PR S e Y
=—+ 2+ — + — | A+ A+
noonnt1) <("2i1)% (%1)”2—1> Gl o B = S
nt5
1 n—1 1 n—3 ntl [@] [%52] -1 D87
~+ Ao+ — Mot Mt B s+ L
O O e T = G = I RT
n+5
1 n-3 1 ntl _ [ntS 1 [*52]-1 14,
i + n+12 n—1 _/,1'4_*— 3—0—1 [n-?-S]_A'g_F v ’
() ()l & rk Dk
where r = %:("—1) A virtually identical proof to that used in Theorem 4.3.5 for the same

claim, shows that 0 < r < 1. Next, in order to apply Lemma 4.2.4, we shall show as earlier
that ;L—r” > —1 by contradiction. Suppose that }“—r” < —1, thatis, 2nA, + (n+1)A+ (n—1) <0.

It follows that % + n(”ntll) A+ %ln < 0, and hence using (4.10), we obtain

n+5
1 n-1 2 e L H AL W 1 o+l 2
= A Mg+ 2 Ly P > 0>~ A A
n+n(n+1) 2+n—i—l 4+(%)[%} s = (k+ 1)k~ n+n(n—1) 2T

that is,

n—1 n+1 2 % - [L—gs] ! An_gk_;,_g 1 2
<n(n+1)_n(n—1)>b+n+1)t4+(n;l [%]l“ ,;2 (k+1)k+2)“"_n—1)”">0‘

Since 1 > A, > ... > A, > —1, then we have

n—1 41 2 mH_pmsp ARl 1 2
e e e A GO TR W)Y KA
-1 1 2 ntl _ rntS ntS1_ 1 1 o)

:< - -t T T i+1 [ni5]+[ 8n+]5 ) ’12"'(__ )Aﬂ
n(n+1) nn—1) n+1 (21)[2R] [22] 2 2 n—1
n—>5

" 2(n— 1)(’12””‘)'

It then follows that 0 > 2nA, + (n+ 1)+ (n—1) =n(Aa+A,) + (n—1)(1+A,) + (A2 +
An) > 0, and we have a contradiction. In addition, the proof that }“—f < 1 can be easily done
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as that of Theorem 4.3.5. Therefore, by New condition 1, there exists an (“51) x (1)
symmetric doubly stochastic matrix B with eigenvalues 1, %M, %16, e %Qtn,l. Now applying
Lemma 4.2.4 withA = A and B = §, we obtain an n X n symmetric doubly stochastic matrix
C with eigenvalues 1,45, ..., A,.

Finally, let n = 4m+ 1. From (4.11), we conclude that

1, n-1 2(n—1) P, T Aesies
<t — Mt A+ :
n nn+1) (n+1)(n+3) (#) [%] = (k+1)k
n+7
| 1 2n—1 nid _qniry o [y o
<= n Ao (n—1) 2+ i+3 [ni7]l7+ Z 8k+87
n nn+1) (n+1)(n+3) (252 [ = (k+1)k
n+7
1 St 12— ] 1 BT A s
=\ am e o ey Ey e alks k|
2 2 2 4 8 k=1

where o0 = % > 0. By a similar argument as the one used in the previous case,

we can show that %’ > —1 and % < 1. On the other hand, by (4.11) and Lemma 4.3.8 we
also have

1 n—1 2(n—1 R < B W
0<- 1 2+ (1 ) 3 4+ 2—#—3 [ng—7])LS+ Z ]Z 81?2’
n n(n+1) (n+1)(n+3) () =2 = (k+1)
n+3
I on—l 4 2 i L) DU S WP
-+ A+ A+ Ay + 47 8 Ag+ - ,
n nn+1) (n—1)(n+1) n—1 () [ = (k+1)k
w439
=r ! + ! leLnét;l_%]llg Fe llln—skw
Sl G I Sk &kt Dk ]
where r = % with k—r” > —1 and )L—f < 1 (again for this, a similar proof as above
can be employed). Thus by New condition 1, there are (ﬂzl) X (%) and (”%1) X (%)

symmetric doubly stochastic matrices A and B with eigenvalues 1, é?@, é7L5, v é?tn and
1, %14, %7%, - %ln,l respectively and such that O < r < 1 as earlier. Finally, applying Lemma
4.2.4 withA = A and B = B, we obtain an n x n symmetric doubly stochastic matrix C whose
eigenvalues are 1,45,...,4,. H

Notation. The conditions of Theorem 4.3.9 are referred to as New condition 2.
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Observation 4.3.10. New condition 2 and New condition I are independent. For n = 14, the
list given by
2
(1,1,1,1,1,1,0,0,0,0,0,0,0, —5)

satisfies New condition 1 and does not satisfy neither New condition 2. However the list

3 3 3 3 1 1 1 1 1
(170707()’07__7_

50° 50" 35 35 10° 10" 10° 10" 10

satisfies New condition 2 and does not satisfy New condition 1

For n =13, the list given by

33
1,1,1,1,1,0,0,0,0,0,0,0, — —
(7777777?777? 50)

satisfies New condition 1 and does not satisfy New condition 2. However the list

2 2 2 2 1 1 1 1 1
1,000, —— —— —— —— —— —— —— —— ——
(1,0,0,0, 257 257 257 257 9 9 9 ¢ 9)

satisfies New condition 2 and does not satisfy New condition 1.

Notation. For convenience, we shall denote by R the sets of all n-tuples o satisfying New

condition 2.
Observation 4.3.11. For n even, Soules implies New condition 2.
The proof of the above observation is given in Appendix A.

Observation 4.3.12. The Venn diagrams of the point sets S, N, and R are the following:

* for n even:
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We illustrate the above diagram by the following examples:

1. (1,1,1,1,0,0,0,— 55, — 75, — 16> — 16> — 15> —15- —3) E SONNR.

2. (1,1,1,1,0,0,0,0,— 15, — 15 — 15+ —15- — 19> — =) € (NNR)\ S.

3. (1,1,1,1,1,1,0,0,0,0,—1, -1 1 —2) e N\ R.

4. (1,0,0,0,— 55, — 2, — 2, — 2. — .~ — 15— 15— 150 — 1) ER\N.

\/
e'

We illustrate the above diagram by the following examples:

(1,1,1,1,1,1,1,4, L 113 3yesnnnr
(1,1,1,0,0,0,0,—%, -1 — -1 L 1 _Lye(snn)\Rr
(1,1,1,0,—%&,—%,—%,— 1,1, -4, - Iy e (SnR)\N.
(L1, L1010 =3 -3 3 3y e (NnR)\S.
(1,1,1,0,0,0,0,0,0,0,0,0,—33) € S\ (NUR).
(1,1,1,1,1,0,0,0,0,0,0,0,—33) e N\ (SUR).

(

2 2 2 _2 1 _1 _1_1_1
1,0,0,0,—55,—55,—%5,—35:—9-—9,—9:—g,—g5) ER\(SUN).

N S RN~

We can recursively apply the same process to obtain more general sufficient conditions for
the SDIEP based on the Euclidean division of n by 2% with k positive integer, by substituting
constructed doubly stochastic matrices for the case of 2¥~! in Lemma 4.2.4. Although, it
seems that there is no systematic way of doing this for general n, however we put forward

the following conjecture.
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Conjecture 4.3.13. Let k and n be any positive integers such that n > 2%, and let 1 > Ay >
> Ay > —1. Foreachi=1,....k, denote by a;_ to be the remainder of the Euclidean
division of n by 2! and define

r; =
0 if o1 =0
If
n—‘,—r;") n+2+r§"> n—i—rg") n+4+r§”)
1 n— [ 2 4 i g
-+ ) A+ w ) Ag + ™ o Ag+ ...
n I’l[ 0 ] n+r, n+2+r, n+ry n+4-4ry
p) 7 7 8
npok—1,,(n)
n+r’({”) [n+2k_1+r£n)} % _
k=T 2k A ok
o Z In=28i 28 0,

2k—1 2k

+ ; — 2
()] &

then there exists a n X n symmetric doubly stochastic matrix with eigenvalues 1,4, ..., A,.

Note that for k = 1, k = 2 and k = 3, we obtain respectively Soules condition, New
condition 1 and New condition 2. In order to support this conjecture, we shall verify it for

the cases n = 26 and n = 52.

Example 17. Let 6 = {1,1,, ..., 456} be a list of 26 real numbers such that 1 > 1, > ... >
Ay > —1. Since 2° > 26 > 2%, we have in view of the previous conjecture one additional
condition to Soules, New condition 1 and New condition 2. We refer to it in this case as New
condition 3. As forn =26, r» =0, r3 = 2, and r4 = 6, New condition 3 states

6

1
0_2—6+267Lz+( 13)(7 )14-{-2 Ag + )L16—|- 2426 4.12)

1 6 1 31
=0 (B+ Waﬂ4+ 78 aﬂ‘g—F 15116"{___2'26)

with a = 1+2’12. By (4.11) of Theorem 4.3.9, there exists a 13 x 13 symmetric doubly

stochastic matrix A with eigenvalues 1, o 7&6, . 126 . On the other hand, since 1 > A, > ... >
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Aq > —1, we conclude that

1 6 1 31

E—FWE)G—F l7+——)~15—|-——ﬂ,25>0

28 o 4o
Hence, there exists a 13 x 13 symmetric doubly stochastic matrix B with eigenvalues
A A A 1+
1,2, % & Again applying Lemma 4.2.4 with A = AandB=Bandr=aqa = = 52, we
obtain a 26 x 26 symmetric doubly stochastic matrix C with eigenvalues 1,/12, ey A6
Note that the list given by

1 1 1 1 1 1 1 1 1

(1)07050)070507070707070)070507ana_Ev_ﬁu_ﬁ)_ﬁv_ﬁa_B7_Ea_ﬁ7_§)

satisfies New condition 3 and does not satisfy New condition 1 nor New condition 2.

With the same manner, we can shall give an example for the case n = 52.

Example 18. Let 6 = {1,4,,...,As55} be a list of 52 real numbers such that 1 > A, > ... >
As» > —1. Since 26> 52 > 23 we have two additional conditions to Soules, New condition
1 and New condition 2. We will refer to them in this case as New condition 3 and New

condition 4. New condition 3 states

1 6 3 1 1 1
0< — A A A —2, —), —A —7L
_52+52 2+2 4+(13>(7) g+ 16+ 20+6 36 T 5452
1 11 6 1 31 11 11 11
——A —Ag A ——A ——A ——A
<26+26oc T et T B T R T T 2, 52)
with o = HM By (4.9) of Theorem 4.3.9, there exists a 26 x 26 symmetric doubly

stochastic matrle with eigenvalues 17 o }&6, . 152 . On the other hand, since 1 > 1, > ... >

Aso > —1, we conclude that

o1 6 1. 31 1
LRI IO Mast L0411 -—z > 0.
%6 260 T M TR T 2™ T T 2™

Hence, there exists a 26 x 26 symmetric doubly stochastic matrix B with eigenvalues
1 A3 As
Y o

obtain a 52 X 52 symmetric doubly stochastic matrix C with eigenvalues 1,4, ..., 7L52.

o /151 . Again applying Lemma 4.2.4 withA =Aand B=Band r = o = ]HLZ , We
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On the other hand, New condition 4 states

N 6 3 1, 1
0 Mot sehat s s+ oo het A+ oA
S5t nl Mt i@t Tt ety

1 11 6 1 31 11
:a(2—6+%al4+m —As+ 28(X7L16+ 7L32+——)~52)

l+lg

with o = By (4. 12) of the previous example there exist a 26 x 26 symmetric dou-

bly stochastlc matrix A with eigenvalues 1 4 Ao l”

, a - and a 26 x 26 symmetric doubly
1. % 151

stochastic matrix B with eigenvalues 1,72, ..., Agaln applying Lemma 4.2.4 with
A=AandB=Bandr=0 = 1+212’ we obtain a 52 x 52 symmetric doubly stochastic matrix
C with eigenvalues 1,45, ..., 5.







Chapter 5

On the realizability of normalized

Suleimanova spectra

5.1 Introduction

In this chapter, we will study SDIEP for a particular type of spectra. We begin by the
following definition.

Definition 5.1.1. We call 6 = {A;,1,,...,4,} C R a Suleimanova spectrum if s;(c) > 0 and

o contains exatly one positive value.

In [123], Suleimanova stated and loosely proved that every such spectrum is realizable.
Fiedler [29] proved that every Suleimanova spectrum is symmetrically realisable. In [52],
Johnson and Paparella provide a constructive version of Fiedler’s result for Hadamard orders.
In [92], Paparella provide a constructive version of Suleimanova’s result via permutative
matrices.

A natural variation of Definition 5.1.1 is the following.

Definition 5.1.2. We call 6 = {1,4;,...,A,} C R a normalized Suleimanova spectrum if
1+A+...+A4,>0and0>A; > —1foralli=2,...,n.

In [52], the following question was posed.

Problem 3. If ¢ is a normalized Suleimanova spectrum, is © realisable by a doubly stochastic

matrix?

The authors in [52] proved that the answer is yes for all Hadamard orders (i.e. n = 2%)

and in this case the realizing matrix is symmetric.
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We will denote by NS-SDIEP to be the problem which asks what sets of normalized
Suleimanova spectrum occur as the spectrum of a symmetric doubly stochastic matrix.

This chapter is organised as follows. In Section 5.2 we will give a negative answer to
the preceding problem when 7 is odd. In Section 5.3, we will use the recursive method
introduced in Chapter 5 to give families of sufficient conditions for NS-SDIEP that improves
Soules condition for the realizability of normalized Suleimanova spectra. Finally, in Section
5.4, we study the inclusion relations between the elements of each sequence and show how
these new sufficient conditions can be of a big importance.

It is worthy to mention here that previous theorems and lemmas mentioned in Chapter 5,
in particular Theorem 4.2.2, Lemmas 4.2.3 and 4.2.4, are needed for our purposes. Moreover,
we shall denote as previously mentioned, by PM, S, N the sets of all n-tuples ¢ satisfying
Perfect and Mirsky’s condition, Soules condition and New condition 1, respectively.

5.2 NS-SDIEP for n odd

In this section, we will prove that not all normalized Suleimanova spectrum are realizable by
doubly stochastic matrices. We begin with a lemma whose proof can be found in [77].

Lemma 5.2.1. Let A be an n X n indecomposable doubly stochastic matrix. If A has exactly
r roots of unit modulus, then these are the r-roots of unity. If r > 1, then r is a divisor of n.

Moreover, A is cogredient to a matrix of the form

0O A 0 ... O
0O 0 A ... O
ST : , 5.1)
0O 0 O Ar_q
A 0 O 0
where the A; are doubly stochastic of order °- x 7, i=1,...,r.

Making use of the above lemma we have the following:

Proposition 5.2.2. Ifnisoddand A = (1,A,,...,Ay—1,— 1) with | ;| < 1 foralli=2,....n—1,

then A cannot be the spectrum of any n X n doubly stochastic matrix.

Proof. Suppose that A = (1,A,,...,A,_1,—1) is the spectrum of an n x n doubly stochastic
matrix A. Now as A has 2 eigenvalues of unit modulus which are 1 and —1, then by virtue of

the preceding lemma, 2 must be a divisor of n which is a contradiction as n is odd. U
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A direct conclusion is the following corollary that gives a negative answer for Problem 3

in the case when 7 is odd.

Corollary 5.2.3. If n is odd, then A = (1,0, ...,0,—1) cannot be the spectrum of any n x n

doubly stochastic matrix.

It should be noted here that for n odd, A = (1,0,...,0,—1) is not the only normalized
Suleimanova spectrum that is not realizable by an n x n doubly stochastic matrix. Indeed, for
n = 3 there exists an infinite number of such points. To see this, we first recall the following
result from Perfect and Mirsky[97].

Theorem 5.2.4. [97] Let 1 > Ay > A3 > —1, and 1 + Ay + A3 > 0. There exists a 3 X 3 doubly
stochastic matrix with spectrum (1,22,A3) if and only if 2+ Ay + 343 > 0.

As a conclusion, we have the following.

Corollary 5.2.5. Let 1 > A > A3 > —1, and 1 + Ay + A3 > 0. There exists a 3 X 3 doubly
stochastic matrix with spectrum (1,1,,A3) if and only if (1,A2,A3) is in

Convhull[(l,l, 1)7(1a1,_1)7(17_1/27_1/2)]7
where Convhull stands for convex hull.

Thus we have the following conclusion.

Corollary 5.2.6. The region of R that contains all decreasingly ordered normalized

Suleimanova spectra that are realizable by doubly stochastic matrices, is
Con‘)hull[(lu _1/27 _1/2)7 (17070)7 (1707 _2/3)]7

and the region of all decreasingly ordered normalized Suleimanova spectra that are not

realizable by doubly stochastic matrices, is
Convhull|(1,—1/2,—-1/2),(1,0,—1),(1,0,—2/3)]\ [(1,—1/2,—1/2),(1,0,—2/3)],

where [(1,—1/2,—1/2),(1,0,—2/3)] is the line-segment joining (1,—1/2,—1/2) to (1,0,—2/3).

The following figure present the decreasingly ordered normalized Suleimanova spectra

of dimension 3. We presented by a 2D plot since 1 is always an eigenvalue.



120 | On the realizability of normalized Suleimanova spectra

2.0 T T T T T T

realizable :
not realizable:

; 5 5 : (111

0.0

(1,0,0)

—05_ A
(1,-1/2,-1/2) (1,0.—2!3?

(1,0,-1)

-2.0 L | |
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Fig. 5.1 The decreasingly ordered normalized Suleimanova spectra

5.3 Sufficient conditions

Here we will derive new sufficient conditions for a normalized Suleimanova spectrum to
be the spectrum of a symmetric doubly stochastic matrix. We shall start with the following
definition that can be found in [139, Chapter 5]

Definition 5.3.1. An n x n matrix H = (h;;) is a Hadamard matrix if #;; € {£1} and HHT =
nl,. If n is a positive integer such that an n x n Hadamard matrix exists, then 7 is said to be a
Hadamard order.

I 1

Let Hy = (1), H = (1 |

numbers), define

), and for n € N\{0,1} (where N is the set of natural

Hn—l Hn—l

H, =HQH, =
" " (Hn—l _Hn—l

) € Mn(R).
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It is well-known that H,, is a Hadamard matrix for every n € N, and the matrix H,, obtained
from the previous construction is known as the Walsh matrix of order 2". Note that Walsh

matrices satisfy the following additional well-known properties (see [139, Chapter 5]):

« H = H,;
« Hy!'= LH,.

Next, we recall the following result which is due to Johnson and Paparella [52].

Theorem 5.3.2. [52] For any positive integer k and for any n = 2%, let A = (1,22, 23, ..., Ay)

be a list of n real numbers with

12L24h2>...22,

V
|

Ai<0 for i=2,..,n,

and .
1+) A >0.
i=2

Then there exists an n X n symmetric doubly stochastic matrix with spectrum A.

It is worth mentioning here that the proof of preceding theorem is constructive. Indeed,
with the same notation as above, the authors prove that Hidiag(1, 42,43, ..., A,)H,~ !'is actually
an n X n symmetric doubly stochastic matrix with spectrum (1,45, 43, ..., 4,).

Our next objective is to exploit the recursive method described earlier in order to find
new families of sufficient conditions for NS-SDIEP that improve Soules condition, and New

condition 1 for the case of normalized Suleimanova spectra.

Theorem 5.3.3. Let p and n be two positive integers such that p > 2 and n > 2P, and let
0>A>..>0>—1LIf

1 1 1 1
- Mt ot Ay — (A A A1+ A) > 2
n+n(n_1) 2+ +2p(2p+l)ﬂw w1t o ezt ot A1+ 4) 20, (52)

then there is an n X n symmetric doubly stochastic matrix with normalized Suleimanova

spectrum 1,13, ..., Ay.
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Proof. We will proceed by induction. For n = 27, this is true by Theorem 5.3.2. Let n > 27
and suppose that the assertion is true for n — 1. Since

1 1 1

0< - Aot ot Ay 4 — (A e
_”+"(ﬂ—1) 2 F +2p(2p+1)3ﬂ it o (Aot Ayt +An)

_n-lih 1 U Y 1
T aln—1)  (=D@m—2)" " Ty T

o 1 1 ﬁ 1 }Ln—ll’—i-l i )Ln—2p+2 kn—l &
_9<n—1+(n—1)(n 20 Ty e +2,,< R

with 0 = ”_1”2 > 0, and consequently 75 <Ofori= 3 ,N. Next we show that %}i > —1
by COIltI‘adICtIOIl Suppose that ” < -1, then + 2 )2,2 +5 ), < 0. In view of (5.2),
we conclude that

(An,2p+2 4+ A+ 7Ln)

1 1
( l)lz‘f‘m‘f‘mln 2P+1‘|‘ (;Ln w2t A1+ A) >
1 1 1
Z+n(n—l)12+n—lln’

that is,

1 1 1 1 1
mk e mlfwzﬂﬂ + 55 (Anaria o4 An1) + <2p i ) An > 0.

As n > 27 and all the 4; < 0, we get a contradiction. It follows that,

n—1 (n—l)(n—2)§+ +2(2P+1) 6 6 T T

1 n 1 A3 1 An—2r 41 21p<7tn2ﬂ+2_|_ At l">20‘

Therefore, by the induction hypothesis, there exists an (n — 1) (n— 1) symmetric doubly
stochastic matrix A with eigenvalues (1, %, vy %) Next, let r="-1(1-1%,) = w

In order to apply Lemma 4.2.3, we shall prove that 0 < r < 1. First observe that n >
1+ (n— 1)A,. Moreover, using (5.2), we can write

<! ! M+ + L, +1
“n -1 e ) T

T (R L S ) P
nin—1) " Torery1) 0 20 )72

(An—2p42+ oo+ Ay + An)
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Hence 1+ (n—1)A; > 0 and therefore 0 < r < 1. Now applying Lemma 4.2.3 with this r
and with A = A, we obtain an n X n symmetric doubly stochastic matrix C with eigenvalues
1, A2, Ay ]

Remark 14. For p =2, and n > 4, Theorem 5.3.3 states that if 0 > A, > ... > A4, > —1 and

1 1 1 1
- coe —_ - - - >

then there is an n X n symmetric doubly stochastic matrix with eigenvalues 1,45, ...,4,. It
is worthy to mention here that we can obtain this sufficient condition by taking the matrix
\/LZHz = [\/Lze4|x2|x3 |x4], then constructing an orthogonal matrix W, of any order n > 4. We
construct W, by considering the first n — 3 columns of the Soules matrix V,, and the last 3

X2 X3 X4
0 0

columns | |,]| . |and | | tobethe ncolumns of W,.
0 0 0

A simple matrix multiplication shows that the matrices A = V,AV,] and B = W,AW[
differ only by the 4 x 4 principal submatrix C formed from the first 4 columns and the first
4 rows of A and B. So that a virtual identical proof to that used in [122] shows that all the
entries of the symmetric matrix B = W, AW, are nonnegative except for the diagonal entries
and for the entries of the matrix C which are:

1 1 1 1 1 1
=Cpn=C3R=C4u=- M+t A3+ Ao+ A1+ A,
C11 = €22 = €33 = C44 n+n(n—l) D T s T A e I R
1 1 1 1 1 1
= =cu=cp3=-— Mt A3 — Ao — A1+ A,
Cl2 = €21 = €34 = C43 n+n(n—l) T e I T A o I R
1 1 1 1 1 1
=3 =cu=cyp=-— Mt A3 — Ao+ A1 — A,
C13 = €31 = €24 = C42 n+n(n—l) I T e A EL e T o B R

and,

1 1 1 1 1
cu=cy=cn=cen= ot A+ + E)Ln—fi + Zln—z - Zﬁw—l - Z)Ln—b
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The remaining diagonal entries bss, ..., by, are increasing and the smallest one is

1 1 1 16

1

bss = D 2 T Dy B T +%A”*4+%’1”*3
LS N ! Aot ot o1, +/1 VR
T a0 T i=-Dm—2) " 30”4 3T 3T g

As1>A,>....> A, > —1,, thenclearly c¢;; > bss. Moreover since0 > A, > .... > A, >
—1, then it is easy to see that c;; < cy2, ¢11 < c13 and ¢q1 < c14.
We note that using the recursive method is more easy then to verify the positiveness of

the entries especially when we consider bigger values of p and n.

Next, we give a simple example that shows that the method used in Theorem 5.3.3 and

Lemma 4.2.3 is also constructive, 1 e. we can construct a realizable matrix.

Example 19. Let 6 = {1,0,—5,—1,—2} be a list of 5 real numbers. It is easy to check
that o verifies (5.2). It follows that it is the spectrum of 5 X 5 symmetric doubly stochastic
matrix C. By (5.2), we have

1

0< §+ )Lz—f— (l3+7t4+7t5)
1 1.1

—9(4 HEVRRV P m)

with 6 = %' Therefore, by Theorem 5.3.2, there exists a symmetric doubly stochastic matrix
A with eigenvalues 1, % =50 ="1F l . By Theorem 5.3.2, A can be obtained by

that is,
1 11 13 7
32 32 32 32
un 1 7 13
32 32 32 32
3 7 1 1
32 32 32 32
7 13 1 1
32 32 32 32
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1—r Lel )
Therefore, by Lemma 4.2.3, C = (r ;20 |, with r = 2. Tt follows that
¢4 74
111 11
5 5 5 5 53
11 007 i3
5 30 40 40 40
c—|1 1 1 B o7
— |5 4 3 40 40
1 7 13 1 1
5 340 40 40 40
1 3 7 111
5 4 40 40 40
is doubly stochastic with spectrum (1,0, —%, —%, —%)

Now substituting in Lemma 4.2.4, the doubly stochastic matrices obtained from Theorem

5.3.3, we arrive at the following theorem.

Theorem 5.3.4. Let p and n be two positive integers such that p > 2 and n > 2P and let
0>A>..>A>—LIf

1 n—k—1 koA nin 1251
—h— A I L Y A0 >0 5.3
n kD) 2+i;2,, i+1)i 2 ,; N2 = (5-3)

k
holds with n = 2k + 2 for n even (with the convention that i:%p % =0 forn=2P*Y) and
n =2k —+ 1 for n odd, then there exists an n X n symmetric doubly stochastic matrix with

eigenvalues 1,13, ..., A,.

Proof. Case 1: For n = 2k + 2, Inequality (5.3) can be rewritten as

0< - + 7L2+Z i 2’“ Zln %42
zZP

ol +zk~’ An72i+2+112p_1)t .
ok S (i 1) 2r e =

=27

with o = % > 0. We show by contradiction that o > 0. Suppose that o = 0. Then,
A = —1, which implies that A3 = .... = A, = —1. It follows that

1 ﬁw 2H—2 !
—+— A+ Z 2p ;Ln—2i+2 <0,
= 2” i
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and this contradicts (5.3). As before, we show next that % > —1 by contradiction. Suppose
that 7 A+ 1, thatis, 24, + A, + 1 < 0 so that % + %),2 + %ln < 0. From condition (5.3), we
conclude that

1 12’71

l’l 122:1’ ) 2p i

7Ln 2z+2>0> + - 7Lz+ )m

that is,

ko) n 125! I 2
n—2i+2
2 e N Ap_2i —— A 0.
S, (i) 2P & 202 (21’ n> "

Again as n > 2P+ and all A; < 0, we have a contradiction. Hence by Theorem 5.3.3,
there exists a (k+ 1) x (k+ 1) symmetric doubly stochastic matrix A with eigenvalues
1 5147..., é/IZkJrz. Moreover, since 1 > A, > ... > A, > —1, then

1+iwzm 112”21)L >0,
k+1 " S o (i) 2w =

and therefore, there exists a (k+ 1) x (k+ 1) symmetric doubly stochastic matrix B with
eigenvalues 1, é)@, ey éhkﬂ- Applying now Lemma 4.2.4, with A =A, B=B and a = r,
we obtain an n X n symmetric doubly stochastic matrix C with eigenvalues 1,45, ..., A,.
Case 2: For n = 2k+ 1, we have

1

k n 21+2
0< + + A2
—%+1(%+w@+)21§, Z 22

1 k 1 a2 112!
<k+1+,~z’ ( +1) +2p06 ~ n—2i+2

. (kD) 4kAy  (nHD)+(m—1DA  24+(n—1)(1+4;)
with ¢ = 77— = n = n

by contradiction that A” —1. Suppose that l” < —1,thatis, 2nA, +(n— 1)+ (n+1) <O0.

> 0. Again, at this point we shall show

It follows that, - Ly (n - 1) 2,2 + 55 +1 —=-2, <0, and hence by (5.3), we conclude that
1 n-—1 kx_zz 2! 1 n—1 2
A oo A >0> — A A
n+n(n—|—1) 2+l._22"p (i+1) Z noart + n 2—i_n—f—l v
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that is,

Xk: /l"‘z’“ Z Aoy siiat [ ——2) 2,50
As n > 2P+ and all the A; < 0, this leads to a contradiction. Hence, by Theorem 5.3.3, there

exists a (k+1) x (k+1) symmetric doubly stochastic matrix with eigenvalues 1, 223, ..., = Aoy 1.
On the other hand, we know that

1 k An— zl+z
0< + A2+ An—
“2k+1 k+Dk+1)7? i:zzlp (i+ Z 22
1 k 1 = it izp_l

< A A —_— An—2i
_2k+1+(2k+1)(k+1) 2+k(k+1) 2+,-§p (i+1)i 20 H

1 = 12% 2l+1 1 12P !
= — A o

1=2P

where r = % In order to apply Lemma 4.2.4, we need to show that 0 < r < 1. Now
since r can be rewritten as r = (kz}c)ffrk — (n+1)122:(n—1) — (”_1)’12+;:2)”2+”_2, then it is

enough to show that 14 (n—1)A; > 0 (as n > 4). From (5.3), we conclude that

1 k 2l+2 2!
0< + A+ P An—2i
“2k+1 k+Dk+1)7? 122,, Z n-2it2
1 k LS| 12”*1
< - +Y —+=Y 1|1
2k+1 ((2k+1)(k+1) i;’,,(H—l): 2w =
_ k DL L AV
T 2k+1  \@k+1D)(k+1)  k+1 27 o )7
_b, %
T 2k+1 2k+177
1 n—1
=—+n A
n n

Hence 1+ (n—1)Ay >0andso 1+ (n—1)A+24+n—-2>14+(n—1)A, —2+n—2>0.
Hence, r > 0. Also,as (n+ 1)A,+(n—1) <n+1+n—1=2n,thenr < 1.

As earlier, we next show by contradiction that k" > —1. Suppose that )“” < —1, that is,
2nAy+ (n+1)A2+ (n— 1) < 0. It follows that, 1 + (“ )Az+ 21, <0, and therefore by
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(5.3), we conclude that

1 n—1 ko dpnivn 1 235! 1 n+l 2

-+ ——A noSits i > 0> — A Y.

n+n(n+1) 2+i§’p (i+1)i+2l’ lzzi)’" itz = n+n(n—1) 2—i_n—l "
that is,

2P —1

n—1 n+1 N PP | 1 2
(n(rH—l)_n(n—l)))L2 i; (i+1)i +21’ . )'” 2’+2+(2P n—l)ln>0'

2P

Since 1 > A, > ... > A, > —1, then we can write

n—1 n+1 koo 1 2! 1 2
< - L S T I PR (. A
<n(n+1) o0t ity &) et e e

[ n—1 n+1 n k 2p_1+2p_2 A+ 1 2 A
S \n(n+1) nn—-1) k+1 2 2r 2T\ n—1)™
n—1 n+1 n—1 1 2 1 2
= — 1 1—— A —— A
(n(n—|—1) an—1) Taxi Tt 2p> 2+(2p n—l) "

n—>5 2 1 1 2
B (n—1+n—1_2_1’>12+<2_1)_n—1>1"

n—>5 )
_n_1/12+(2_p_n_1> (A —N2).

Since n = 2k+ 1 and n > 2P, then obviously n > 2P+l 4 1. However, this leads to a
contradiction as A, < 0 and (A, — A;) < 0. Therefore, by Theorem 5.3.3, there exists a k x k
symmetric doubly stochastic matrix with eigenvalues 1, 1/14, ‘;LZk Now the proof can be
easily completed by applying Lemma 4.2.4, with A = Aand B=B. 0

Again, substituting in Lemma 4.2.4 the doubly stochastic matrices obtained from Theorem
5.3.4, we obtain the following theorem for which its proof is virtually identical to that of

Theorem 5.3.4. So, we will give only a sketch of its proof.

Theorem 5.3.5. Let p and n be two positive integers such that p > 2 and n > 2P*2 and let
0> >...> A, > —1. Suppose that

1 5 — 242 [%]717%74&4 1 2!
el B e T o
2 4 i=
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(2521
for n even (with the convention that Y. % =0 for n=2""%) and
i=2p
n+3
1 n—1 u_[@] [T]*llniét. s 1 201
! PO e i P A LY g e 20, (5.5)
AR COIT= P S AT R

for n odd, hold. Then there exists an n X n symmetric doubly stochastic matrix D whose

eigenvalues are 1,A5,..., Ay.

Proof. If n is even, then by (5.4) and Theorem 5.3.4, there are (5) x (5) symmetric doubly
stochastic matrices A and B with eigenvalues 1, éM, é?tﬁ, - é/ln and 1, éﬁg, é/k, e é?tn_l
respectively, where o¢ = 1+le Apply now Lemma 2, with A = A and B = B, then we obtain
an n X n symmetric doubly stochastic C with eigenvalues 1,4;, ..., A4,.

If n is 0dd, then by (5.5) and Theorem 5.3.4, there are (D) > () and (%51) x (51)
symmetric doubly stochastic matrices A and B with eigenvalues l,élg, éls, e éln and
1, %14, %16, ey %ln_l reipectively Yith o= % and r = % Applying
Lemma 4.2.4 with A = A and B = B, we obtain an n X n symmetric doubly stochastic matrix

C with eigenvalues 1,45, .., A,. ]

Notation. For convenience, we denote by M), the condition of Theorem 5.3.3, S, the condi-
tion of Theorem 5.3.4 and N, the condition of Theorem 5.3.5.

5.4 Sequences of sufficient conditions for NS-SDIEP

In this section, we will prove that the family §, for p > 2 is an improvement of Soules
condition S for normalized Suleimanova spectra. In addition, we will give the inclusion
relations between the elements of M), S, and N), and we will show by examples how these
conditions can be of a great importance for NS-SDIEP.

With the previous notations, we have the following observations.

Observation 5.4.1. Let 6 = {1,A3,...,A,} be a normalized Suleimanova spectrum. If ¢
satisfies PM then & satisfies M>. Conversely, it is not always true. Consequently, with a
slight abuse of notation, we conclude that PM C M.
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Proof. Suppose that o satisfies PM, then

1 1 1 1 1
0< - Aot — it —=Ayat A+ —A
T I ) KT T X S W R
1 1 1 1 1 1 1
- Ayt o — ezt =Pzt Aya+ —Ap A
n A= 2T Foghat 2t ghaat ghai g
1 1 1 1 1 1
= - M+ —Ap 3+ -2+ A1+ = A
n a1y 2T g3 et At

Hence o satisfies M,. Finally, the list o = {1, —%, —%, —%, —%, —%} satisfies M, but
does not satisfy PM. Thus the proof is completed.
O]

Observation 5.4.2. Let 6 = {1,A3,...,A,} be a normalized Suleimanova spectrum with
n > 8. If o satisfies S then & satisfies So. Conversely, it is not always true. Consequently,
with a slight abuse of notation, we conclude that S C S;.

Proof. Suppose that ¢ satisfies S. If n = 2k + 1 for n odd and n = 2k 4 2 for n even, then
clearly we have

1 n—k—1 K dpnivs 1 1 1
<—4—— A ey W Ry SRy
= kD 2+;(i+1)i+12 a2t g

1 n—k—1 kKo dyniin 1 1 1 1
<-4 - ) e A at A at A ot —A,
_n+n(k+1) 2+;(i—|—1)i+121" R

1 n—k—1 KA 0iin 1 1 1
=—4—2 n—2it ~Apa+=Ayn+ A,
n kD) 2+i:Z4(i+l)i+4 At g2t g

Therefore, o satisfies S;. Finally, the list 6 = {1,0,0,0,0,0,0,0,0,0, —%} satisfies S5, but
does not satisfy S. Thus the proof is completed. 0

Observation 5.4.3. Let 6 = {1,4,...,A,} be a normalized Suleimanova spectrum with
n > 16. If o satisfies N then o satisfies Ny. Conversely, it is not always true. Thus, with a
slight abuse of notation, we have N C N>.
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Proof. We distinguish between the cases n odd and n even.

Case 1: If n is even and o satisfies IV, then

1 1 [n42] e PR 1 1
0<—+-M+2 42 nEE L As+ —Aya+ A
T 2+(%)[%] o i—4 (i+1)i+12 g
n+2
11 2 — 2] S A aia 1 1 1
-4 -l A+ -8+ - l—8+—/1—4+—/1n
n (1) [222] ; (i+1)i 127" " 4" 4
n+2
I D == B e SR 1 1
T P Y s e Ry ey S )
O - ) A

Therefore, o satisfies N>. However, the list

1.0.0.0.0.0.0.0.0.0.0. — — — — — — —
( 707070707070707070307 207 207 107 107 107 1()7 10) Y

satisfies N, and does not satisfy N.
Case 2: If n is odd and o satisfies N, then

n+3 _

A 1)Vn 41+4
e

[S—
S
I
[
|
.—|

1 1 1
+—A—g+=Aa+ =2
12 n 8+6 n4“|’2 n

1 1 1 1
A —Ag+ —Ag+ =Aya+ - A
4+ ,2:4 (i+1)i+12 s+ chnst hnat g

An—dita
= (i+1)i

1
+ = 2'n 8+ }Ln—4+Z)Ln-

Therefore, o satisfies N;. Finally, the list

3 3 3 5 5 1 1 1 1 1
1 _ _ — — — U
( ,0,0,0,0,0,0, 100 100" 100’ 100" 100" 10" 10’ 10" 10’ 10)7
satisfies N, and does not satisfy N. U

In the next theorem, we study the inclusion relations between the elements of each
sequence of the three sequences defined by M), S, and N, for p > 2.
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Theorem 5.4.4. Let n > 4 be an integer, and let 0 > A > ... > A, > —1. Define wy, v, 2p

and y, as follows.
o For any positive integer p > 2 with 2P < n, let

1 1
M+ ..+ ——=A4
+ +2p(2p+1) n—2r+1+ 5

1
(An721’+2 + ... +2’an + 2'n)

Wpi=—+ Y

n nn—1) 2

2k+1 ifnis odd o ) {
e Forn= , and for all positive integers p with 2P < n, let

2k+2 if nis even

1 n—k—1 L 2,
P —A, n—2i+ 2,
Vpi= T (k1) 2+i§p it1) Z n—2i+2-

e For n even, and for all positive integers p > 2 with 2Pt2 < n, let

1 1 n_ [nt2 [22]-1 Ay 1 201
pi=—+-A+ 2n [niz])'4+ Z An—dita-
(5) [%%7] = (it

e For n odd, and for any positive integer p > 2 with 2P1? < n, define

n+31_1 p_
1 n—1 %_[%] g )vn 41+4 1 2ot
ypi=—+ o+ A+ Ap_siia.
P n n(n+1) () (23] 5, i+ Z e

Then, for p>2, we have
1) wp—wp_1 >0,
2) vp—vp-1 20,
3) zp—zp-120,
4) yp—yp—12>0.

Proof.
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1) For simplicity, let us denote m = 2”. Then,

LN A +1mfl
w, = — J— o
P =ii+1)  m n—itls

i=m i=1
and .
1o Ay 125
Wp_ -+ - +— A
p—1 n i;gl(l+1) % Z_ZI n—i+1

It follows that for p > 2,

m—1 A'n . 1m—] 12

—i+1

- YA o —— YV A
.Zg,i(iﬂ)*mi_zl T Ly A

1=

i=7 =
1 [7m=? 71 | | ma
“n | B = B |+ (n—1 o 1)) bz g
1 [m=2 21 m—=2 1 m—2 1
== i;; An—i1 — l; Mn—iv1 | + i;; mlnfm+2 - l;% mﬁtﬂ,iﬂ
1 m=2 51 m—2 1
“m Z;l Anis1 = Z An—iv1 | + ; i+ 1) (An—mi2 = An—it1) = 0,
-2

= = ;
i=7 i=1 i

since0>A, > ... > A4, > —1.

2) By an identical proof of Part 1), we have

1 m—2 51 m—2 1
Vp—Vp-1 = Zm An—2it2 — ZT Mn—2ita | + Z ) (An—2m+4 — An—2it2) >0,
=% = 1:%

since the eigenvalues are in the decreasing order.
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3) and 4) By a similar proof of Part 1), we can check that

Zp _Zp—l
=Yp —Yp-1
1 m—2 %*l m—2 1

m

=— | Y Asiva— Y Asiva | + Z EEY) (An—dms8 — Au—sira) > 0.
= i=1

127

As a result, we have the following observation.
Observation 5.4.5. For a normalized Suleimanova spectrum, we have
« My CM3C...CMyCMp C ...
* 5 C8C..CSHCSp1C....
* NyCN3C...CNyCNpp C ..

We know that PM C S. So a natural question arises here; if for a fixed p, M, C S, . That

we will see in the next observation.

Observation 5.4.6. Let p > 2 be a fixed integer and n > 2P+, Then, for a normalized
Suleimanova spectrum 6 = {1,Ay,..., A, } with0> 2, > ... > A, > —1, M,, C S,,.

Proof. Suppose that o satisfies M. If n = 2k + 1 for n odd or n = 2k + 2 for n even, then

we have
0S4 s hat ot ) bt A1+ )
—n n(l’l—]) 220 T 2P(2P—|—1) n—2P+1 2P n—2p42 + ... 1
_L o 1 +an+1 121721)L
LR G R V) (R ) e Vi neit]
: ! H—l 1 21
<= _ | A A
_n+(n(n—1)+ +(k+2)(k+1 ) 2+l§'p y +55 Z .
(since Ay > Ajfor j=3,...,kand A,_o; > A, fori=1,....k—1)
L, n-k-1 5 dyain | 112G
=-+———Mht+ ) -t .
n  nlk+1) 2 i_zz.p (1) 2r I_Zi An—2i42

It follows that o satisfies S),.
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At this point, it is worthy to mention that for a fixed integer p, the condition S, is a
refinement of M,,. However, we can make use of M), in the cases where S, cannot be applied

as we see in the following examples.

Example 20. Consider the list o = (1,0,0,0,0, —%) It is easy to see that o does not verify
Soules condition but it verifies condition M, (S; cannot be applied as n < 8). Therefore, it is
the spectrum of a 6 x 6 symmetric doubly stochastic matrix.

Example 21. For n =9, consider the list c = (1,0,0,0, — 14, %,—é, —%,—%). A simple
check shows that ¢ does not verify Soules condition, nor New condition 1. Moreover, ¢
does not verify the conditions M; and S,. However ¢ verifies M3 (note that S3 and N, cannot

be applied), and therefore it is the spectrum of a 9 x 9 symmetric doubly stochastic matrix.

Finally, by making use of Theorem 4.2.2, we end our chapter with the following sufficient

condition concerning realizable Suleimanova spectra of even order.

Theorem 5.4.7. For any two nonnegative powers of 2, n and m with m > n, let 6 =
{1,A2, ..c; Xpim} C R, such that 0 > A > ... > Ay > — 1. If there exists a permutation 7t

on {2y, ..., yim} such that T( Ay, ..., Aysm) = (W2, ..., Untm) and

n
au2>__7
m
mu; +n
M3+ ..+ Upy1 = — o ;
m-—+n
and N
nuy —m
Hnt2+ oo+ Unym = — a ’
m-+n

then o is realizable by an (n+m) x (n+ m) symmetric doubly stochastic matrix.

: m-+n
Proof. Since 0 > M3 et mu2+n

then in view of Theorem 5.3.2, there exists an n X n symmetric doubly stochastic matrix
m+n

’m[.Lz—f—n‘u 5o i +m2’”+2+"'+

nﬂ;”m Un+m > —1 and m is a nonnegative power of 2, then by Theorem 5.3.2, there exists an

Un+1 > —1, and n is a nonnegative power of 2,

A with eigenvalues (1 ,m’fljﬁn WUnt1). Similarly, since 0 >

m x m symmetric doubly stochastic matrix B with spectrum (1, nﬁ;j:‘m [T %“’W’”)‘

In Theorem 4.2.2, takingox =1, p = % (as up > — , then p > 0), A —Aand B= E,

then we get an (n+m) X (n+m) symmetric doubly stochastic matrix D with eigenvalues
1, A2, A3, ., A O

By making use of the previous theorem, we will show that conditions S, N, M), S, and

N, are not necessary conditions for NS-SDIEP, in the following example.
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1
, —&— 18 . It is easy to

Example 22. Consider the list of 6 real numbers o = {1,0,0, —
check that o does not verify S nor N. Moreover, ¢ does not verify M, (note that Sz and N>
cannot be applied). However, taking u, = —%, Uz = —%, Us =0, us =0, and Ug = 18, then
o verifies Theorem 5.4.7 for the case of order 6 = m +n with m = 4 and n = 2. Therefore, it

is realizable by a 6 x 6 symmetric doubly stochastic matrix C given by

C— 2 ( A M6264)
7 11 ’
V2 g

éq 62

where A is a 2 X 2 symmetric doubly stochastic matrix with eigenvalues 1, —% and Bis 4 x 4
symmetric doubly stochastic matrix with eigenvalues 1,0,0,-1. Using Theorem 5.3.2, we can
construct A and B as follows:

3 ) 7
A:Hldiag(L—Z)Hl_ =137 )]
8§ 8
and,
1 1
o410
L oo 1
_ : -1 _ 2 2
B—szlag(l,O,O,—l)H2 =11 |
2 00 5
1 1
It follows that
17 1 1 1 1
36 36 36 36 36 36
701 71 71 1 1
36 36 36 36 36 36
7 7 11 11
c=|% % ° % % O
7 7
% 3% 3 0 0 3
7 7 11 11
% % 3 0 0 3
7 7 11 11
% % O 3% 3 O



Chapter 6
Conclusions and Futur works

The final chapter summarises the work presented in this thesis and our findings, and describes

a few further research lines.

6.1 Summary

In Chapter 2, we aimed to prove that general class of matrices are positive semi-definite by
constructing Gram matrices between characteristic functions of subsets of a finite set E (see
Theorem 2.4.5 and Theorem 2.4.7). Our approach for that is explained by the fact that binary
similarity matrices can be written as cardinals of theoretical operations between subsets of a
finite set (see Section 2.5.1). As a result, our class of PSD matrices paved the way to prove
that many binary similarity matrices, given in Section 2.5, are PSD. In fact, we have proven
that two family of binary similarity measures Sg and Ty, introduced in [36], are positive semi-
definite for 8 > 1. Moreover, we have shown that from 30 popular similarity matrices defined
in the literature, 21 are PSD and 9 are not PSD. The motivation for this work was the growing
number of applications of PSD similarity matrices in deriving distance functions. One simple
method of defining an Euclidean distance from a PSD similarity s defined on [0, 1], is the
transformation d = /1 — s where the positive semi-definite property is a sufficient condition
to assure that d is Euclidean. Moreover, the positive semi-definite property ensures that

generalised Euclidean distance dj; defined by dy(x,y) = \/(x—y) TM(x —y), where M is
any n X n PSD matrix and x and y € R", satisfies the properties of a pseudo-metric. All these
nice metric or pseudo metric constructions between data points plays an important role in
many applications of machine learning, pattern recognition and data mining techniques such
as K-means and K-Nearest Neighbour classifier, that we discussed in details in Section 2.10.
Another contribution in Chapter 2, is proving the strictly positive definite property of Tversky
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family of similarity matrices (see Theorem 2.6.5), as a generalisation to the Jaccard index,
the only similarity matrix to be shown that is PD [11].

Our second direction on studying positive semi-definite matrices was to explore the
conditions under which a positive semi-definite doubly stochastic matrix has nonnegative
pth roots for a given p. The motivation for that can be explained by the many interesting
applications of the computation of stochastic roots in different areas such as finance and
healthcare. As the problem of considering roots of doubly stochastic matrices that are positive
semi-definite, was only discussed by Marcus and Minc [77] and briefly for the special case
of p =2, we have been interested in characterising the set of n x n PSD doubly stochastic
matrices with nonnegative pth roots, denoted by K,l /p . First, in Theorem 3.2.3, we obtained
new sufficient condition for this problem that improves the existing one for the case p = 2.
We have not been able to give a full characterisation of K,i/ P but we prove some geometrical
properties of the set. More precisely, we show in Theorem 3.3.6, that K,% /P is not convex for
n > 3 but star convex with respect to J,,. In addition, we show that a positive semi-definite
doubly stochastic matrix that is the inverse of an M-matrix belongs to K,l /P for any integer
p. As aresult, a construction of some elements of K,y P was identified in Theorem 3.4.3.
One of the problems that is related to the doubly stochastic roots problem is the symmetric
inverse eigenvalue problem for doubly stochastic matrices. This was discussed in Section 3.5.
Two types of symmetric doubly stochastic matrices can be defined. PSD doubly stochastic
matrices which can be obtained using the concept of Soules matrices[122] and which are
elements of Ki /p , for any integer p, as Theorem 3.5.3 shows. And the other type, symmetric
doubly stochastic matrices obtained from orthogonal matrices which are not any Soules
matrix. It seems that there is not yet a systematic way to examine the belonging of these
matrices to K,i /p . However, in Theorem 3.6.4, a general characterisation of K,} /p is given for
the particular case of n = 3 and p = 2. As a generalisation, Theorem 3.6.7, explores a family
of matrices that belongs to Ki /2 for any n.

The connection between generating elements of K,% /P and the inverse eigenvalue problem
led us naturally to study SDIEP in this thesis. Many sufficient conditions for this problem
have been given over the years, beginning with the Perfect and Mirsky work [97], then with
Soules sufficient condition [122]. However, the problem of characterising the spectra of all
symmetric doubly stochastic matrices seems unlikely to be solved in the near future. We
have introduced new recursive sufficient conditions for constructing symmetrically realisable
lists (see Theorem 4.3.5 and Theorem 4.3.9). These sufficient conditions are shown to be not
a refinement of Soules but new independent conditions. In light of these result, it was natural
to seek symmetrically normalised Suleimanova realisable lists. Indeed, Chapter 5 introduced

three sequences of sufficient conditions (see Theorem 5.3.3, Theorem 5.3.4, and Theorem
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5.3.5) for normalised Suleimanova spectrum to be the spectrum of doubly stochastic matrices.
We could mention the sequence S, that is proved to refine Soules condition for the case of

normalised Suleimanova spectra , as we show in Theorem 5.4.4.

6.2 Futur work

In a similar way to the work presented in Chapter 2, one can further investigate the positive
semi-definite property of numerical similarity matrices. As most practitioners will care about
having a vector-based measure, we strongly believe that by a good choice of the measure
U, we can construct several general PSD matrices that could help us to deduce the positive
semi-definiteness of many numerical similarity measures. Moreover, it seems that the main
method in proving the strictly positive definiteness of Tversky similarity family of matrices
could as well be employed for proving that the complete (2" — 1) x (2" — 1) similarity matrix

F whose elements are given by

_ (asBY|
alANB| +b|(AAB)|

F(A,B)

for any non empty subsets A and B of E, is also positive definite for any positive integer
n>1,and foralla > b > 0.

As the reader can see, the results in the thesis are concerned with the theory of matrices
as linear algebra has proved useful for machine learning, Al and deep learning problems, as
we have briefly discussed. The next step may be to consider some numerical applications that
show the utility of the positive semi-definite property and doubly stochasticity. Using new
distance functions derived from PSD similarity matrices can produce noticeably superior
results then algorithms using the simple Euclidean distance. We can try the use of K-means
with an Euclidean distance derived from a PSD similarity matrix via the transformation
d = /1 —s or the use of a generalised Euclidean distance dj; where the weighted matrix M
is one of the PSD similarity matrices considered in Chapter 2. Such distance djs can be used
as well to improve clustering by learning a doubly stochastic data similarity matrix [130].
Moreover, exploring the structure of the spectrum of symmetric doubly stochastic matrices is
of a great importance in defining clusters using the consensus clustering [75].

Additional to these research subjects that rise directly from the study, one can investigate
more on the symmetric doubly stochastic inverse eigenvalue problem, that is still open. Our
next step would be to solve Conjecture 4.3.13 that will lead to many new sufficient conditions

for SDIEP. As a result, we could characterise new elements of K,i /P for any integers n and p.
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Moreover, it would be interesting to see how to use a similar recursive method for generating
sufficient conditions for RDIEP and DIEP.



Appendix A

We will give the proof of Observation 4.3.11.

Proof. Let n be even. We distinguish between the cases n =8p,n =8p+2,n =8p+4 and
n=38p+6.
Case 1: For n = 8p, if o satisfies Soules then,

o B
1 _ -
- R R T
S LR
:%+%12+4p(4119—1)l4+(4p—2)1(4p fot 412_;’;3%" it i{ i 8%
<t phat ket (4p—2)1(4p—1)l4+ipz;)3(i—|}—t—81)i+i§l (;:sl-;)j
_ 1,
R e G e L Gy
:rlz%%fréhv(élzla—I)MJF(419—2)1(419—1)7“”r (2 Lti_jz) ))LSJ’ Z o T
_ p—1
= fll+%12+ (419(4119— " (419—2)1(419— " 2;2{4)19—32)) AH Z ;Ln Sl+8
=+l 2 e s
(5) (5] 5 i+

Therefore, o verifies New condition 2.
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Case 2: For n = 8p+2, if ¢ satisfies Soules then,

1 .
0< +7LZ+Z n21+2

;)%

A

(i+1)i
11 An2it2 o Andiv2
=—+-A+ Lo
n i—;-l (i+1)i ; (i+1)i
1 1 i A —2i+2 z )“n781+8
< — A+ . -+
n i—;rl (i+1)i ; (i+1)i
11 1 1 2 Annirr | N Ansivs
———}——A’ + ){ n l _|_ n 1
. 4p(4p+1) : 4]9(4])—1);L6 l:;rl (i+1)i izzi(l+1)l
11 1 1 " A Ansi+s
<4 -Ao+ + +
n' 02 apap+1)t T apap 1))“6 1;1(z+1)z i;(z—i—l)z
1 1 1 1 3p—2 P ﬂ‘n,8,+g
= E P p— Y + g+ Yy
n 0 4dp+)™ 4p(4p—1)7L6 (p+1)(4p—1) l_Zl(z+1)z
11 1 1 2p—2 p
= —4+ -+ Ay + + +
T B ) -1 <<4p—1><2p+1> (p+1)(2p+1
An—8it8
_|_
i;(i—l—l)l
11 1 1 2p—2 p
< 4o+ + + Aa+
“nn (4p<4p+1> 4p(dp—1) <4p—1><2p+1>) e+
_'_i)tnfSiJrS
= (i+1)i
n+6 1
11, 2n—2), 2o Ty 8,+8
=—+-A+ Ay + A+
D e L

Therefore o satisfies New condition 2.
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Case 3: For n = 8p+4, if o satisfies Soules then,

ap+i
o<kt I T
ap+1
S L L
4p+1 .
<t LG L
2 G DT darT 1)“2 (R Wy

)

<1+17L+ 1 l+;%+4pi 1 l+in8l+8
=0 n " Gpr D Ap2) "t aplap+1) i+ 1) =

11 1 1 3p 1 P D siss
) A A

o 2+(4p—|—1)(4p+2) 4+4p(4p—|—1)36+ 4p(p+1) 8+i;(i+1)i

1 1 1 1 2p—1 p
=42 . —

- 2+(4p+1)(4p+2) 4+4p(4p+1))%+(4p(2p+1)+(p+1)(2p+1)
_i_ilnfSiJrS

= (i+1)i

1 1 1 ] 2p—1 »
<4+ A A A
=0 2+((4p+1)(4p+2)+4p(4p+1)+4p(2p+1)) 4Jr(p+1)(2p+1) ;
+i7tn—8i+8

= (i+1)i

n+4
TS I SR [ B L P
TR T et T L G

Therefore o satisfies New condition 2.
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Case 4: For n = 8p + 6, if ¢ satisfies Soules then,

0<— - )L 4+ o
2 l_zi (i+1)i
1 1 4p+2 p
__+ Az_’_ Z n 21+2+Z n— 2z+2
n lp—i—l( i=1 l
AZ"‘ 4PZ+ n— 21+2 +i n— 81+8
lp—H i=1 l
11 1 1 B Apnivr & Ay_sisg
=—+-lo+ Ay + - ey
n on’ (4p+2)(4p+3) + (4p+2)(4p—|—1))L6 z_gll (i+1)i i:Z{(H—l)z
1 1 1 1 L X An—8its
<+l A+ + — 4 )
“n 0 (Ap+2)(4p+3) (4p—|—2)(4p+1))'6 l_§1(1+1)z i;(z—i—lz
1 1 1 1 3p 2 An—sits
= — 4 - + A + . .
Pt @y @t et R G
11 1 1 2p—1 1
=4+ -+ + + + A
n 0 (dp+2)[dp+3)7t (4p+2)(4p+1)7L6 ((4p—|—1)(2p+2) 2p—|—2) 8
+zp:ln—8i+8
- (i+1)i
1 1 1 1 2p—1 1
<-4 l+ + + M+ —N
=n " n? ((4p—|—2)(4p+3) (4p+2)(4p+1) (4p+1)(2p+2)> 4 2p+2 8
+i7tn78i+8
= (i+1)i
+
1 1 2(1’! ) n+2_[%6 S n 81+8
=—+-A+ g+
T A e L M

Therefore o satisfies New condition 2.



Appendix B: Syntheése en francais

La théorie des matrices s’est développée rapidement au cours des dernieres décennies en
raison de son large éventail d’applications et de ses nombreux liens avec différents domaines
des mathématiques, de I’économie, de I’apprentissage automatique et du traitement du signal.
L’une des principales caractéristiques qu’une matrice puisse posséder est la propriété semi-
définie positive. La classe de telles matrices est fondamentale dans 1’analyse matricielle
et apparait naturellement dans de nombreuses applications telles que 1’analyse de données,
I’analyse complexe, la mécanique et I’ingénierie. Les matrices semi-définies positives sont
utilisées comme matrices de covariance en statistique, en tant que noyaux en apprentissage
automatique et en tant que tenseurs en imagerie médicale. En outre, la propriété semi-definie
positive est désormais importante lorsqu’on considere les matrices de similarité [35, 36, 131],
matrices utilisées pour quantifier la ressemblance des éléments d’un espace de données. La
propriété mentionnée nous permet de construire des distances métriques entre les éléments
d’un ensemble de données.

D’autre part, les matrices non-négatives sont une partie intégrante de la théorie des
matrices, initiées par Oskar Perron [98] et par George Frobenius [33] au début du XXe
siecle. Parmi les matrices non-négatives, la classe des matrices doublement stochastiques
est d’importance particulicre. En effet, elle est particulicrement riche en applications dans
d’autres domaines des mathématiques, tels que la théorie des graphes, la combinatoire,
I’analyse numérique, ainsi que dans d’autres domaines tels que I’économie, la statistique, et
la théorie des communications [14, 75, 124, 130, 134]. Un probleme classique de I’analyse
matricielle implique I’étude des racines des matrices. Plus particulierement, trouver des
racines qui préservent la non-négativité des matrices non-négatives [73, 74, 89, 125] et récem-
ment des matrices stochastiques [37, 38] joue un role important dans plusieurs applications.
En combinant la propriété doublement stochastique et la propriété semi-définie positive dans
une matrice A, il est naturel de rechercher les conditions pour lesquelles la p-ieme racine de
A, pour tout entier naturel p > 2, est aussi une matrice doublement stochastique semi-définie
positive. Un autre objet d’étude intéressant dans la théorie des matrices doublement stochas-

tiques est celui du probleme inverse des valeurs propres qui, étant un ensemble de nombres
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complexes (ou réels) o, cherche des conditions nécessaires et suffisantes pour qu’une matrice
doublement stochastique ait pour spectre ©.
Dans cette these, nous apporterons des réponses aux trois problemes cités ci-dessus

concernant des matrices semi-définies positives et des matrices doublement stochastiques.

Définitions et présentation des domaines de recherche

Nous allons d’abord introduire quelques définitions et terminologies avant de mettre en
évidence de maniere plus détaillée les trois axes de recherche que nous avons abordées dans
cette these.

Une matrice symétrique A dont les éléments sont des nombres réels, est dite semie-définie
positive (PSD) si pour tout vecteur x € R”, on a x” Ax > 0. En particuler, A est dite définie
positive (PD), si x” Ax > 0, pout tout vecteur non nul x € R”. Nous verrons plus loin d’autres
cractéristiques des matrices semi-définies positives (voir [43]) qui s’averent utiles pour notre
recherche.

Une matrice carrée réelle est dite doublement quasi-stochastique si la somme de chacune
de ses lignes et colonnes est égale a 1. Une matrice doublement quasi-stochastique non-
négative est appelée doublement stochastique (ou bi-stochastique). Clairement, une matrice

n X n non-négative A est doublement stochastique si et seulement si

Ae, = e,
et
enAT =e,
ou de maniere équivalente
Al =JA =y,

ou J, est la matrice n x n dont les éléments sont égaux a % et e, est le vecteur de taille n avec
chaque élément est égale a \/Lﬁ c’est-a-dire e, = \/lﬁ(l, DT

La notion de similarité est un concept fondamental dans de nombreux domaines de
recherche et applications tel que I’apprentissage automatique, la recherche d’information et
I’analyse de données. En pratique, les similarités sont évaluées par une mesure qui quantifie
la ressemblance entre dans des objets. Nous pouvons distinguer différentes mesures en
fonction du type de données auquel elles s’appliquent, c’est-a-dire des données binaires,
numériques ou structurées. Formallement, si X désigne 1’espace des données, une mesure de
similarité S est une fonction de X x X dans R qui satisfait les propriétés suivantes :
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* Positivité : S(x,y) > 0 pour tout x,y € X
 Symétrie: S(x,y) = S(y,x) pour tout x,y € X,
* Maximalité : S(x,y) < S(x,x) pour tout x,y € X.

Une mesure de similarité donne lieu a une matrice de similarité lorsque I’on considere
des paires de variables ou des unités d’échantillons.

Apres avoir defini les notions de bases, le corps de notre travail est logiquement divisé en
trois parties qui abordent les trois problemes suivants, connectés mais qui s’averent d’une
importance indépendante.

Motivé par ses applications , la premiere partie de cette these traite la propriété semi-
définie positive des matrices de similarité. En fait, les matrices de similarité qui sont
semi-définies positives revétent une importance particuliere en raison de leur capacité a
définir des distances métriques. Cependant, peu de matrices de similarité se sont avérées
semi-définies positives [35, 36]. Pour cela nous analysons les propriétés des matrices de
similarité et plus particulierement la propriété semi-définie positive. L’idée étant d’abord de
définir les différents types de mesures de similarité, puis collecter les plus fréquentes trouvées
dans la littérature. En utilisant une approche différente pour définir les matrices de similarité
en tant qu’opérations théoriques entre des sous-ensembles d’un ensemble fini, de nombreuses
matrices de similarité sont désormais démontrées semi-définies positives. D’autres propriétes
sont aussi étudiées telles que les propriétés (strictement) définie et semi-définie 3-positive.
En outre, une discussion détaillée des nombreuses applications de toutes ces propriétés dans
divers domaines est établie.

Un type particulier de matrice de similarité peut étre une matrice doublement stochas-
tique. Outre leurs applications en combinatoire, les matrices doublement stochastiques, qui
représentent un sous-ensemble particulier des matrices stochastiques, constituent un outil tres
utile en probabilités et en statistiques. En fait, une matrice stochastique B = (b;;) peut étre
considérée comme une matrice de transition d’une chaine de Markov ot b;; est la probabilité
d’aller de I’état i a j. Un des nombreux problemes étudiés dans la théorie des matrices
stochastiques consiste a trouver les racines p-iemes d’une matrice stochastique [37, 38]
étant donné que le calcul de telles racines a conduit a de nombreuses applications dans le
domaine des mathématiques financieres et des maladies chroniques. Nous étendons dans la
deuxieme partie de la these, I’analyse au cas des matrices PSD doublement stochastiques.
Notre principal objectif est de caractériser des ensembles de matrices semi-définies positives
doublement stochastique dont la racine p-ieme est aussi doublement stochastique. Une des
méthodes utilisée pour caractériser de telles matrices est 1’utilisation du probleme inverse

des valeurs propres des matrices symétriques doublement stochastiques (ou SDIEP) qui
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cherche a déterminer I’ensemble des listes de nombres réels qui peuvent étre les spectres de
matrices doublement stochastiques. Vu la relation étroite existante entre le probleme de la
recherche de racines et le probleme inverse des valeurs propre, la troisieme partie de la these
est consacrée a I’étude de SDIEP. Dans la suite, nous présentons les principaux enjeux et

résultats apportés dans cette these.

La propriété semi-définie positive des matrices de similarité

La premiere partie de la these est consascrée a 1’étude de la propriété semi-definie positive
des matrices de similarités car elle permet de définir de nouvelles distances. En fait, un
coefficient de similarité est utilis€ pour décrire quantitativement la ressemblance entre les
éléments d’un ensemble de données dans de nombreux domaines d’applications, tels que
I’intégration des informations [5], la théorie des hypergraphes [9, 10] et I’analyse d’images
[15]. Cependant, pour certaines applications tel que le clustering, il est plus utile d’avoir des
distances métriques [23]. Dans la suite, nous allons cité quelques applications et motivations
décrites dans la these et qui mettent en valeur I’importance de ces distances définies a partir
des mesures de similarité dans plusieurs domaines de I’apprentissage automatique et la
théorie de I’évidence. De nombreuses mesures de similarité ont été proposées dans divers
domaines, en particulier les coefficients binaires [131]. Cependant, peu de matrices de
similarité se sont avérées semi-définies positives [35, 36]. L’idée est d’utiliser une approche
différente en considérant les matrices de similarité en tant qu’opérations théoriques entre
des sous-ensembles d’un ensemble fini, afin de pouvoir montrer qu’elles sont semi-définies
positives.

Une grande variété de données peut €tre représentée par des variables binaires, qui
expriment deux états possibles de I’échantillon ( a savoir, présence/absence, vrai/ faux,
homme /femme). Généralement parlant, une variable correspond a un objet ou a un individu
et les scores binaires refletent la présence ou 1’absence de certaines caractéristiques de 1’objet.
Considérons donc deux vecteurs binaires x = (x1,x2,...,x,) ety = (¥1,Y2,..-,yn) €t prenons
X ={1 <i<n/x; =1}, c’est-a-dire I’ensemble des caractéristiques présentes dans x et
Y = {1 <i<n/y; =1} les caractéristiques présentes dans y . Dans ce cadre, les mesures

de similarité binaires peuvent étre definies en utilisant les cardinaux des quatre quantités

suivantes:
s a=|XNY|
s b=|XnNY]|

s c=|XNY|
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=XNY].

Il s’ensuit que toutes les mesures de similarité sont maintenant définies en fonction de la car-
dinalité des opérations théoriques entre sous-ensembles d’un ensemble fini. Par conséquent,
sans perte de généralité, on peut supposer que X = P(E), I’ensemble de tous les sous-
ensembles d’un ensemble fini £ de cardinal n et une mesure de similarité S est définie comme
une fonction de P(E) x P(E) dans R. Soient (A;)|<;<;; m sous-ensembles non vides de E,
alors la mesure de similarité S donne lieu a une matrice de similarité Mg = (S (A, A ])) 1< j<m’

L’étape suivante consiste principalement a prouver que certaines classes de matrices sont
PSD. Ca sera a son tour la base pour prouver qu’un certain nombre de matrices de similarité
sont semi-définies positives. Pour arriver a notre but, nous avons construit des matrices de

Gram en utilisant ’espace de Hilbert £?(E, u,R) avec son produit scalaire <, > donné par:
<fg>= [ redn.

pour tout f,g € £L2(E, 1, R) ou u est une mesure positive sur E.
Par un choix adéquat des fonctions f et g et en prenant {4 comme étant la mesure de
dénombrement, nous avons construit des classes de matrices PSD. Nos principaux résultats

sont données dans les théorémes suivants (voir Theorem 2.4.5 et Theorem 2.4.7).

Théoreme 1. Soit E = {ej,...,e,} un ensemble non vide, et (A;)|<;<, m sous-ensembles

de E. Alors ce qui suit est valable.

1) La matrice (|A;NA;|)i<i j<m est PSD, et pour tout nombres reels a et b, la matrice

(a*.|AiNAj| +ab.|A;NA | + B A NAS))

1<i<m
est également PSD.

2) SiA;# O pourtoutiet a>b >0, alors les 4 matrices suivantes sont PSD:

: 1
1
) <a.|A,‘AAj‘+b.‘A,ﬂAj‘> 1<i,j<m

ii) AN
TABAFBIANAL ) < icm

)
TA; AA H—b\AAA 1) 1< j<m’

(3
1i1) < TAAA \—i—b\AAA ) |)1§i.,j§m
) (3
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Théoreme 2. Soit E = {ej,...,e,} un ensemble non vide, et (A;)|<;<, m sous-ensembles
de E. Alors la matrice

(4inAj A7 NAT| = |AiNATIIAT DAl ;oo

est PSD.

Par consequent, les deux familles de matrices de similarités

. ) ) |A,’I"IAJ‘

1) (TO(A”AJ»ISI}]'Sm (|AimAj\+9\AiAAj| 1<i,j<m ot

- e _ |(AiDA )

i) (SQ(A”AJ>)1§i,j§m - (\(AiAAj)C|+9|AiAAj| \<ij<m’

introduits par Gower et Legendre [36] sont désormais PSD pour 6 > 1.
De plus, 21 matrices de similarités trouvées dans la littérature (voir [23] et [131]), se sont

aussi avérées PSD. Ci-dessous quelques exemples de mesures de similarité dont la matrice
est PSD.

Mesure de similarité ~ Notation Définition

Rogers and Tanimoto  Sgr %
Sokal and Michener  Sgy Threrd +Zif —d
Sokal and Sneath 3 Sgs3 ad

V/(a+b)(a+c)(b+d)(c+d)

Rogot and Goldberg ~ Sgg hrare T b—o—dic—l—d

Hawkins and Dotson  Sgp %(HGTJFC + ﬁ)
Jaccard Stac ﬁ

2
Gleason SGleas SahTe
Ochiai Soch Jatbiate
Braunn-Blanquet Sga a

max (a+b,a+c)

Il est important de noter que le chapitre 2 traite aussi la propriété semi-definie positive
de certains mesures de similarité prenant des valeurs négatives. En fait, pour certaines des
mesures de similarité définies dans la littérature, la contrainte de positivité est rejetée. A cette
fin, une définition plus générale d’une mesure de similarité qui ne vérifie pas la condition de
positivité est adoptée, dans ce qui suit.

Une fonction R de X’ x X a R est dite une similarité si R satisfait les conditions suivantes:
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1. R(x,y) = R(y,x) pour tout x,y € X,
2. R(x,x) > 0 pour tout x € X,
3. |R(x,y)| < R(x,x) pour tout x,y € X.

On parle de mesures de corrélation et d’association dont les suivants sont semi-definies

positives.
Mesure Notation Definition
Phi Keni T ST
Maxwell and Pilliner Ryp P e
Hamann [39] Rpam 954

Afin de distinguer entre les deux types de similarité, on a noté par S les similarités qui
verifient la condition de positivité at par R celles qui peuvent prendre des valeurs négatives.

Parmi toutes les matrices de similarité vérifiées comme étant semi-définies positives, seule
la matrice de similarité de Jaccard d’ordre 2" — 1 (i.e dont les éléments sont les valeurs de la
similarité des paires de tous les sous-ensembles de E a I’exclusion de 1’ensemble vide), est
prouvée d’étre (strictement)définie positive. Puisque chaque sous-matrice principale d’une
matrice définie positive est définie positive, la matrice de Jaccard entre m sous-ensembles
non vides et quelconques de E est également définie positive. Notre objective était d’étendre
ce résultat a la famille Tversky des matrices de similarité, ce qui est mis en place dans le

théoréme suivant (voir Theorem 2.6.5).

Théoreme 3. Soit E un ensemble fini non vide de dimension n. Soit T la matrice (2" — 1) x
(2" — 1) de Tversky dont les éléments sont les coefficients de Tversky pour toute paire de

sous-ensembles A et B de E (a I’exclusion de I’ensemble vide), définis par

|ANB|

T(A,B) = .
(AB) = CAAB T blANB]

Alors T est définie positive pour tout entier positif n > 1, et pour tout a > b > 0.

Concernant les autres matrices de similarité, une condition suffisante sur les sous-
ensembles de E pour lesquels toutes les matrices de similarité considérées dans notre these
soient définies positives est établie (Theorem 2.6.2). En effet, soit S une matrice de similarité

a valeurs positives (dont la mesure correspondante appartient aux exemples cités ci-dessus)
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entre m sous-ensembles quelconques (A;); de E et tel que, pour tout i € {1,2,...,m}, il existe
x; dans E avec x; € A; \ U j#iAj. Alors § est une matrice définie positive.

Les matrices de similarité ne sont pas toutes PSD. Et dans certains cas, il est peut €tre
difficile de prouver que des matrices de similarité particulieres sont PSD. Pour cela, on peut
donc vérifier si de telles matrices satisferont la propriété semi-définie 3-positive (3-PSD). On
dit qu’une matrice A est semi-définie 3-positive si chaque sous-matrice d’ordre 3 est semi-
définie positive. L’'une des avantages de considérer un coefficient de similarité s qui est 3-PSD,
est que cette condition permet d’obtenir une fonction définie a partir de s et remplissant
I’inégalité triangulaire, c’est-a-dire une pseudométrique (a savoir d; = arccos(s) et d, =
v/1— s [127]). Dans ce contexte, nous avons pu démontré que si s : P(E) x P(E) — R™ est
un coefficient de similarité tel que s(X,X) =k, VX € P(E), pourk > 0ets(X,Y)+s(Y,Z) <
s(X,Z)+k,VX,Y,Z € P(E), alors s est semi-définie 3-positive (voir Theorem 2.7.4).

Bien entendu, il est nécessaire de mettre en évidence la motivation pour ce travail, ce qui
est élaborée dans la derniere section du Chapitre 2. Nous allons mettre le point sur quelques

applications de la propriété semi-définie positive, dans ce qui suit.

1. Le moyen le plus simple de déduire un coefficient de dissimilarité d a partir d’une
mesure de similarité s comprise entre [0, 1] est d’utiliser d = 1 — s ou une fonction
décroissante de s. Cependant, une telle transformation n’est pas généralement une
distance (métrique). De nombreux coefficients de similarité deviendront une distance,
voire méme une distance euclidienne , s’ils sont transformés conformément a d =
v/1—s. En fait, Gower et Legendre [36] ont prouvé que si S est une matrice de
similarité semi-définie positive, la matrice de dissimilarité donnée par D = /1 — S est
euclidienne. De telles distances euclidiennes peuvent étre utilisées dans le clustering K-
means [49, 61]. Les algorithmes K-means peuvent cesser de converger avec 1’ utilisation

d’autres fonctions de distance .

2. La plupart des tiches d’apprentissage automatique reposent sur 1’utilisation d’une
distance métrique. Par exemple, le classifieur KNN [21] doit étre fourni par une
distance appropriée, a travers laquelle les points de données voisins peuvent étre
identifiés. La distance la plus utilisée pour comparer des données numériques est la
distance euclidienne, qui suppose que chaque caractéristique des points de données
est également importante et indépendante des autres. Cette hypothese peut ne pas
étre toujours satisfaite dans les applications réelles. Une distance de qualité doit
identifier les caractéristiques pertinentes parmi celles non pertinentes. Cependant,

on peut envisager une transformation linéaire plus générale des données, définie

par da(x,y) = \/(x—y)TA(x—y) ol x,y € R™ et A € R™ ™ est une matrice semi-
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définie positive. Par exemple, en statistiques, une méthode efficace pour déterminer
la similarité entre des ensembles de données est la distance de Mahalanobis. Cette
distance (d;-1), grace a I’inverse de la matrice de covariance o, prend en compte la
corrélation entre les variables. Elle peut étre généralisée en remplacant la matrice de
convariance par une autre, dont le role est d’intégrer les informations sur les ensembles
de I’étude [136]. Pour définir ce type de métriques (respectivement pseudométriques),
nous avons besoin de matrices PD (respectivement de matrices PSD). Les matrices de
similarité sont de trés bons candidats pour cela.

3. Outre les applications évidentes des matrices de similarit¢é PSD sous la forme de
matrices de covariance en apprentissage automatique, elles peuvent également étre
utilisées comme noyaux, dans les méthodes Kernel (dont le modele le plus connu est
Support vector machines, ou SVM) [20, 110]) largement utilisés pour les données
non structurées ainsi que pour les données structurées telles que les graphes. La
semi-définition positive des noyaux est essentielle pour garantir la convergence des

algorithmes, tels que les SVM.

Les résultats de cette premiere partie du manuscrit ont fait 1’objet d’une premiere publi-
cation dans [86].

Les racines p-ieme des matrices semi-définies positives dou-

blement stochastiques

Dans la deuxieme partie de la these, nous avons combiné la propriété semi-définie positive
et la propriété doublement stochastique dans une matrice A afin d’examiner la solution de
I’équation X” = A, ol p est un entier positif.

Le calcul des fonctions matricielles peut étre considéré comme 1’un des problemes les
plus intéressants de 1’analyse matricielle. En particulier, trouver les racines de certaines
classes de matrices, notemment des matrices non-négatives est largement étudié (voir par
exemple, [73, 74, 89, 125]). Récemment, la recherche des racines p-ieme d’une matrice
stochastique a été discutée dans [37, 38] étant donné que le calcul de telles racines a conduit a
de nombreuses applications dans le domaine des mathématiques financieres [46, 132]. En fait,
les matrices stochastiques apparaissent dans les modeles de chaine de Markov. Généralement,
une matrice de transition (stochastique) sur un intervalle de temps est nécessaire, mais seule
une matrice stochastique sur un intervalle de temps plus long est disponible. Une telle matrice
de transition peut €tre obtenue en calculant la p-ieme racineb de la matrice originale [17].

Nous avons étendu cette analyse pour les matrices PSD doublement stochastiques.
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En effet, pour chaque A = 0 et pour un entier positif p, il existe une unique matrice
X >~ 0 tel que X? = A [43]. La matrice X est appelée alors la p-ieme racine semi-définie
positive de A et est notée AP Alors que le calcul des racines p-ieme d’une matrice
stochastique implique beaucoup d’interrogations [41], comme dans quelles conditions une
matrice stochastique donnée a-t-elle une p-ieéme racine? combien y a-t-il de racines? et
comment elles peuvent étre calculées, notre probleme d’intérét ici est plus restrictif, puisque
nous nous intéressons a la racine unique semi-définie positive doublement stochastique d’une
matrice semi-définie positive doublement stochastique. De plus, une telle matrice est toujours
doublement quasi-stochastique [77], le probleme est donc réduit a étudier la non-négativité
de la matrice.

Dans un premier temps, deux théoremes (voir Theorem 3.2.3 et Theorem 3.2.4) carac-
térisant de nouvelles conditions suffisantes pour que la racine carrée d’une matrice n X n

semi-définie positive bistochastique soit non-négative, sont mises en place:

Théoréme 4. Soit A = (a;;)1<; j<, une matrice semi-définie positive doublement stochas-

tique avec au moins (n — 1) éléments diagonaux < ﬁ Alors, il existe une matrice double-

ment stochastique B = (b;;) telle que B> = A.

Ce théoreme est en fait un raffinement du théoréme par Marcus et Minc [67]. Un autre

théoreme donne une condition suffisante sur la trace de la matrice.

Théoréme 5. Soit A = (a;;) une matrice semi-définie positive doublement stochastique de
) 2 o ) )

taille n telle que Tr(A) < % Alors, il existe une matrice doublement stochastique B

telle que B> = A

Ensuite, si nous désignons par K, I’ensemble convexe de toutes les matrices de taille n

semi-définies positives doublement stochastiques et pour tout entier positif p, nous définissons
K7 = {A € K, : A'/Pest doublement stochastique},

nous pouvons commencé 1’étude géometrique de 1I’ensemble mis en question, qui est K, /P,
Dans ce contexte, on a démontré (voir Theorem 3.3.6) que pour tous entiers positifs p et
n,ona:

1. K, est convexe pour tout n > 1.
2. KZ]/ P est convexe.

3. Pourn > 3, K,}/p n’est pas convexe.
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4. K,} /P est étoilée par rapport a J,,, ou J, est la matrice de taille n dont tous les éléments
1

sont cgaux a ..

En plus, si p,n et m sont des entiers positifs tels que m < n. Alors I’ensemble défini par
KPBK/? = {X®Y oiX € Kp/P ety € K/P

est un sous-ensemble de K,]l /p , et il est étoilé par rapport a J,,, © J,—p,.

Le probleme de la caractérisation de racines bistochastiques des matrices appartenant
a K, est toujours ouvert. Nous n’avons pas encore donné une caractérisation complete de
toutes les matrices semi-définies positives doublement stochastiques et qui, étant donné p,
ont des racines d’ordre p bistochastiques. Cependant, nous avons identifié des classes de
matrices semi-définies positives bistochastiques appartenant a K,i /P, Le théoreme suivant

(Theorem 3.3.8) a été élaboré pour définir un ensemble convexe qui appartient a K,% /».

Théoreme 6. Soient X1 :=J,,, X0 = 1®J,_1,.... Xp1 =L, 2P, X, :=1,, et soit T

I’enveloppe convexe des matrices
{X1, Xa,..., Xu}

Alors T appartient a K,l /p pour tout entier positif p

Une autre famille d’éléments appartenant a K,i /P est définie en utilisant la théorie des
M-matrices. Une matrice A € R"*" est dite une M-matrice [30] si A = sI — B, ou B est une
matrice non-négative et s > p(B), le rayon spectral de B. De plus, lorsque s > p(B), alors A
est nécessairement inversible et son inverse est une matrice non-négative [7]. De plus, A!/?
est également une M-matrice pour tous les entiers positifs p par un résultat de Fiedler et
Schneider [30]. Un théoréme caractérisant une condition suffisante pour avoir une p-i¢éme

racine bistochastique est donné .

Théoreme 7. Si la matrice doublement stochastique semi-définie positive A est I’inverse
d’une M-matrice , alors I'unique p-ieéme racine de A, Al/p , est doublement stochastique pour

tout entier positif p.

En utilsant ce théoreme, on a défini une classe de matrices appartenant a K,i /P En fait,
en considérant un entier ¢ > 1, et une matrice doublement stochastique B de taille n, nous

avons montré que la famille de matrices définie par

1 1\ o1& fe—1 )\
Mc:—(ln—c B) — - (C B)
c c cle\ ¢
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est semi-définie positive doublement stochastique dont la p-ieme racine est doublement
stochastique pour tout entier positif p (voir Theorem 3.4.3).

Un outil puissant pour générer des éléments dans K,i/ P est I'utilisation des valeurs
propres des matrices bistochastiques. En effet, si A est une matrice symétrique doublement
stochastique, alors par le théoreme spectrale des matrices symétriques [43], il existe une
matrice orthogonale V dont la premiere colonne est e, = \/Lﬁ(l, ., DT et telle que A =
Vdiag(1,42,...,A,)VT. Par conséquent, si A est semi-définie positive, sa p-iéme racine semi-
définie positive est donnée par

AP = vdiag(1,A)7, ..., 0 "W,

Il en résulte qu’on pourrait examiner les conditions dont les valeurs propres {1,4,,...,4,}
devraient satisfaire pour que A et A /P soient doublement stochastiques.

En relation avec ce dernier constat, rappelons que la méthode principale pour résoudre le
probléme inverse des valeurs propres des matrices symétriques doublement stochastiques
(SDIEP) consiste a prendre une matrice diagonale réelle A = diag(1,4,,...,4,), avec —1 <
Ai < 1 pour i = 2,...,n, et une matrice orthogonale V dont la premiére colonne est e,
puis explorer les conditions pour lesquelles A = VAV est doublement stochastique. En
conclusion, un lien évident entre SDIEP et la construction des éléments dans K,l /p a été
établi.

Dans cette direction, on a considéré deux types de matrices symétriques doublement
stochastiques: des matrices symétriques doublement stochastiques qui peuvent tre obtenues
en utilisant le concept des matrices de Soules [122] et des matrices symétriques doublement
stochastiques obtenues a partir des autres matrices orthogonales qui ne sont pas des matrices
de Soules. En conséquence, nous avons montré que si S est une matrice n X n de Soules
dont la premiere colonne est e, et si 1 > A, > ... > A, > 0, alors la matrice définie par
A = Sdiag(1,2,,...,A,)ST est dans K,l/ P pour tout entier positif p. Cependant, pour la
seconde catégorie de matrices obtenues par une matrice orthogonale qui n’est pas une
matrices de Soules, il semble qu’il n’existe pas encore une méthode systématique pour
examiner I’appartenance de ces matrices a K,i/ P Un cas particulier est établi dans la
derniere section du chapitre 3 ou des propositions sont mises en place afin de donner une

caractérisation de K,l /p pour le cas particulier de n = 3 et p = 2 (voir Theorem 3.6.4).

1 1
ar = (——tz — El V —3t2+2> s

Soient

2
1

by =—a;— =,

3
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1 1
¢ = (——t2 +51V —312 +2) ,

2

et

pour tout ¢ € [—é, \/Té} . Etant donné 1 > A, > A3 > 0, on a définit Ey;, E»;, E3; et E4

comme suit.

1. Elt:{01,diag(1,/12,ﬂt3)01Tt,te]—\/Tg %5[/ eI +d, 1320},

oK

,0}/§+( W+ (— \//1_3>0}

2. Eyy= {OI,diag(l,lz,M)OlT,, te [—

3. Eyy = {OQtdiag(l,lz,M)Ogt, IE]\/TE,?} /%+at\/7t_2+bt\/k_32 0},

et,
4. Ey = {OZIdiag(lal%aB)ng re }07%] /_ ( )\/A_Z"f’( %) )L3 > O};

Alorson a
K12
/ =Ej UEy UE3 UEy,.

Une version généralisée fonctionnant pour tout entier naturel n permet de définir des
éléments dans K,}/ . En fait, il est impossible pour le moment de pouvoir caractériser
I’ensemble des matrices orthogonales qui diagonalisent I’ensemble des matrices symétriques

doublement stochastiques. Pourtant, en considérant la matrice orthogonale suivante:

B 1 1 1

NG \/n(n—l) \/(n—l)(n—Z) V6 V2

1 1 1 1 —1

Vi fan—1)  /(n—1)(n—2) Ve V2

1 1 1 _2

Vi \/n(n-1)  \/(n-1)(n-2) V6
Vo=1 : : : :

L 1 1 e 0 0

v \/n(n=1)  /(n—1)(n-2)

1 1 —(n—2) .0 0

a \/’Z(n_ﬁ) V/ (n=1)(n—2)

1L —(n=

qui est une matrice de Soules [122], on a pu construire deux familles de matrices orthogonales
Vi: and Vy; (voir Section 3.6). Par conséquent, on a caractérisé 4 sous-ensembles de K, 172

pour tout entier positif n (voir Theorem 3.6.7). Etantdonné 1 =4 > A, > ... > A, >0,0na
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défini les ensembles Fy;, F»;, F3; et Fy; suivants:

V6 \/6[
——,——| tel que

—F, = {Vhdiag(mz,...,A,,)Vﬂ,t € 3 ¢

n nn—1)

L \/A_Z‘f‘u-‘f‘ﬁ\/kn—Z‘f‘Cz\//ln—l +di/ A > 0},

6
— By = {Vl,diag(l,lz,...,QL,,)VI{,t € [—%,O] tel que

%+;\//1_2+...+

nn—1) 2 6

1 1 1
@5 M2+ (12 = ) ot + (12 ) Dy > o},

V6

b

»|5

—Fy = {Vgtdiag(l,lz,...,QLn)Vg,t €

] tel que

%l—l—ﬁ\/A_Q'F...-Fﬁ\/an‘i‘at\/lnl b/ D > 0},

et,

6
—Fy = {Vthiag(l,lz,..,QL,,)V;,I € ] 0,% tel que

Lo o

n nn—1)

@y V2t (- %) A1 + (—t2+é>\/77n > o}.

Alors Fy;, F, F3; et Fy, appartiennent K,{ / 2,
Les résultats de cette deuxieme partie du manuscrit ont fait I’objet d’une publication dans
[87].

Le probléeme inverse des valeurs propres des matrices symétriques

doublement stochastiques

Le lien établi entre le probleme visant a trouver des racines non-négatives des matrices PSD

doublement stochastiques et le probleme inverse des valeurs propres, nous a naturellement
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amenés a étudier le probleme inverse des valeurs propres des matrices symétriques double-
ment stochastiques, ou en anglais, SDIEP (symmetric doubly stochastic inverse eigenvalue
problem) dans la troisieme partie de la these.

Pour I’instant, le probleme SDIEP n’a été résolu que pour le cas des matrices d’ordre
n = 3 par Perfect et Mirsky [97] et reste ouvert pour les cas n > 4. Cependant, on peut
trouver dans la littérature de nombreux ouvrages sur le SDIEP, donnant plusieurs conditions
suffisantes (voir [58]) . Jusqu’a présent, il existe deux méthodes principales pour résoudre
le SDIEP. La premiére consiste a prendre une matrice diagonale A = diag(1,A,,...,4,) et
une matrice non singuliére P, puis 2 explorer les conditions pour lesquelles A = P~ ' AP est
doublement stochastique. La deuxieme méthode entre dans la catégorie de la construction de
nouvelles matrices doublement stochastiques a partir de matrices de tailles plus petites avec
des spectres connus. Notre travail dans la these concerne la deuxieme méthode on a utilisé
des constructions d’une matrice doublement stochastique a partir de deux blocs de matrices
doublement stochastiques (voir Theorem 4.2.2, Lemma 4.2.3 et Lemma 4.2.4). On se limite
ici a citer la construction suivante a titre d’exemple:

Soit A une matrice n x n doublement stochastique dont les valeurs propres sont données
par 1,4,,...,A, et soit B une matrice m X m doublement stochastique de valeurs propres
1, U, ...,y tel que m > n. Alors pour tout p > 0 et pout tout o« > 0 tels que p et o ne

s’annulent pas simultanément, la matrice (m+n) x (m+n) ,C definie par

1) Pour m > n,

C_ 1 aA penel,
o+ B\ peme,  (a+p0)B
est doublement stochastique dont les valeurs propres sont

o/mn— pn @, @, o/mn+p(m—n) o/mn+p(m—n)
a\/ +pm (X—}—jﬂ 2o OH—\/'W " o/mn+pm H2s e ay/mn+pm "

Dans un premier temps, nous avons considéré une condition suffisante donnée dans [1]
ol les auteurs ont utilisé une méthode récursive de construction de matrices doublement
stochastiques (similaire a la construction citée ci-dessus) et ont affirmé que leur nouvelle

condition suffisante établie permet d’améliorer la condition de Soules deja existante [122].

Théoreéme 8. [1] Soientn >5etl1 > A, > ....> A, > —1. Si

Mn—akra o 0 0
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pour n pair et

+
7 At D) 2+(%)[% § k+1 P @)

pour n impair, alors il existe une matrice de taille n symétrique doublement stochastique dont

les valeurs propres sont 1,45,A3, ..., A,.

Nous avons donné un contre-exemple au théoreme précédent dans le cas ou n est impair.
_2 _

37 3

du théoreme précédent . Donc, par [1], il existe une matrice A de taille 7 symétrique

En fait, la liste suivante de nombres réels o = (1,1, 1, — —1) satisfait les conditions
doublement stochastique dont le spectre est 0. D’autre part, o ne peut pas étre le spectre
d’une matrice non-négative car sinon, selon le théoreme de Perron-Frobenius (voir [77]), il
existerait une matrice non-négative réductible de spectre 0. Cependant, il n’y a aucun moyen
de diviser ¢ en 3 sous-ensembles, chaque sous-ensemble ayant une somme non-négative.
Cela conduit a une contradiction.

En outre, nous avons présenté une condition suffisante alternative (notée New condition
1) pour le cas impair en utilisant la méme méthode récursive pour construire des matrices
doublement stochastiques. Cependant, cette condition ne sera pas une amélioration de la
condition de Soules, mais plutot une condition indépendante comme nous 1’avons montré par
plusieurs observations et exemples. La condition alternative est la suivante (voir Theorem
4.3.5):

Théoréme 9. Soit n > 5 un entier impair et soit 1 > A, > .... > A, > —1. Si

i3]
1 n-1 124—%_[%]144- Vv Aeaa g
n nn+1) () (23] = (k+ Dk =7

alors il existe matrice symétrique doublement stochastique dont les valeurs propres sont

1,20, 23, o0 .

Par un procédé similaire, on a pu établir une nouvelle condition suffisante indépendante
de Soules (voir Theorem 4.3.9) pour SDIEP.

En fait, on peut appliquer le méme processus de facon récursive pour obtenir des condi-
tions suffisantes plus générales pour le SDIEP basées sur la division euclidienne de n par 2%
avec k entier positif. Afin de mettre en évidence ce processus récursif, nous avons élaboré la

conjecture suivante.
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Conjecture 1. Soient k et  deux entiers positifs tel que n > 2%, etsoit 1 > A, > ... > A, > —1.

Pour tout i = 1,...,k, on note ¢;_ le reste de la division euclidienne de n par 2~ ! et par

L) _ 27— ifo #0
’ 0 if oy =0.
Si
ntrl 2+ ntr) n+drl)
1 n— [%] 2 4 4 8
i et () (n) As+ () (n) Ag + ..
n n[—] ntry' n+24ry" n+ry nt+d4ry
2 2 2 3 3
2 7 4 8
k=1, (1)
n+r](<n) n+2k71+rl((”) |: +2 k+ k _
e 2 ’ Aok ok
e e >
. + n+r<") n+2k—l+r<n) ).2]{ + Z (i"— l)i - 07
k k i=1
2k—1 2k

Alors il existe une matrice n x n symétrique doublement stochastique dont les valeurs propres
sont 1,45, ..., A,.

En conclusion, pour kK = 1, on obtient la condition de Soules. Les cas k =2 et k =3,
correspondent aux deux conditions suffisantes qu’on a démontré dans notre chapitre. Quant
aux cas ou k > 3, il y a pas pour I'instant un moyen systématique de procéder de la sorte.
Cependant, la conjecture est illustrée par des exemples.

Le dernier chapitre du manuscrit est consacré a 1’étude de SDIEP pour un type particulier
de spectres, le spectre normalisé de Suleimanova. On appelle 6 = {1,4,,...,A4,} C Run
spectre normalisé de Suleimanova si 1 +A,+...+ A4, >0et0>A; > —1 pourtouti =2,...,n.
De cette définition, la question suivante découle:

"Si o est un spectre normalisé de Suleimanova ¢ est-il toujours réalisable par une matrice
doublement stochastique?"

Les auteurs de [52] ont prouvé que la réponse était oui pour tous les ordres de Hadamard
(c’est a dire pour N = 2%) et que, dans ce cas, la matrice réalisée était symétrique. Nous avons
procédé dans cette étude pour apporter des réponses pour n quelconque. Cela revient a étudier
ce qu’on a appelé NS-SDIEP (normalised Suleimanova symmetric doubly stochastic inverse
eigenvalue problem) qui est le probleme qui cherche les spectres normalisés de Suleimanova
qui sont réalisables par une matrice symétrique doublement stochastique.

Notre premier résultat montre que pour n entier impair, la réponse est négative. En

fait, si n est impair, alors A = (1,0,...,0,—1) ne peut pas étre le spectre d’une matrice
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n X n doublement stochastique. En plus, pour n = 3, nous avons défini une infinité de
spectres normalisés de Suleimanova non réalisables par des matrices symétriques doublement
stochastiques.

La région de R? qui contient tous les spectres de Suleimanova normalisés, ordonnés de

facon décroissante, réalisables par des matrices doublement stochastiques, est
Convcoque[(la _1/27 _1/2)7 (17070)7 (1707 _2/3)]7

tandis que la région de tous les spectres de Suleimanova normalisés, ordonnés par ordre

décroissant, qui ne sont pas réalisables par des matrices doublement stochastiques, est
COHVCOQMe[(l, _1/27 _1/2)7 (1707 _1)7 (1707 _2/3)] \ [(17 _1/27 _1/2)3 (1707 _2/3)]7

ou [(1,—1/2,—1/2),(1,0,—2/3)] est le segment de droite joignant (1,—1/2,—1/2) a
(1,0,—2/3) et Convcoque représente une coque convexe (voir Corollary 5.2.6).

D’une autre part, en utilisant aussi une méthode récursive, on a introduit trois séquences
de conditions suffisantes (M, S, et N;, pour p > 2 ) pour que le spectre normalisé de
Suleimanova soit le spectre de matrices doublement stochastiques. M), S), et N, sont données

respectivement dans les théoremes suivants (voir Theorem 5.3.3, Theorem 5.3.4 Et Theorem
5.3.5).

Théoreme 10. Soient p et n deux entiers positifs tel que p > 2 etn > 2P, et soit 0 > A, >

2= —1Si
SR S I (2 ot A1 +2,) >0
n l’l(l’l—l) 22 i 2p(2p+1) n—2°P+1 Y n—2P+42 T ... n—1 n) >0,

alors il existe une matrice n x n symétrique doublement stochastique dont les valeurs propres
sont 1,45, ..., A,.

Théoréme 11. Soient p and n deux entiers positifs tels que p > 2 et n > 2PF! et soit
0>>...>21>-1.Si

P_1

1 n—k—1 i )Ln,ZiJrz 1 2

__|._— - - J—
n nk+1) 2 =, (i+1)i 20 H

Ai—2iy2 >0

k

tient avec n = 2k + 2 pour n pair (avec la convention que 22 /l(’;fl’srf =0 pour n =2PT1), et
i=2p

n =2k 1 pour n impair, alors il existe une matrice n X n symétrique doublement stochastique

dont les valeurs propres sont 1,1, ..., A,.
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Théoreéme 12. Soient p et n deux entiers positifs tels que p > 2 et n > 2PF2 et soit 0 > Ay >

>N, > —1.Si
[1£2]
1 1 n_ i] ("% l)Ln74i+4 21
— M+ : An_aira >0,
S g L G 5 e
(221 A
tient pour n pair (avec la convention que '—Zzp (';%4&4 =0 pourn = 2P +2) et
n+3
1 n—1 u_[m] [T}_ll_él i, —1
- Ao+ 2 2+ i An—4iys >0,
e G K e

tient pour n impair, alors il existe une matrice n X n symétrique doublement stochastique
dont les valeurs propres sont 1,4, ..., A;.

Bien entendu, pour mettre en évidence I’utililité de ces conditions, il faut étudier les
relations d’inclusion entre les éléments de M),, S, et N, et les comparer aux conditions
préexistantes notemment la condition de Perfect et Mirsky, notée M, la condition de Soules,
noté S et la condition New condition 1 que nous avons €élaboré, noté N. Dans ce contexte, un
théoréme (voir Theorem 5.4.4) a été établi dont la conclusion est la suivante:

Pour un spectre normalisé de Suleimanova, on a:
« PMCMyCM3C..CM,CMpy C ...
*SC5HCSHC...CSCTSp1C...

* NCNyCN3 C...CNPCNP_H C...

Des exemples qui illustrent que ces conditions peuvent revétir une grande importance pour
NS-SDIEP, ont été mis en place. Il est utile de mentionner que la famille S, pour p > 2 est
une amélioration de la condition de Soules S pour les spectres normalisés de Suleimanova.

Finalement, on a démontré que ces dernicres ne sont pas nécessaires pour qu’un spectre
normalisé soit réalisable par une matrice symétrique doublement stochastique. Le spectre
c =1{1,0,0,— 6, %, —}—é} ne vérifie pas les conditions M, S, N et M2 mais il est le spectre
d’une matrice symétrique doublement stochastique car il vérifie le théoreme suivant que nous
avons établi.

Théoreme 13. Pour deux puissances non-négatives de 2, n et m avec m > n, soit ¢ =

{1,220, .cc; Apym} CR tel que 0 > Ay > ... > Ay > —1. Si il existe une permutation 7 de
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{2, ooy Ay } tels que (A, .oy Apim) = (U2 -ees Wim) €1

n
> ——,
m
muy +n
M3+ Hpg1 = — = ;
m-+n
et N
nuy —m
.un+2+-~-+!in+m2_ K )
m-+n

alors o est réalisable par une matrice (n+m) X (n+m) symétrique doublement stochastique

Les résultats de cette partie du manuscrit ont fait I’objet d’une publication dans [88].
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Title: A study concerning the positive semi-definite property for similarity matrices and for doubly stochastic
matrices with some applications.

Abstract: Matrix theory has shown its importance by its wide range of applications in different fields such as
statistics, machine learning, economics and signal processing. This thesis concerns three main axis related to two
fundamental objects of study in matrix theory and that arise naturally in many applications, that are positive semi-
definite matrices and doubly stochastic matrices. One concept which stems naturally from machine learning area
and is related to the positive semi-definite property, is the one of similarity matrices. This thesis will explore the
latter desirable structure for a list of similarity matrices found in the literature. Moreover, we present new results
concerning the strictly positive definite and the three positive semi-definite properties of particular similarity matrices.
A detailed discussion of the many applications of all these properties in various fields is also established. On the
other hand, an interesting research field in matrix analysis involves the study of roots of stochastic matrices which
is important in Markov chain models in finance and healthcare. We extend the analysis of this problem to positive
semi-definite doubly stochastic matrices. Our contributions include some geometrical properties of the set of all
positive semi-definite doubly stochastic matrices of order n with nonnegative pth roots for a given integer p, denoted

by K,i/ P We also present methods for finding elements in K,y " by making use of the theory of M-Matrices and
the symmetric doubly stochastic inverse eigenvalue problem (SDIEP), which is also of independent interest. In the
context of the SDIEP, we present some new results along this line. In particular, we propose to use a recursive method
on constructing doubly stochastic matrices from smaller size matrices with known spectra to obtain new independent
sufficient conditions for SDIEP. Finally, we focus our attention on the realizability by a symmetric doubly stochastic
matrix of normalised Suleimanova spectra which is a normalized variant of the spectra introduced by Suleimanova.

Keywords: Similarity matrices ; Positive semi-definite matrices ; Distance and dissimilarity ; Machine learning
applications ; Doubly stochastic matrices ; Matrix roots ; Inverse eigenvalue problem ; Normalised Suleimanova
spectra.

Titre: Une étude concernant la propriété semi-définie positive des matrices de similarité et des matrices double-
ment stochastiques avec certaines applications.

Résumé: La théorie des matrices s’est développée rapidement au cours des dernieres décennies en raison de son
large éventail d’applications et de ses nombreux liens avec différents domaines des mathématiques, de 1’économie,
de I’apprentissage automatique et du traitement du signal. Cette thése concerne trois axes principaux li€s a deux ob-
jets d’étude fondamentaux de la théorie des matrices et apparaissant naturellement dans de nombreuses applications,
a savoir les matrices semi-définies positives et les matrices doublement stochastiques. Un concept qui découle na-
turellement du domaine de 1’apprentissage automatique et qui est lié a la propriété semi-définie positive est celui des
matrices de similarité. Cette these explorera la propriété semi-définie positive pour une liste de matrices de similarité
trouvées dans la littérature. De plus, nous présentons de nouveaux résultats concernant les propriétés définie positive
et semi-définie trois-positive de certains matrices de similarité. Une discussion détaillée des nombreuses applications
de tous ces propriétés dans divers domaines est également établie. D’autre part, un probleme récent de 1’analyse
matricielle implique 1’étude des racines des matrices stochastiques, ce qui s’avere important dans les modeles de
chaine de Markov en finance. Nous étendons I’analyse de ce probleme aux matrices doublement stochastiques semi-
définies positives. Nous montrons d’abord certaines propriétés géométriques de 1’ensemble de toutes les matrices
semi-définies positives doublement stochastiques d’ordre n ayant la p-ieme racine doublement stochastique pour un
entier donné p, noté par K,i/ P En utilisant la théorie des M-matrices et le probléme inverse des valeurs propres des
matrices symétriques doublement stochastiques (SDIEP), nous présentons également quelques méthodes pour trouver
des éléments appartenent a K,l/ P Dans le contexte du SDIEP, nous présentons quelques nouveaux résultats le long de
cette ligne. En particulier, nous proposons d’utiliser une méthode récursive de construction de matrices doublement
stochastiques afin d’obtenir de nouvelles conditions suffisantes indépendantes pour SDIEP. Enfin, nous concentrons
notre attention sur les spectres normalisés de Suleimanova, qui constituent un cas particulier des spectres introduits
par Suleimanova.

Mots clés: Matrices de similarité ; Matrices semi-définies positives ; Distance et dissimilarité ; Apprentissage
automatique ; Matrices doublement stochastiques ; Racines d’une matrice ; Le probléme inverse des valeurs propres ;
Spectre de Suleimanova.
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