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Mr Thierry BERGER Professeur, Université de Limoges Rapporteur
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de ce mémoire et de faire partie du jury.

• Je remercie très chaleureusement Marc Joye pour l’honneur qu’il me fait en rapportant sur
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Chapter 1

Introduction

This document presents several results I obtained in cryptography, espe-
cially in the area of cryptanalysis of a few public key cryptosystems, mainly
systems that are related to the RSA cryptosystem. The techniques used
for the cryptanalytic attacks are based on adapting computational and al-
gorithmic tools from Number Theory. The attacks concern the following
cryptosystems and items

• The RSA cryptosystem.

• The CRT-RSA cryptosystem.

• The Prime Power RSA cryptosystem.

• The NTRU cryptosystem.

• The KMOV elliptic curve cryptosystem.

• The DGHV homomorphic cryptosystem.

• The Demytko elliptic curve cryptosystem.

• The RSA-type schemes based on singular cubic curves.

• The Dirichlet product for boolean functions.

I will describe the former systems and some of the most known cryptanalytic
attacks on them. I will then describe my research results, mainly from the
cryptanalytic point of view without proofs which can be found in the articles.

1
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Notice that some attacks we conducted on RSA or on its variants are briefly
presented in this work while they are included as appendices.

In my Ph.D. thesis, I studied many diophantine problems related to the
abc conjecture and elliptic curves. The main tools used there were originated
from algorithmic and computational number theory such as continued frac-
tions, diophantine approximations, lattice reduction, diophantine equations
and elliptic curves. Amazingly, the same techniques are used in cryptogra-
phy and especially in cryptanalysis. Indeed, the main hard problems behind
the security of most of the widely used public key cryptosystems are num-
ber theory problems, such as factorization, discrete logarithm and lattice
problems. Often, to attack a public key cryptosystem, the starting point
is to find a diophantine problem that can be transformed into a computa-
tional problem. In RSA, the diophantine problem is mainly the key equation
ed − k(p − 1)(q − 1) = 1. In the key exchange protocol of Diffie-Hellman
and in ElGamal cryptosystem, the diophantine problem is the discrete log-
arithm problem b ≡ gx (mod p). In the elliptic curve cryptography ECC,
the diophantine problem is the elliptic discrete logarithm problem Q = nP .
In NTRU, the diophantine problem is h = g

f (mod q) where h, f and g are

polynomials in the ring Zq[X]/(XN − 1).

The RSA cryptosystem [131], invented by Rivest, Shamir and Adleman
in 1977 is the most widely used asymmetric cryptographic scheme. The RSA
public-key cryptosystem is used for securing web traffic, e-mails, remote login
sessions, and electronic credit card payment systems. The underlying one-
way function in RSA is the integer factorization problem:
Multiplying two large primes is computationally easy, but factoring
the resulting product is very hard.
Another hard problem in RSA is the difficulty of solving the so-called RSA
problem:
Given an RSA public key (e,N) and a ciphertext c ≡ me (mod N),
compute the plaintext m.
Also, the security of RSA can be reduced to solving the key equation ed −
k(p−1)(q−1) = 1 where N = pq is the modulus, e is the public exponent and
d is the private exponent. The prominent attacks on small private exponents
in RSA are Wiener’s continued fraction based attack [147] and the lattice
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reduction attack of Boneh and Durfee [17].

There are many different ways to attack RSA by studying diophantine
equations related to the encrypted message or the key equation. Many RSA
variant equations, satisfied by the exponents, can potentially be used to factor
the RSA modulus. This remark was used by many researchers such as Blömer
and May [13]. In my research on RSA, I tried to exhibit variant key equations
satisfied by the exponents and tried to solve them by number theoretical tools
in order to factor the RSA modulus. For example, we studied in [104] the
situation where the RSA public exponent satisfies an equation of the form
eX − (p − u)(q − v)Y = 1,. We showed that if the parameters X, Y , u
and v are suitably small, then one can solve the equation and break the
system. The number of the exponents e satisfying the former equation is not
negligible since this number can be lower bounded byN

1
2−ε for a small positive

constant ε. The method used for solving the equation combines the continued
fraction algorithm and Coppersmith’s technique. In [107], we studied another
example of an RSA variant equation, namely eX − (N − (ap + bq))Y = Z

with sufficiently small parameters X, Y and Z where a and b are unknown
positive integers such that a

b is close to q
p . This equation is related to the

requirement in section 4.1.2 of the ANSI X9.31:1998 standard for public key
cryptography [1] to ovoid prime factors p and q in the RSA modulus N = pq

with a ratio close to a rational number a
b with small a and b.

In some instances of RSA, using a system of diophantine equations ease
the resolution and improve the bounds. For example, we considered in [111]
the situation with the presence of two or three public exponents ei, i = 1, 2, 3,
satisfying the equations eixi−(p−1)(q−1)yi = zi with small parameters. We
showed that the bounds are better than the situation where only one exponent
is available. Similarly, in the presence of several RSA instances Ni = piqi with
the same decryption exponent d, we have a system of diophantine equations
eid − ki(pi − 1)(qi − 1) = 1. In [114], we generalized this situation with the
equations eix − yi(pi − 1)(qi − 1) = zi and solved them by applying lattice
reduction techniques to the simultaneous diophantine approximations.

There is another kind of attacks on RSA, called partial key exposure
attacks, in which a fraction of the bits of a private parameter, such as p, q or
d is known. Such attacks have been intensively studied by many researchers
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(see e.g. [61, 71, 91]). Another example is when two RSA moduli N1 = p1q1

and N2 = p2q2 are such that the difference |p1 − p2| is sufficiently small [45].
In [115], we generalized this situation by considering the difference of multi-
ples of the primes in the form |ap1 − bp2|. When |ap1 − bp2| is suitably small
or in the form |ap1− bp2| = 2mx for some positive integer m, we showed that
one can apply the continued fraction algorithm and Coppersmith’s method
to factor both RSA moduli. Notice here that no known bits are involved.
Moreover, the method can be generalized to k RSA moduli Ni = piqi such
that the differences |aipi − aipj| are simultaneously small by applying lattice
reduction techniques [115].

In addition to the standard RSA cryptosystem where the modulus is
N = pq and the encryption of a message m is computed as me (mod N),
there are some variants that are of interest for efficiency reasons such as the
CRT-RSA cryptosystem and the prime power RSA cryptosystem.

In CRT-RSA, the public exponent e and the private CRT-exponents dp
and dq satisfy edp ≡ 1 (mod (p − 1)) and edq ≡ 1 (mod (q − 1)). One can
further reduce the decryption time by carefully choosing d so that both dp
and dq are small. Many known attacks such as [12] on CRT-RSA work by
combining the key equations of dp and dq. In [110], we showed that applying
the ideas of [59], one can reduce the situation by using solely one of the
equations, which leads to the factorization of the RSA modulus. This enables
us to attack more CRT-instances when only one of the decryption exponents
dp or dq is small.

In the prime power RSA variant, the modulus is in the formN = prq with
r ≥ 2. Such moduli are used in cryptography to speed up the decryption pro-
cess in RSA [145]. Similarly to the standard RSA, there are various attacks
that can be launched on the prime power RSA variant. In 2014, Sarkar [132]
presented an attack using the key equation ed − kpr−1(p − 1)(q − 1) = 1.
The attack uses Coppersmith’s technique and works for small values of d.
In [116], we showed that the key equation can be generalized by using the
more general equation ex−pr−1(p−1)(q−1)y = z in which the unknown pa-
rameters are suitably small. Then, using Coppersmith’s technique, especially
the ideas of [88], we showed that the prime power RSA modulus N = prq can
be factored in polynomial time.
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RSA and many cryptographic schemes are vulnerable to quantum com-
puters running Shor’s algorithm. In the contrary, the NTRU cryptosys-
tem [63], invented in 1996 by Hoffstein, Pipher, and Silverman, is still re-
sistant to quantum attacks. This makes NTRU one of the post quantum
candidates. In NTRU, the public key is a polynomial h ∈ Zq[X]/(XN − 1)
with h ≡ g

f (mod q,Xn − 1) where f and g are polynomials with small and
sparse coefficients. In 1998, Coppersmith and Shamir [35] transformed the
key equation into a linear one f ∗h ≡ g (mod q) and exhibit a lattice L with
dimension 2N . By studying the short vectors of the lattice, they showed
that one can retrieve the private keys f and g if some condition is satisfied.
In [118], we extended the ideas of Coppersmith and Shamir in the presence
of an instance of NTRU with two public keys, h ≡ g

f (mod q,Xn − 1) and

h′ ≡ G′

F ′ (mod q,Xn − 1) which can be rewritten as h′ ≡ g
f (mod q,Xn − 1)

where g ≡ G′∗f
F ′ (mod q,Xn − 1). This means that any couple of public keys

use the polynomial f . We combined the equations of h and h′ to build a
lattice L. By studying the properties and short vectors of this lattice, we
showed that the private polynomials f , g, g′ can be found by lattice reduc-
tion techniques under the condition that g and g′ share a certain amount of
their coefficients.

Homomorphic encryption is a new research topic in cryptography. It
aims to make cloud computing completely secure. Homomorphic encryption
allows complex computation on encrypted data without decrypting it. By
using properties of ideal lattices, Gentry [49] presented the first fully homo-
morphic scheme. Since then, several homomorphic schemes have been pro-
posed, such as DGHV [41]. In DGHV, m integers ci = pqi + ri, i = 1, · · · ,m,
are public while the integers p, qi and ri are secret. In [36, 41, 87], the secu-
rity of DGHV has been studied against several attacks. In [122], we showed
that the parameters in DGHV always satisfy a linear equation of the form
a2c2 + . . . + amcm = a1q1. Then, using a result of Herrmann and May [59]
on solving multivariate linear equations, we launched an attack on DGHV
to retrieve the secret parameters p, qi and ri simultaneously. This shows
once again that Coppersmith’s method can amazingly be applied in various
situations.

In 1985, Koblitz [75] and Miller [95] independently proposed the idea
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of using elliptic curves for cryptographic applications. The security of the
elliptic curve schemes are based on the difficulty of solving the elliptic discrete
logarithm. Since then, many cryptosystems based on the same problem have
been proposed, and some of them include the difficulty of factoring large
numbers.

In 1991, Koyama, Maurer, Okamoto and Vanstone proposed a scheme,
called KMOV [79] using an RSA modulus N = pq, an elliptic curve over
Z/NZ with a public key e satisfying the key equation ed − k(p + 1)(q +
1) = 1. In [119], we studied the more general equation ex − (p + 1)(q +
1)y = z and launched an attack on KMOV based on continued fractions and
Coppersmith’s technique to factor the modulus under some conditions on the
size of the unknown parameters.

In 1994, Demytko [39] developed a cryptosystem using an elliptic curve
EN(a, b) with equation y2 = x3 + ax + b over the ring Z/NZ where N = pq
is an RSA modulus. In this system, the public parameters are N , a, b and
e satisfying gcd

(
e,
(
p2 − t2p

) (
q2 − t2q

))
= 1. The decryption exponent is an

integer d satisfying an equation ed − k (p+ 1− tp) (q + 1− tq) = 1 where
tp = p + 1 − #Ep(a, b) and tq = q + 1 − #Eq(a, b). In [121], we considered
a more general equation, namely eu− (p− s)(q − r)v = w, and used lattice
reduction methods to solve the equation which leads to the factorization of
the modulus.

Similarly to KMOV and Demytko’s scheme, a few cryptosystems have
been proposed using an RSA modulus N = pq. The following systems are
more or less variants of RSA and use a public exponent e satisfying the key
equation ed− k

(
p2 − 1

) (
q2 − 1

)
= 1,

• LUC : proposed in 1993 by Smith and Lennon [143]. LUC is based on a
Lucas functions,

• Castagnos cryptosystem : proposed in 2007 by Castagnos [29]. This
system is directly related to LUC and RSA,

• RSA with Gaussian primes : proposed in 2002 by Elkamchouchi, Elshenawy
and Shaban [43]. This scheme is the RSA variant for Gaussian primes,

• RSA type schemes based on singular cubic curves : proposed in 1995 by
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Kuwakado, Koyama, and Tsuruoka [81]. The scheme uses the singular
cubic curve EN(b) with equation y2 = x3 + bx2 mod N .

In [25], we launched an attack that factors the modulus N = pq in the former
schemes by using the generalized equation ex −

(
p2 − 1

) (
q2 − 1

)
y = z and

by combining the continued fraction algorithm and Coppersmith’s method.

The Boolean functions play an important role in cryptography, espe-
cially in symmetric encryption algorithms, pseudorandom number genera-
tors and hash functions. Consequently, a lot of attention has been given to
constructing Boolean functions satisfying good cryptographic criteria such as
high algebraic degree, balancedness and high nonlinearity [28]. A Boolean
function with n variables is a map from the space GF (2)n = {0, 1}n into
GF (2) = {0, 1}. It can be uniquely represented by a truth table or by
an algebraic normal form (ANF). The theory of Boolean function is full
of remarkable properties that can be used to construct Boolean functions
with good cryptographic criteria [136]. In this direction, we introduced
the notion of Dirichlet product for Boolean functions in [120]. For two
boolean functions f and g, we defined the concept of Dirichlet product
by setting (f ∗ g)(x) =

∑
u�x f(u)g(x− u) for all x ∈ GF (2)n where, for

u = (u1, . . . , un) ∈ GF (2)n and x = (x1, . . . , xn) ∈ GF (2)n, u � x if and only
if for each i ∈ {1, . . . , n}, ui ≤ xi. Many properties of Boolean functions can
be then reformulated in terms of the Dirichlet product.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Cryptanalysis of RSA

2.1 Introduction

The RSA cryptosystem is the first and most widely used cryptosystem. It
was developed by Rivest, Shamir and Adleman in 1978 [131]. RSA is used
in many industrial systems such as web servers, online payment systems and
other systems requiring privacy and authenticity.

The main parameters of the RSA cryptosystem are p,q, N , φ(N) and d
where

• p and q are two private large prime numbers of the same bit-size,

• N = pq is the public modulus,

• φ(N) = (p− 1)(q − 1) is the private Euler totient function,

• e is a public positive integer such that gcd(e, φ(N)) = 1,

• d ≡ e−1 (mod φ(N)) is the private exponent.

In textbook RSA, to encrypt a message m ∈ {2, N − 1} with the public key
(N, e), one computes c ≡ me (mod N) and to decrypt c with the private key
(N, d) one simply computes m ≡ cd (mod N). The complete way to encrypt
and decrypt with RSA needs different technique as recommended in RSA
OAEP [103]

9
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Since its invention, RSA has been analyzed for vulnerabilities by apply-
ing many kinds of attacks such as factorization, algebraic attacks and side
channel attacks. Algebraic attacks are mainly based on diophantine approx-
imations that could be solved using continued fractions or lattice reduction.

In 1990, Wiener came up with an attack on RSA based on the continued
fraction algorithm. The starting point of the attack is the RSA key equation
ed− kφ(N) = 1 which leads to

k

d
≈ e

φ(N)
.

When the prime factors p and q are of the same bit-size, φ(N) ≈ N and

k

d
≈ e

N
.

Using this approximation, Wiener showed that if d is small enough, namely
d < 1

3N
1
4 , then k

d can be found among the convergents of the continued
fraction expansion of e

N which leads to the factorization of N .

In 1996, Coppersmith [34] described two rigorous methods to find small
modular roots of univariate polynomials and small integer roots of bivariate
polynomials. As an application, Coppersmith showed how to factor an RSA
modulus N = pq if half of the bits of p are known. Coppersmith’s method
is based on lattice reduction techniques and has many application in crypt-
analysis, especially for attacking the RSA cryptosystem [15,61,71,91,101].

In this chapter, we give an overview of the techniques used for the crypt-
analysis of RSA using the key equation or variants of it. This includes the
continued fraction algorithm, lattice reduction and Coppersmith’s technique.
Then we describe some of our attacks on specific variants of the key equation
which lead to the factorization of the underlying RSA moduli.

2.2 Continued Fractions

The theory of diophantine approximations, named after Diophantus of Alexan-
dria, deals with the approximation of real numbers by rational numbers. This
can be achieved by continued fractions. Continued fractions have many prop-
erties and applications in Number Theory and cryptographic problems. They
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are used to find good diophantine approximations to rational and irrational
numbers, to solve diophantine equations and to build attacks on some in-
stances of RSA. In this section, we examine the basic properties of continued
fractions.

Definition 2.2.1 (Continued Fraction Expansion). A continued fraction is
an expression of the form

a0 +
1

a1 +
1

. . . +
1

am + .. .

= [a0, a1, . . . , am, . . .],

where a0 is an integer and for n ≥ 1, an is a positive integer. The integers an
are called the partial quotients of the continued fraction.

It is clear that every finite continued fraction defines a rational number.
Conversely, every real number x 6= 0 can be expanded as a finite or infinite
continued fraction by the continued fraction algorithm as follows.

Let bxc denote the greatest integer less than or equal to x. Let x0 = x

and a0 = bx0c. Then, for i ≥ 0, define

xi+1 =
1

xi − ai
, ai+1 = bxi+1c.

The procedure terminates only if ai = xi for some i ≥ 0, that is if x is a
rational number.

The continued fraction of a rational number x = a
b with gcd(a, b) = 1

can be computed by the Euclidean Algorithm in time O(log b). Set r0 = a
and r1 = b. For i ≥ 0, divide ri by ri+1:

ri = airi+1 + ri+2, 0 ≤ ri+2 < ri+1.

This process stops when rm+2 = 0 for some m ≥ 0.

In 1990, Wiener [147] proposed an attack on RSA with modulus N and
small private exponent d. The attack is based on the convergents of the
continued fraction expansion of e

N .

Definition 2.2.2 (Convergent). For 0 ≤ n ≤ m, the nth convergent of the
continued fraction [a0, a1, · · · , am] is [a0, a1, · · · , an].
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For each n ≥ 0, we define

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2.

It is well known that the nth convergent of the continued fraction expansion
satisfies [a0, a1, · · · , an] = pn

qn
. More generally, there are various results satis-

fied by the convergents of a continued fraction. We need only the following
result on diophantine approximations (for more general information see [57]
and [32]).

Theorem 2.2.3. Let x be a real positive number. If a and b are positive
integers such that gcd(a, b) = 1 and∣∣∣x− a

b

∣∣∣ < 1

2b2
,

then a
b is one of the convergents of the continued fraction expansion of x.

2.3 Lattice Reduction

The most powerful attacks on RSA are based on techniques that use lattice
basis reduction algorithms, such as the LLL algorithm. Invented by Lenstra,
Lenstra and Lovász [86] in 1982, LLL is a polynomial time algorithm for lat-
tice basis reduction with many applications in cryptography [101]. A typical
example of the powers of the LLL algorithm is the following problem.

Small roots of a modular polynomial problem: Given a composite N
with unknown factorization and a polynomial f(x) of degree d, find all small
solutions x0 to the polynomial equation f(x) ≡ 0 (mod N).

In his seminal work, Coppersmith [34] solved this problem in 1996 for
solutions x0 satisfying |x0| < N

1
d using the LLL algorithm.

In this section, we give the mathematical background on lattices and the
LLL algorithm for basis reduction. We start by giving a formal definition of
a lattice.
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Definition 2.3.1 (Lattice). Let n ≤ m be two positive integers and b1, · · · , bn ∈
Rm be n linearly independent vectors. A lattice L spanned by {b1, · · · , bn}
is the set of all integer linear combinations of b1, · · · , bn, that is

L =

{
n∑
i=1

xibi | xi ∈ Z

}
.

The set 〈b1 . . . , bn〉 is called a lattice basis for L. The lattice dimension is
dim(L) = n.

In general, a basis for L is any set of independent vectors that generates
L. Any two bases for a lattice L are related by a matrix having integer
coefficients and determinant equal to ±1. Hence, all the bases have the
same Gramian determinant det1≤i,j≤n 〈bi, bj〉 where 〈bi, bj〉 denotes the scalar
product of vectors bi, bj. The determinant of the lattice is then

det(L) =

(
det

1≤i,j≤n
〈bi, bj〉

) 1
2

.

Let v =
∑n

i=1 xibi be a vector of L. We define the Euclidean norm of v as

‖v‖ =

(
n∑
i=1

x2
i

) 1
2

.

Given a basis 〈b1 . . . , bn〉 of the lattice L, the Gram-Schmidt process gives an
orthogonal set 〈b∗1 . . . , b∗n〉. The determinant of the lattice is then det(L) =∏n

i=1 ‖b∗i‖. The Gram-Schmidt procedure starts with b∗1 = b1, and then for
i ≥ 2,

i ≥ 2, b∗i = bi −
i−1∑
j=1

µi,jb
∗
j , where µi,j =

〈bi, b∗j〉
〈b∗j , b∗j〉

for 1 ≤ j < i.

Note that 〈b∗1 . . . , b∗n〉 is not a basis of the lattice L. Since every nontrivial
lattice has infinitely many bases, some bases are better than others. The most
important quality measure is the length of the basis vectors. For arbitrary
lattices, the problem of computing a shortest vector is known to be NP-hard
under randomized reductions [3]. However, in many applications, the LLL
algorithm computes in polynomial time a reduced basis with nice properties.
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Definition 2.3.2 (LLL Reduction). Let B = 〈b1, . . . , bn〉 be a basis for a lat-
tice L and let B∗ = 〈b∗1, . . . , b∗n〉 be the associated Gram-Schmidt orthogonal
basis. Let

µi,j =
〈bi, b∗j〉
〈b∗j , b∗j〉

for 1 ≤ j < i.

The basis B is said to be LLL reduced if it satisfies the following two condi-
tions:

|µi,j| ≤
1

2
, for 1 ≤ j < i ≤ n,

3

4
‖b∗i−1‖2 ≤ ‖b∗i + µi,i−1b

∗
i−1‖2 for 1 < i ≤ n.

Below we give useful inequalities satisfied by an LLL reduced basis de-
rived from the LLL reduction definition (for a proof see e.g. [86], [32], [91]).

Theorem 2.3.3. Let L be a lattice of dimension n. Let B = 〈b1, . . . , bn〉 be an
LLL reduced basis and let B∗ = {b∗1, . . . , b∗n} be the associated Gram-Schmidt
orthogonal basis. Then

‖b1‖ ≤ ‖b2‖ ≤ . . . ≤ ‖bi‖ ≤ 2
n(n−i)

4(n+1−i) (det(L))
1

n+1−i for 1 ≤ i ≤ n.

2.4 Coppersmith’s Method

In 1988, Hastad [55] and Toffin, Girault and Vallée [51] used lattice reduction
techniques to find very small solutions of modular polynomial equations of the
form f(x) ≡ 0 (mod N) where f(x) ∈ Z[x]. They showed that this technique
can be applied for cryptanalytic purposes. In 1996, Coppersmith [34] further
improved the former bounds and developed two rigorous methods for finding
small solutions of polynomial equations, the first for the univariate modular
case and the second one for the bivariate case.

For a polynomial f(x) ∈ Z[x] of degree δ and a known positive integer
N , the univariate modular case is the equation f(x) ≡ 0 (mod N).
The bivariate case is the equation g(x, y) = 0 over the integers where g(x, y) =∑

i,j gi,jx
iyj ∈ Z[x, y].
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Using lattice reduction techniques such as the LLL algorithm [86], Cop-
persmith showed that one can find all solutions x0 of the modular equa-
tion f(x) ≡ 0 (mod N) with |x0| ≤ N δ and all solutions (x0, y0) of the
equation g(x, y) = 0 with |x0| < X and |y0| < Y with XY < W

2
3δ where

W = maxi,j |gi,j|X iY j.

Since 1996, many cryptanalytic applications have been based on Copper-
smith’s method, for example the factorization of N = pq knowing a fraction
of the most significant bits on each factor. Another well-known application
of Coppersmith’s method is the cryptanalysis of RSA with small private key.
In 1999, based on the seminal work of Coppersmith, Boneh and Durfee [17]
presented an attack on RSA which recovers the factors p and q of an RSA
modulus N = pq if d < N 0.292. This result improves the well known bound
d < 1

3N
1
4 of Wiener [147]. To simplify Coppersmith’s methods, Howgrave-

Graham [65] and Coron [36] revisited the problem of finding small solutions
of polynomial equations. Later, the ideas of Coppersmith have been gen-
eralized to multivariate polynomials. The generalizations use the Euclidean
norm of a multivariate polynomial and Howgrave-Graham’s Theorem.

Definition 2.4.1. Let f(x1, . . . , xn) =
∑

i1,...,in
ai1,...,inx

i1 · · ·xin be a polyno-
mial and X1, . . . , Xn be n real numbers. The Euclidean norm of the polyno-
mial f(X1x1, . . . , Xnxn) is defined as

‖f(X1x1, . . . , Xnxn)‖ =

( ∑
i1,...,in

(
ai1,...,inX

i1
1 · · ·X in

n

)2

) 1
2

.

Theorem 2.4.2 (Howgrave-Graham). Let h(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a
polynomial with at most ω monomials. Suppose that

h(x
(0)
1 , . . . , x(0)

n ) ≡ 0 (mod B),

|x(0)
1 | < X1, . . . , |x(0)

n | < Xn,

‖h(X1x1, . . . , Xnxn)‖ <
B√
ω
.

Then h(x
(0)
1 , . . . , x

(0)
n ) = 0 holds over the integers.
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2.5 Attacks on RSA Using a Variant of the Key Equation

This section concerns the cryptanalysis of RSA using a variant of the key
equation. Many attacks on RSA exploit the RSA key equation

ed− k(p− 1)(q − 1) = 1.

Indeed, the starting point in Wiener’s attack [147] is based on the RSA key
equation and uses the approximation (p − 1)(q − 1) ≈ N . Similarly, in the
attack of Boneh and Durfee [17], the RSA key equation is transformed into
a modular polynomial equation of the form

x

(
N + 1

2
− y
)

= 1 (mod e).

While Wiener’s attack is based on the continued fraction algorithm, the at-
tack of Boneh and Durfee is entirely based on Coppersmith’s method.

Some attacks on RSA combine both techniques. Blömer and May [13]
presented an attack on RSA using the RSA variant equation ex+ y = k(p−
1)(q − 1) and combined the continued fraction algorithm and Coppersmith’s
method to solve it when x < 1

3N
1/4 and |y| = O

(
N−3/4ex

)
.

Such variant of the key equation can be extended in various ways. In [107],
we considered a typical example where the set of the public exponents e sat-
isfy the equation

eX − (N − (ap+ bq))Y = Z, (2.1)

with small parameters X, Y and Z where a
b is an unknown convergent of

q
p with a ≥ 1. Here, p and q are of the same bit size and are ordered such
that q < p < 2q. This situation is related to the requirement of the ANSI
X9.31:1998 standard for public key cryptography [1] where it is advised to
ovoid prime numbers p and q for RSA with a ratio close to a rational number
a
b with small a and b.

The study of equation (2.1) uses two techniques. First, we apply the
continued fraction algorithm to determine Y

X among the convergents of the
continued fraction of e

N . Second, we compute p and q by applying Copper-
smith’s method.
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First we present the result based on continued fractions.

Lemma 2.5.1. [107] Let N = pq be an RSA modulus with q < p < 2q. Let
a, b be coprime positive integers such that ap + bq = N

1
2+α with α < 1

2. Let
e be a public exponent satisfying the equation eX − (N − (ap + bq))Y = Z
with gcd(X, Y ) = 1. If |Z| < N

1
2+αX and 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 , then Y

X is a
convergent of e

N .

The proof of Lemma 2.5.1 is entirely based on Legendre’s Theorem 2.2.3.
Once X and Y are found, we set M = N − eX

Y and then we compute

|ap+ bq −M | = |Z|
Y
.

To study the equation (2.1), we will consider three cases according to the size
of the difference |ap− bq|:

1. case 1 : |ap − bq| is small, i.e. |ap − bq| < (abN)
1
4 , which corresponds

approximately to b > 2
1
2N

1
6

2. case 2 : |ap − bq| is medium, i.e. (abN)
1
4 < |ap − bq| < aN

1
4 , which

corresponds approximately to 2
1
2N

1
6 > b > 2

1
4N

1
8 ,

3. case 3 : |ap − bq| is large, i.e. |ap − bq| > aN
1
4 , which corresponds

approximately to b < 2
1
4N

1
8 .

In the three cases, we will use the following results. The first result shows
that one can find ab if an approximation of ap+bq is known. Here the integer
closest to x is denoted [x].

Lemma 2.5.2. [107] Let N = pq be an RSA modulus with q < p < 2q
and a

b a convergent of the continued fraction expansion of q
p with a ≥ 1. Let

ap+ bq = N
1
2+α with α < 1

2. If |ap+ bq −M | < 1
2N

1
2−α, then

ab =

[
M 2

4N

]
.

The second result is related to the seminal work of Coppersmith [34].

Theorem 2.5.3. Let n = pq be the product of two unknown integers such
that q < p < 2q. Given an approximation of p with additive error at most
n

1
4 , one can find p and q in polynomial time.
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2.5.1 An Attack for Small Difference |ap− bq|

The small difference corresponds to case 1.

Theorem 2.5.4. [107] Let N = pq be an RSA modulus with unknown factors
p, q such that q < p < 2q. Let a

b be an unknown convergent of the continued

fraction expansion of q
p with a ≥ 1 and |ap− bq| < (abN)

1
4 . Let e be a public

exponent satisfying an equation eX−(N−ap−bq)Y = Z with gcd(X, Y ) = 1.
Set ap + bq = N

1
2+α with 0 < α < 1

2. If 1 ≤ Y ≤ X < 1
2N

1
4−

α
2 and

|Z| < inf
(

(abN)
1
4 , 1

2N
1
2−α
)
Y , then N can be factored in polynomial time.

To prove this result, one first use the continued fraction algorithm to
find Y

X among the convergents of e
N . If we set M = N − eX

Y , then one find

that M is an approximation of ap + bq with error term less than (abN)
1
4 .

Using Lemma 2.5.2, this allows us to find the exact value of the product ab
as

ab =

[
M 2

4N

]
.

If we assume that

|Z| < inf

(
(abN)

1
4 ,

1

2
N

1
2−α
)
Y,

then one finds that the term M
2 is an approximation of the factor ap of

n = abN with additive error at most n
1
4 . Hence, using Theorem 2.5.3 with n

and M
2 , we find ap, and since a < q, we get p = gcd(N, ap).

2.5.2 An Attack for Medium Difference |ap− bq|

The case with medium difference |ap − bq| corresponds to the case when
2

1
2N

1
6 > b > 2

1
4N

1
8 . The method here uses the Elliptic Curve Method

(ECM) [84] which can find factors of about 52-digits. Assuming the effi-
ciency of ECM, every step in this attack can be done in polynomial time and
the number of convergents is bounded by O(logN).

Theorem 2.5.5. [107] Let N = pq be an RSA modulus with unknown factors
p, q such that q < p < 2q. Let a

b be an unknown convergent of the continued

fraction expansion of q
p such that a ≥ 1, (abN)

1
4 < |ap − bq| < aN

1
4 and
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b ≤ 1052. Let e be a public exponent satisfying an equation eX − (N − ap−
bq)Y = Z with gcd(X, Y ) = 1. Set M = N − eX

Y and ap + bq = N
1
2+α with

0 < α < 1
2. If 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 and |Z| < min

(
aN

1
4 , 1

2N
1
2−α
)
Y , then,

under ECM, N can be factored efficiently.

First, using the conditions of the theorem, one can apply Lemma 2.5.1
to find Y

X among the convergents of e
N . Using X and Y , we compute M =

N − eX
Y , and, using Lemma 2.5.2, we find ab =

[
M2

4N

]
. If moreover, b ≤ 1052,

then, applying the Elliptic Curve Method with
[
M2

4N

]
, we can efficiently find

a and b. Then, using the assumption |ap− bq| < aN
1
4 , we find that M

2a is an

approximation of p with error term at most N
1
4 . Then, using Theorem 2.5.3,

one can find p and then q.

2.5.3 An Attack for Large Difference |ap− bq|

In the case 3, we assume that the difference |ap − bq| is large, which corre-
sponds to b < 2

1
4N

1
8 .

Theorem 2.5.6. [107] Let N = pq be an RSA modulus with unknown factors
p, q such that q < p < 2q. Let a

b be an unknown convergent of the continued
fraction expansion of q

p such that a ≥ 1 and b ≤ 1052. Let e be a public
exponent satisfying an equation eX−(N−(ap+bq))Y = Z with gcd(X, Y ) =
1. Let M = N − eX

Y . Set D =
√
|M 2 − 4abN | and ap + bq = N

1
2+α with

0 < α < 1
2. If 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 and |Z| < 1

3a|ap − bq|N
− 1

4−αY then,
under ECM, N can be factored efficiently.

Similarly to case 1 and case 2, we find eX
Y among the convergents of e

N ,
and by setting M = N − eX

Y , we find that M is an approximation ap + bq

with an error term of at most aN
1
4 and that ab =

[
M2

4N

]
. Then, if b ≤ 1052,

then applying the Elliptic Curve Method with
[
M2

4N

]
, we can find a and b.

Next, let D =
√
|M 2 − 4abN |. Then ±D is an approximation of ap − bq

with an error term of at most aN
1
4 . Combining the approximations of ap+bq

and ap − bq, we find the approximation M±D
2a is an approximation of p with
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additive error at most N
1
4 . We can then apply Theorem 2.5.3 to the values

M±D
2a . The correct term will lead to the factorization of N .

For a given RSA modulus N = pq, the number of exponents e satisfying
the equation eX − (N − (ap + bq))Y = Z with suitably small parameters
and e < φ(N) = (p − 1)(q − 1) is at least N

3
4−ε where ε is arbitrarily small

for suitably large N . This is much larger than the number (≈ N
1
4−ε) of

exponents that are weak for Wiener’s attack [147]. It is also much larger
than the number (≈ N 0.292−ε) of exponents that are weak for the attack of
Boneh and Durfee [17].

We note that the attack described in this section answers positively the
requirement of the ANSI X9.31:1998 standard for public key cryptography [1]
where it is advised to choose the prime numbers p and q for RSA with a ratio
not too close to a rational number a

b with small a and b.

2.6 An Attack on RSA Unbalanced Moduli

In PKC 2009, May and Ritzenhofen [94] presented a method for factoring two
RSA moduli N1 = p1q1 and N2 = p2q2 of the same bit-size such that q1 and q2

are α-bit primes and p1 and p2 share at least t least significant bits (LSBs).
The method is a lattice based method that allows to find the factorization of
N1 and N2 when t ≥ 2α+3. The method can be heuristically generalized to a
lattice based method to factor k RSA moduli N1 = p1q1, . . . , Nk = pkqk when
the pi’s share t ≥ k

k−1α many LSBs. The method of May and Ritzenhofen was
reconsidered in [135] by Sarkar and Maitra. Their method works when N1 =
p1q1 and N2 = p2q2 are such that p1 and p2 share their least significant bits
(LSBs) or most significant bits (MSBs) as well as a contiguous portion of bits
at the middle. In PKC 2010, Faugère, Marinier and Renault [45] presented a
new and rigorous lattice-based method that addresses the implicit factoring
problem when p1 and p2 share t ≥ 2α + 3 MSBs where the prime numbers
qi are α-bit primes. The method heuristically generalizes to k RSA moduli
N1 = p1q1, . . . , Nk = pkqk when the prime numbers pi share t ≥ k

k−1α + 6 of
MSBs. For two RSA moduli N1 = p1q1 and N2 = p2q2 of the same bit size,
Kurosawa and Ueda [82] presented a lattice-based method to factor the two
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moduli when p1 and p2 share t LSBs with t ≥ 2α + 1 where q1 ≈ q2 ≈ 2α.

In the rest of this section, we show that it is possible to factor k RSA
moduli N1 = p1q1, . . . , Nk = pkqk when some unknown multiples aipi of
the prime factors pi share an amount of MSBs or of LSBs. This method
generalizes all the former attacks. This is a brief description of the the attack
presented in [117].

2.6.1 Implicit factorization of two RSA Moduli

We study here the problem of factoring two RSA moduli N1 = p1q1 and
N2 = p2q2 where some unknown multiples a1p1 and a2p2 coincide on the t
most significant bits (MSBs), that is when |a2p2 − a1p1| is sufficiently small.

Theorem 2.6.1. [117] Let N1 = p1q1, N2 = p2q2 be two RSA moduli. If there
exist two integers a1, a2 such that a1 < p2, a2 < p1 and |a1p1−a2p2| < p1

2a2q1q2
,

then one can factor N1 and N2 in polynomial time.

The proof is based in the continued fraction algorithm. Indeed, if a1 <

p2, a2 < p1 and |a1p1 − a2p2| < p1
2a2q1q2

, then we have∣∣∣∣N2

N1
− a1q2

a2q1

∣∣∣∣ =
|a1p1 − a2p2|q2

a2p1q1
<

p1

2a2q1q2
× q2

a2p1q1
=

1

2(a2q1)2
.

This implies by Theorem 2.2.3 that a1q2
a2q1

, in lowest term is one of the con-

vergents in the continued fraction expansion of N2

N1
. If we assume a1 < p2,

a2 < p1, then using a1q2
a2q1

, we get q1 = gcd(N1, a2q1) and therefore p1 = N1

q1
.

Similarly, we get q2 = gcd(N2, a1q2) and p2 = N2

q2
.

Notice that the result of Theorem 2.6.1 is valid even when the RSA
moduli are not of the same size. Comparatively, the attacks presented by
Sarkar and Maitra in [135] and Faugère et al. in [45] are valid only if N1 ≈ N2

and q1 ≈ q2.

As an application of Theorem 2.6.1 to factor two unbalanced RSA moduli
of the same size, we have the following result

Corollary 2.6.2. Let N1 = p1q1, N2 = p2q2 be two unbalanced RSA moduli
of the same bit-size n. Suppose that qi ≈ 2α, pi ≈ 2n−α for i = 1, 2. Let



22 CHAPTER 2. CRYPTANALYSIS OF RSA

a1, a2 be two integers such that ai ≤ 2β, i = 1, 2. If a1p1 and a2p2 share t
most significant bits with t ≥ 2α+ 2β + 1, then one can factor N1 and N2 in
polynomial time.

Notice that, with β = 0 in Corollary 2.6.2, that is, if a1 = a2 = 1, a
sufficient condition to factor the two RSA moduli is t ≥ 2α+1 which slightly
improves the bound t ≥ 2α + 3 found by Faugère et al. in [45]. This shows
that the bound found by Faugère et al. with lattice reduction techniques can
be achieved using the continued fraction algorithm instead.

2.6.2 Implicit factorization of k RSA Moduli

Let Ni = piqi, i = 1 . . . , k, be k ≥ 3 RSA moduli of the same bit size. We
show that if k multiples aipi, i = 1 . . . , k share t most significant bits, then
one can factor the k moduli. The method here is based on lattice reduction,
especially the LLL algorithm [86].

Theorem 2.6.3. [117] Let Ni = piqi, i = 1 . . . , k, be k ≥ 3 n-bit RSA moduli
where the qi’s are α-bit primes. Suppose that there exist k integers a1, . . . , ak
with ai ≤ 2β, i = 1, . . . , k, such that the aipi’s share all t most significant
bits. If

t >
k

k − 1
α +

k2

k − 1
β +

k

2(k − 1)
(1 + log2(πe)) ,

then, under the Gaussian Heuristic assumption, one can factor the k RSA
moduli N1, · · · , Nk in polynomial time.

The idea to prove Theorem 2.6.3 is to transform the k differences xi =
aipi − a1p1 into k simultaneous equations

aq1Ni −
aa1qi
ai

N1 =
aq1qixi
ai

,

where a = a1a2 · · · ak. To solve the equations, we apply the LLL algorithm
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to the lattice L spanned by the rows of the matrix

M =



C N2 N3 . . . Nk−1 Nk

0 −N1 0 . . . 0 0

0 0 −N1 . . . 0 0
...

...
... . . . ...

...

0 0 0 . . . −N1 0

0 0 0 . . . 0 −N1


,

where C is a positive integer to be optimized later. Consider the vector

v =

(
Caq1,

aq1q2x2

a2
, . . . ,

aq1qkxk
ak

)
∈ Zk.

Since

v =

(
aq1,

aa1q2

a2
. . . ,

aa1qk
ak

)
×M,

then, by reducing the lattice L, one can find v among the smallest vectors.
Indeed, the Gaussian Heuristic for L asserts that the length of its shortest
non-zero vector is usually σ(L) where

σ(L) ≈
√

dim(L)

2πe
det(L)

1
dim(L) =

√
k

2πe
C

1
kN

k−1
k

1 .

If we choose C such that σ(L) > ‖v‖, then v can be found among the shortest
non-zero vectors of the lattice L. This leads to the factorization of the k RSA
moduli by computing q1 = gcd(N1, aq1) and for i ≥ 2, qi = gcd

(
Ni,

aa1qi
ai

)
.

Any value for C with C ≥ 2n−t will be optimal for the reduction and will
lead to the condition

t >
k

k − 1
α +

k2

k − 1
β +

k

2(k − 1)
(1 + log2(πe)) ,

where qi ≈ 2α and ai ≤ 2β for i = 1, . . . , k.

It is also possible to consider the same situation as before where the
least significant bits (LSBs) are shared instead of the most significant bits
(MSBs). The techniques and the result are similar.
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Chapter 3

Cryptanalysis of Variants of RSA

In this chapter, we consider three variants of the RSA cryptosystem and
show how to adapt the cryptanalytic attacks on standard RSA to break the
underlying systems. The variant RSA cryptosystems studied in this chapter
are KMOV, Demytko’s scheme and four variants of the RSA cryptosystem
with the same key equations, namely the Kuwakado-Koyama-Tsuruoka cryp-
tosystem, a cryptosystem of Castagnos, a cryptosystem based on Gaussian
integers and LUC cryptosystem.

3.1 Cryptanalysis of KMOV

In this section, we describe the attack presented in [119] on the KMOV
cryptosystem.

In 1991, Koyama, Maurer, Okamoto and Vanstone [79] introduced a new
public key cryptosystem, called KMOV. The KMOV cryptosystem is based
on elliptic curves over the ring Zn where n = pq is an RSA modulus, that
is, the product of two large unknown primes of equal bit-size. The KMOV
public key is denoted by (n, e) where n = pq and e is an integer satisfying
gcd(e, (p+1)(q+1)) = 1. The corresponding private exponent d is an integer
satisfying ed ≡ 1 (mod (p + 1)(q + 1)) which can be reformulated as an
equation

ed− k(p+ 1)(q + 1) = 1.

In this section, we consider KMOV with a public exponent e satisfying the

25
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generalized equation

ex− (p+ 1)(q + 1)y = z,

where x and y are co-prime positive integers.

In 1995, Pinch [128] extended Wiener’s attack [147] to KMOV using
similar techniques applied with the key equation ed − k(p + 1)(q + 1) =
1, that is when z = 1 in our generalization. Similarly, Ibrahimpašić [69],
studied the security of KMOV with short secret exponents using the equation
ed− k(p+ 1)(q + 1) = 1.

The KMOV cryptosystem uses the arithmetic of elliptic curves over the
ring Zn = Z/nZ where n = pq is the product of two large distinct primes
p and q. An elliptic curve En(a, b) over Zn is the set of points (x, y) ∈ Z2

n

satisfying
y2 = x3 + ax+ b (mod n)

together with the point at infinity O. The addition law can be extended for
points in a curve En(a, b) over Zn using the same rules than the addition
over a finite field. En(a, b)(Zn) is not a group. By the Chinese Remainder
Theorem, the mapping

En(a, b)→ Ep(a, b)× Eq(a, b)

defined by the natural projections is a bijection. Thus, a point (x, y) of the
elliptic curve En(a, b) is associated to the point

((x (mod p), y (mod p)), (x (mod q), y (mod q)) ∈ Ep(a, b)× Eq(a, b).

The points (O, P ) and (P,O) can not be represented like this. Finding such
a point is, however, very unlikely and would lead to the factorization of n
(see [84]).

Let #Ep(a, b) denote the number of distinct points of the elliptic curve
Ep(a, b). We have the following result which is a consequence of the Chinese
Remainder Theorem .

Lemma 3.1.1. Let n = pq be an RSA modulus and En(a, b) an elliptic curve
over Zn with gcd

(
4a3 + 27b2, n

)
= 1. Then for any P ∈ En(a, b) and any

integer k, we have

(1 + k#Ep(a, b)#Eq(a, b))P = P.
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The algorithms in KMOV work as follows.

• Key Generation
INPUT: The bit-length k of the RSA modulus.
OUTPUT: The public key (n, e) and the private key (n, d).

1. Find two primes, p and q, of length k/2 bits satisfying p ≡ q ≡ 2
(mod 3).

2. Compute the RSA modulus n = pq.

3. Choose a public key e co-prime to (p+ 1)(q + 1).

4. Compute the inverse d of e mod ((p+ 1)(q + 1)).

5. Return the public key (n, e) and the private key (n, d).

• KMOV Encryption
INPUT: The public key (n, e) and the plaintext message m.
OUTPUT: The cyphertext (c1, c2).

1. Represent the message m as a couple (m1,m2) ∈ Z2
n.

2. Compute b = m2
2 −m3

1 (mod n).

3. Compute the point (c1, c2) = e(m1,m2) on the elliptic curve y2 =
x3 + b (mod n).

4. Return (c1, c2).

• KMOV Decryption
INPUT: The private key (n, d) and the cyphertext (c1, c2).
OUTPUT: The plaintext message (m1,m2).

1. Compute b = c2
2 − c3

1 (mod n). Note that the receiver of a message
never need to compute b, but he can compute it.

2. Compute the point (m1,m2) = d(c1, c2) on the elliptic curve y2 =
x3 + b (mod n).

3. Return (m1,m2).

The choice of the prime numbers p and q with p ≡ q ≡ 2 (mod 3) is motivated
by the following lemma.
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Lemma 3.1.2. Let p > 3 be a prime satisfying p ≡ 2 (mod 3) and 0 < b < p.
Then

#Ep(0, b) = p+ 1.

The starting point for our attack on KMOV is the equation

ex− (p+ 1)(q + 1)y = z.

When the unknown parameters x, y and z are suitably small, then by ap-
plying the continued fraction algorithm and Coppersmith’s method, one can
solve the equation and then factor the RSA modulus n = pq.

Theorem 3.1.3. [119] Let n = pq be an RSA modulus with q < p < 2q.
Suppose that the public exponent e satisfies an equation ex−(p+1)(q+1)y = z

where x and y are positive integers with gcd(x, y) = 1 and

|z| < n
1
4y, xy <

√
2
√
n

12
.

Then y
x is one of the convergents of the continued fraction expansion of e

n.

The proof begins by transforming the equation ex− (p+ 1)(q + 1)y = z

into ex−ny = (p+ q+ 1)y+ z. Using some properties on the size of p and q,

namely p+ q < 3
√

2
2

√
n and assuming that |z| < n

1
4y and xy <

√
2
√
n

12 , we get∣∣∣ e
n
− y

x

∣∣∣ =
|(p+ q + 1)y + z|

nx
<

3
√

2
√
ny

nx
<

1

2x2
.

This implies, by Theorem 2.2.3, that y
x is a convergent of the continued

fraction expansion of e
n . Moreover, under an extra condition, one can use the

fraction y
x to factor the modulus n = pq.

Theorem 3.1.4. [119] Let n = pq be an RSA modulus with q < p < 2q.
Suppose that e is an exponent satisfying an equation ex− (p+ 1)(q+ 1)y = z

with gcd(x, y) = 1 and

|z| < (p− q)n 1
4y

3(p+ q)
, xy <

√
2
√
n

12
.

Then n can be factored in polynomial time.
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If we set
U =

ex

y
− n− 1, V =

√
|U 2 − 4n|,

then using the equation ex− (p+ 1)(q + 1)y = z, we get

|U − p− q| =
∣∣∣∣exy − n− 1− p− q

∣∣∣∣ =
|z|
y
<

(p− q)n 1
4

3(p+ q)
.

Hence, if |z| < (p−q)n
1
4 y

3(p+q) , then |U − p− q| < n
1
4 . This leads to |p− q − V | <

n
1
4 . Then, combining the approximations of p+q and p−q, we get

∣∣p− U+V
2

∣∣ <
n

1
4 . Hence, using Coppersmith’s Theorem 2.5.3, we get p and then the fac-

torization of n.

3.2 Cryptanalysis of Demytko’s cryptosystem

In this section, we describe the attack presented in [121] on the Demytko
cryptosystem.

Let p be a prime number and a and b be two positive integers such that
gcd(4a3 + 27b2, p) = 1. Consider the elliptic curve Ep(a, b) over the field Fp.
It is the set of points P = (x, y) ∈ F2

p such that y2 ≡ x3 + ax + b (mod p)
together with the point at infinity. The number of such points is denoted
#Ep(a, b) and satisfies #Ep(a, b) = p + 1 − tp where, according to Hasse
Theorem [140] satisfies |tp| ≤ 2

√
p.

Let N = pq be an RSA modulus and let a and b be two integers such
that gcd(4a3 + 27b2, N) = 1. An elliptic curve EN(a, b) is the set of points
(x, y) such that

y2 ≡ x3 + ax+ b (mod N),

together with the point at infinity O. It is well known that chord-and-tangent
method in the case of elliptic curves Ep(a, b) defined over the finite filed Fp
still hold for EN(a, b) unless the inversion of a non-zero number Q does not
exist modulo N . This case would lead to find a factor of N by computing
gcd(Q,N). When the prime factors p, q in N = pq are large, then with over-
whelming probability the inversion of a non-zero number will exist modulo
N .
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In 1994, Demytko [39] developed a cryptosystem using an elliptic curve
EN(a, b) over the ring Z/NZ where N = pq is an RSA modulus which can
be summarized as follows.

1. Key Generation:

• Choose two distinct prime numbers p and q of similar bit-length.

• Compute N = pq.

• Select two integers a, b < p such that gcd
(
N, 4a3 + 27b2

)
= 1.

• Choose e such that gcd
(
e,
(
p2 − t2p

) (
q2 − t2q

))
= 1.

• Keep p, q secret and publish N, e, a, b.

2. Encryption:

• Transform the messagem as the x-coordinate of a point P = (mx,my)
on the elliptic curve EN(a, b).

• Compute the ciphertext point C = eP = (cx, cy) = e(mx,my) on the
elliptic curve y2 = x3 + ax+ b (mod N).

3. Decryption:

• Compute u = c3
x + acx + b (mod N).

• Compute the Legendre symbols up =
(
u
p

)
and uq =

(
u
q

)
.

• If (up, uq) = (1, 1), then compute d ≡ e−1 (mod lcm(p + 1 − tp, q +
1− tq)).
• If (up, uq) = (1,−1), then compute d ≡ e−1 (mod lcm(p+ 1− tp, q+

1 + tq)).

• If (up, uq) = (−1, 1), then compute d ≡ e−1 (mod lcm(p+ 1 + tp, q+
1− tq)).
• If (up, uq) = (−1,−1), then compute d ≡ e−1 (mod lcm(p+1+tp, q+

1 + tq)).

• Compute m as the x-coordinate of dC = deP = P = (mx,my) on
the elliptic curve y2 = x3 + ax+ b (mod N).
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In the following, we consider d ≡ e−1 (mod (p + 1 ± tp, q + 1 ± tq)) instead
of modulo lcm(p + 1 ± tp, q + 1 ± tq). This implies that e and d satisfy an
equation of the form

ed− k (p− s) (q − r) = 1, s = ∓tp − 1, r = ∓tq − 1.

Then, a generalization of this equation is of the form eu−(p−s)(q−r)v = w.

Under some conditions on the size of the unknown parameters, one can
apply Coppersmith’s technique [34] and the elliptic curve method for factor-
ing [84] to solve the equation and then find p and q which factors N and
breaks the system. This will be achieved in two steps. The first step enables
us to find the product (p− s)(q − r).
Theorem 3.2.1 ( [121], Theorem 3.1). Let N = pq be an RSA modulus
and e = Nβ be a public exponent. Suppose that e satisfies the equation
eu− (p− s)(q − r)v = w with |r|, |s| < Nα, u < N δ and |w| < Nγ. If

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α + 1)(2α + 6β − 6γ + 1)− ε,

then one can find the product (p− s)(q − r) in polynomial time.

The general idea in the proof is to use Coppersmith’s technique com-
bined with Jochemz-May strategy [72], Howgrave-Graham’s Theorem [65]
and lattice reduction.

Next, assume that (p− s)(q− r) is computed and that one of the factors
p − s or q − r is B-smooth, that is all prime factors of (p − s)(q − r) are
less than B where B is a parameter bound for the elliptic curve method for
factoring ECM. Then, one can use ECM to factor (p− s)(q − r) and to find
all divisors. As p− s is one of these factors and assuming s < N

1
4 , then one

can apply Coppersmith’s Theorem 2.5.3 to find p and then q.

Theorem 3.2.2 ( [121], Theorem 3.2). Let N = pq be an RSA modulus
and e = Nβ be a public exponent. Suppose that e satisfies the equation
eu− (p− s)(q− r)v = w with |r|, |s| < Nα < N

1
4 , u < N δ and |w| < Nγ. Let

B be an ECM-efficiency bound for the Elliptic Curve Method. If (p − s) or
(q − r) is B-smooth and

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α + 1)(2α + 6β − 6γ + 1),
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then one can find p and q in polynomial time.

We can now apply the former result to Demytko’s scheme. In this
scheme, the RSA modulus is N = pq and the elliptic curve EN(a, b) is such
that #Ep(a, b) = p + 1 − tp and #Eq(a, b) = q + 1 − tq where, according to
Hasse Theorem, |tp| < 2

√
p and |tq| < 2

√
q. The public exponent e and the

private exponent d satisfy one of the four equations

eu− (p+ 1± tp)(q + 1± tq)v = w.

These equations can be transformed into one of the form eu−(p−s)(q−r)v =
w where s = ∓tp − 1 and t = ∓tq − 1. Consequently, when tp and tq are
suitably small and satisfy some specific conditions, then one can solve the
equation, find p and q and then break the system.

3.3 Cryptanalysis of Some RSA Type cryptosystems

In this section, we describe the attack presented in [25] on the Demytko
cryptosystem.

RSA is the first and widely most used public key cryptosystem. In
order to improve the implementation of the RSA cryptosystem, many schemes
have been presented giving rise to some RSA type cryptosystems. A way to
extend RSA is to consider the modulus N = pq and the exponent e with
specific arithmetical operations such as elliptic curves [79, 81] and Gaussian
domains [43].

In 1993, Smith and Lennon presented a cryptosystem called LUC [143].
LUC is based on Lucas sequences. The public exponent e and the private
exponent d are integers such that ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
) which can

be transformed into the equation ed− k
(
p2 − 1

) (
q2 − 1

)
= 1.

In 1995, Kuwakado, Koyama and Tsuruoka [81] presented a scheme with
an RSA modulus N = pq and a singular cubic curve with equation y2 =
x3 + bx2 mod N . The addition of two points in the singular cubic curve
is similar than the addition for elliptic curves. In some cases, the addition
is not possible if the inversion modulo N is not possible. In this situation,
one can certainly find a factor of N . When N is an RSA modulus with
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large prime factors, this will happen very rarely. Note that the elliptic curve
method factoring method of Lenstra [84] is based on this idea. In the scheme
of Kuwakado-Koyama-Tsuruoka, a message is then transformed into a point
M = (mx,my) on the singular cubic equation. In the scheme, the public
exponent e and the private exponent d satisfy an equation of the form ed−
k
(
p2 − 1

) (
q2 − 1

)
= 1.

In 2002, Elkamchouchi, Elshenawy and Shaban [43] presented an exten-
sion of RSA to the Gaussian domain. The modulus is of the form N = PQ
where P and Q are two Gaussian primes. The public exponent e and the pri-
vate exponent d are two positif integers satisfying ed ≡ 1 (mod (|P | − 1) (|Q| − 1)).
When P = p and Q = q are integer prime numbers, the modular equations
can be transformed into the equation ed− k

(
p2 − 1

) (
q2 − 1

)
= 1.

In 2007 Castagnos [29] presented a scheme with an RSA modulus N =
pq and a public exponent e such that gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1. This

condition is equivalent to the equation ed − k
(
p2 − 1

) (
q2 − 1

)
= 1 where d

and k are positive integers.

As we can see, the moduli and the public exponents of the former schemes
satisfy the same equation, namely ed−k

(
p2 − 1

) (
q2 − 1

)
= 1. In the rest of

this section, we show how to apply the continued fraction algorithm and Cop-
persmith’s method to solve the generalized equation ex−

(
p2 − 1

) (
q2 − 1

)
y =

z. We consider that the prime factors in N = pq are of the same bit size and
ordered such that q < p < 2q. Then, we can find some useful results on the
size of the primes.

Lemma 3.3.1. Let N = pq be an RSA modulus with q < p < 2q. Then

2
√
N < p+ q <

3
√

2

2

√
N and 2N < p2 + q2 <

5

2
N.

The proof of the lemma starts by applying the increasing function f(x) =
x + 1

x on 1 < p
q < 2. This leads to 2N < p2 + q2 < 5

2N . Similarly, applying

the function f on 1 <
√

p
q <
√

2, we get 2
√
N < p+ q < 3

√
2

2

√
N .

To solve the equation ex −
(
p2 − 1

) (
q2 − 1

)
y = z, we need some extra

conditions as in the following result.
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Theorem 3.3.2 ( [25], Theorem 3). Let N = pq be an RSA modulus with q <
p < 2q. Let e be a public exponent satisfying an equation ex−

(
p2 − 1

) (
q2 − 1

)
y =

z with coprime positive integers x and y. If

xy < 2N − 4
√

2N
3
4 and |z| < (p− q)N

1
4y,

then one can find p and q in polynomial time in log(N).

The proof transforms the equation ex−
(
p2 − 1

) (
q2 − 1

)
y = z into

ex−
(
N 2 + 1− 9

4
N

)
y = z −

(
p2 + q2 − 9

4
N

)
y.

Using various assumptions and proved results, we find the inequality∣∣∣∣ e

N 2 + 1− 9
4N
− y

x

∣∣∣∣ < 1

2x2
.

It follows that y
x is a convergent of the continued fraction expansion of

e
N2+1− 9

4N
. Then using x and y, we compute an approximation p̃ of p with

an error term of at most N
1
4 , with

p̃ =
1

2

(√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣+

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
)
.

Then applying Coppersmith’s Theorem 2.5.3, we find p in a polynomial time
which leads to the factorization of N .

We note that the attacks on the equation ed − k
(
p2 − 1

) (
q2 − 1

)
= 1

are very rare and a lot of the attacks on RSA can be adapted to solve the
equation.



Chapter 4

Cryptanalysis of NTRU

4.1 Introduction

The NTRU public key cryptosystem was proposed by J. Hoffstein, J. Pipher
and J. H. Silverman [63] in 1996. It is one of the fastest known public
key cryptosystems. It offers both encryption (NTRUencrypt) and digital
signature (NTRUSign). In comparison with RSA [131] and ECC [75, 95],
NTRU is faster and has smaller keys. Moreover, NTRU is still resistant to
quantum attacks because its security is conjectured to rely on the hardness of
certain lattice problems. Since its presentation, NTRU has been scrutinized
for weaknesses and was standardized in 2009 by IEEE Std 1363.1-2008 [70]
and in 2010 by ANSI X9.98-2010 [2].

In 1998, Coppersmith and Shamir [35] presented a lattice based attack
on NTRU. This attack exploits the structure of the public key in NTRU.
Using the key equation, the method builds a lattice and applies lattice re-
duction techniques to find short vectors in the lattice that could exhibit the
private key. However, the method is not practicable in large dimensions. The
updated parameters in [64] make NTRU secure against lattice attacks.

Other types of attacks on NTRU have been considered in the last decade.
In 2007, Howgrave-Graham [67] presented a hybrid attack of lattice reduction
and meet-in-the-middle attack on NTRU. In 2015, Kirchner and Fouque [73,
74] presented a heuristic subexponential-time algorithm on NTRU and in

35
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2016, independently, Cheon, Jeong and Lee [31] and Albrecht, Bai and Ducas [4]
described similar attacks on NTRU. The two attacks are based on the fact
that for any cyclotomic number field, there exists a subfield that allows to
reduce the dimension of the lattice. To avoid the attacks that exploit special
structures of the rings used in NTRU, Bernstein et al. [11] presented recently
a variant of NTRU, called NTRU Prime where the underlying ring is in the
form Zq[X]/(Xp −X − 1) where Zq = Z/qZ and p is a prime number.

In this chapter, we show that the attack of Coppersmith and Shamir
can be improved for NTRU with two public keys if the private keys share an
amount of the coefficients.

4.2 Description of NTRU

The main objects in NTRU are polynomials from the ring of truncated poly-
nomials R = Zq[X]/

(
XN − 1

)
where Zq = Z/qZ. NTRU uses four public

parameter sets, Lf , Lg, Lm and Lr. These sets and the other parameters can
be categorized as follows where, for a positive integers d, B(d)) is the set of
polynomials of R with d coefficients equal to 1 and all the other coefficients
equal to 0:

• N is a public prime and is sufficiently large.

• p is a small public modulus, typically p = 3.

• q is a large public modulus with gcd(p, q) = 1.

• Lf = B(df) is a set of small polynomials from which the private keys are
selected.

• Lg = B(dg) is a similar set of small polynomials from which other private
keys are selected.

• Lm = Zp[X]/
(
XN − 1

)
is the plaintext space. It is a set of polynomials

m ∈ Zp[X]/(XN − 1) that represent encryptable messages.

• Lr = B(dr) is a set of polynomials from which the blinding value used
during encryption is selected.
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The key generation, encryption and decryption primitives are as follows:

1. Key generation

• Randomly choose a polynomial f ∈ Lf such that f is invertible in
R modulo p and modulo q.

• Compute fp ≡ f−1 (mod p) and fq ≡ f−1 (mod q).

• Randomly choose a polynomial g ∈ Lg.
• Compute h ≡ g ∗ fq (mod q).

• Publish the public key (N, h) and the set of parameters p, q, Lf , Lg,
Lr and Lm.

• Keep the private key (f, fp).

2. Encryption

• Represent the message as a polynomial m ∈ Lm.

• Randomly choose a polynomial r ∈ Lr.
• Encrypt m with the public key (N, h) using the rule e ≡ p∗ r ∗h+m

(mod q).

3. Decryption

• The receiver computes a ≡ f ∗ e (mod q).

• Using a centering procedure, transform a to a polynomial with coef-
ficients in the interval

[
−q

2 ,
q
2

[
.

• Compute m ≡ fp ∗ a (mod p).

If one of the coefficients of the polynomial p ∗ r ∗ g + f ∗ m do not lie in
the interval

[
−q

2 ,
q
2

[
, then the original message m can not be recovered. This

situation is called decryption failure and when the parameters are suitably
chosen, the decryption is always correct [141].

4.3 The attack of Coppersmith and Shamir on NTRU

The recovery of the NTRU private key f from public key h ≡ g ∗ fq (mod q)
can be transformed into as a lattice problem as was presented by Coppersmith
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and Shamir [35]. Let λ be a positive value to be optimized later. The equation
h ≡ g ∗ fq (mod q) is equivalent to h ∗ f − q ∗ u = g where u ∈ R and can be
rewritten as [

λ 0
h q

] [
f
−u

]
=

[
λf
g

]
.

Using the coordinates of f and g

f = (f0, f1, . . . , fN−1), g = (g0, g1, . . . , gN−1),

h = (h0, h1, . . . , hN−1), u = (u0, u1, . . . , uN−1),

we get

λ 0 · · · 0 0 0 · · · 0
0 λ · · · 0 0 0 · · · 0
...

... . . . ...
...

... . . . ...
0 0 · · · λ 0 0 · · · 0

h0 hN−1 · · · h1 q 0 · · · 0
h1 h0 · · · h2 0 q · · · 0
...

... . . . ...
...

... . . . ...
hN−1 hN−2 · · · h0 0 0 · · · q


∗



f0

f1
...

fN−1

−u0

−u1
...

−uN−1


=



λf0

λf1
...

λfN−1

g0

g1
...

gN−1


.

Consider the lattice L spanned by the rows of the underlying matrix. Then
(λf, g) ∈ L and L ⊂ Z2N is a lattice with dimension 2N and determinant
det(L) = λNqN . The Euclidean norm of the vector (λf, g) is

√
λ2df + dg.

The Gaussian heuristic asserts that (λf, g) is the shortest vectors of the lattice
overwhelming probability and so lattice reduction might be used to find it.
More precisely, the Gaussian heuristic says that the length of the shortest
non-zero vector is usually approximately σ(L) where

σ(L) =

√
dim(L)

2πe
(detL)1/ dim(L)

=

√
2N

2πe
(λq)

N
2N

=

√
λqN

πe
.
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We need σ(L) ≈ ‖(λf, g)‖. This can be achieved by taking λ = ‖g‖/‖f‖
which leads to a ratio

c =
‖(λf, g)‖
σ(L)

=

√
2πe‖g‖‖f‖

qN
.

When the ratio c is small, then lattice reduction is expected to find the vector
(λf, g) and then the private key f .

4.4 An attack of NTRU with two public keys: Case 1

In this section, we describe the attack presented in [118] on the Demytko
cryptosystem.

Consider NTRU with two public keys h and h′ defined by the same
parameters (N, p, q) and

h = f−1
q ∗ g (mod q),

h′ = F ′−1
q ∗G′ (mod q).

We can rewrite h′ using f−1
q and f as

h′ = f−1
q

(
f ∗ F ′−1

q ∗G′
)

= f−1
q ∗ g′ (mod q),

where g′ = f∗F ′−1
q ∗G′ (mod q). This means that all the public keys in NTRU

can be expressed with the same polynomials f ∈ R and f−1
q . Combining h

and h′, we get
(h− h′) ∗ f = g − g′ (mod q).

Consider the lattice L spanned by the rows of the matrix

M(h, h′) =

[
λIN H −H ′

0 qIN

]
,

where H −H ′ is the circulant matrix
h0 − h′0 h1 − h′1 · · · hN−1 − h′N−1

hN−1 − h′N−1 h0 − h′0 · · · hN−2 − h′N−2
...

... . . . ...
h1 − h′1 h2 − h′2 · · · h0 − h′0

 .
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Then one can observe that (λf, g−g′) is in the lattice L. Using the Gaussian
heuristic, one can expect to find (λf, g − g′) as the shortest vector of the
lattice. The Gaussian heuristic says that the length of the shortest non-zero
vector is approximately

σ(L) =

√
dim(L)

2πe
detL1/ dim(L) =

√
λNq

πe
.

On the other hand, the Euclidean norm of (λf, g − g′) is ‖(λf, g − g′)‖ =√
λ2‖f‖2 + ‖g − g′‖2 and the ratio

c1 =
‖(λf, g − g′)‖
σ(L(h, h′))

,

is minimized for

λ =
‖g − g′‖
‖f‖

,

which gives

c1 =

√
2πe‖g − g′‖‖f‖

qN
.

Recall that in the attack of Coppersmith and Shamir, the ratio is

c =

√
2πe‖g‖‖f‖

qN
.

The new attack is more efficient when c1 < c which is satisfied when

‖g − g′‖ < min(‖g‖, ‖g′‖).

This means that, whenever g and g′ share many coefficients, then the new at-
tack is more efficient to find the private key f than the attack of Coppersmith
and Shamir.

4.5 An attack of NTRU with two public keys: Case 2

In this section, we describe the second attack on NTRU with two public keys
as presented in [118].
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Let h and h′ be two public keys with the same parameters

h = f−1
q ∗ g (mod q),

h′ = F ′−1
q ∗G′ (mod q).

We suppose that g and G′ are invertible modulo q. We set hq = h−1 (mod q)
and h′q = h′−1 (mod q). Then

hq = g−1 ∗ f (mod q),

h′q = G′−1 ∗ F ′ = g−1 ∗
(
g ∗G′−1 ∗ F ′

)
= g−1 ∗ f ′ (mod q).

where f ′ = g ∗G′−1 ∗ F ′. Then, we get

g ∗ hq = f (mod q), g ∗ h′q = f ′ (mod q).

Let

hq(X) =
N−1∑
i=0

hq,iX
i, h′q(X) =

N−1∑
i=0

h′q,iX
i.

For a positive constant λ, we define the 2N -dimension lattice L′

L′ =
{

(λv, w) ∈ R2 : w = v ∗
(
hq − h′q

)
(mod q)

}
.

We can see that the lattice is generated by the row vectors of the matrix M ′

with

M ′ =

[
λIN Hq −H ′q

0 qIN

]
,

where Hq −H ′q is the circulant matrix
hq,0 − h′q,0 · · · hq,N−1 − h′q,N−1

hq,N−1 − h′q,N−1 · · · hq,N−2 − h′q,N−2
... . . . ...

hq,1 − h′q,1 · · · hq,0 − h′q,0

 .
Assume that g ∗ hq = f + qv and g ∗ h′q = f ′ + qv′. Then (g,−v + v′) ∗M ′ =
(λg, f − f ′), and (λg, f − f ′) is a vector of L′. Hence, by reducing the lattice,
one can find (λg, f − f ′) among the shortest vectors if a certain condition is
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satisfied. Indeed, by the Gaussian heuristic, the shortest non-zero vector is
approximately

σ(L′) =

√
dim(L′)

2πe
detL′1/ dim(L′)

=

√
λNq

πe
.

To compare σ(L′) and the length ‖(λg, f − f ′)‖ =
√
λ2‖g‖2 + ‖f − f ′‖2 of

the target vector (λg, f − f ′), we introduce the ratio

c2 =
‖(λg, f − f ′)‖

σ(L′)
.

To increase the chances of lattice reductions to find the vector (λg, f − f ′),
the ratio c2 should be as small as possible. This is achieved by taking

λ =
‖f − f ′‖
‖g‖

,

which leads to

c2 =

√
2πe‖f − f ′‖‖g‖

qN
.

In comparison, in the attack of Coppersmith and Shamir, the ratio is

c =

√
2πe‖g‖‖f‖

qN
.

Then, when c2 < c, the new method is be more efficient. A sufficient condition
for this is about the shortness of the length of the difference f − f ′:

‖f − f ′‖ < min (‖f‖, ‖f ′‖) .

Hence, if f and f ′ share a certain amount of their coefficients, the new method
will find the private keys f and f ′ more efficiently than the attack of Cop-
persmith and Shamir.



Chapter 5

Cryptanalysis of the DGHV
Cryptosystem

5.1 Introduction

The purpose of homomorphic encryption is to allow computation on en-
crypted data without decrypting it. The idea of computing on encrypted
data was first proposed by Rivest, Adleman and Dertouzos [130] in 1978.
In 1991, Feigenbaum and Merritt [46] posed the problem if it is possible to
design an encryption function E such that both E(x+y) and E(x.y) are easy
to compute from E(x) and E(y). In 2009, Gentry [49] proposed a positive
answer and theoretically demonstrated the possibility of construction such an
encryption function. In the last few years, homomorphic encryption schemes
have become of great interest in many different cryptographic protocols such
as Medical Applications [9], cloud computing, multiparty computation, elec-
tion and voting protocols (see [6,98] for more applications). For this reason,
homomorphic encryption schemes have been studied extensively to improve
implementations and applications. Many classical systems are partially ho-
momorphic. For example, RSA [131] is multiplicatively homomorphic while
the Goldwasser-Micali scheme [52] and ElGamal [42] are additively homo-
morphic. Boneh, Goh and Nissim [19] were the first to construct a scheme
capable of performing an arbitrary number of additions but one multipli-
cation. In 2009, Gentry [49] constructed a fully homomorphic encryption

43
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scheme (FHE) with the possibility of evaluating an arbitrary number of ad-
ditions and multiplications. The security of Gentry’s proposal relies on hard
assumptions in lattices such as the Sparse Subset Sum Problem (SSSP).

In 2010, van Dijk, Gentry, Halevi and Vaikuntanathan [41] presented an
efficient and simple scheme, called DGHV. In DGHV, the private key is an
odd integer p. A bit m is then encrypted as c = pq + 2r + m where q and
r are secret random integers. To decrypt from c, one just computes m = (c
(mod p)) (mod 2). The security of DGHV relies on the hardness of SSSP as
well as that of the Approximate Greatest Common Divisor problem (AGCD)
as introduced by Howgrave-Graham [66]. The AGCD problem is to recover
a prime number p when many approximate multiples qip + ri of p are given
with small ri.

Many attacks on DGHV have been proposed [30,36,41,87] and served to
fix the parameters. In this chapter, we describe two new attacks. The first
attack concerns the instance where c1 = pq1 and ci = pqi+ri with ri 6= 0. We
apply Coppersmith’s method to solve the equation a2c2 + . . .+ amcm = a1q1

under suitable conditions. The second attack works for the general instance
ci = pqi+ri for i = 1, . . . ,m. We study the linear equation a1q1+. . .+amqm =
0 and apply lattice reduction techniques to solve it under some conditions.
In both attacks, we retrieve the secret parameters p and qi.

5.2 Description of the Parameters in DGHV

DGHV is described in [41] as a somewhat homomorphic scheme with a single
private key p, which is a prime number. To encrypt m ∈ {0, 1}, one compute
c = pq + 2r + m where q is a large random integer and r is a small random
integer. To decrypt c, one computes (c mod p) mod 2=m. If c1 = pq1 + 2r1 +
m1 and c2 = pq2 + 2r2 +m2 are two ciphertexts, then

c1 + c2 = p(q1 + q2) + 2(r1 + r2) +m1 +m2,

c1c2 = p(pq1q2 + 2q1r2 + q1m2 + 2q2r1

+ q2m1) + 2(2r1r2 + r1m2 +m1r2) +m1m2,

which implies that DGHV is a homomorphic scheme.



5.2. DESCRIPTION OF THE PARAMETERS IN DGHV 45

To ease the notation, the ciphertext c = pq + 2r + m can be rewritten
as c = pq + r. In DGHV, the public parameters are the integers ci = pqi + ri
where the parameters p, qi and ri are as follows.

• For i = 1, . . . ,m, ci is a public integer of bit-length γ.

• p is a private prime number of bit-length η.

• For i = 1, . . . ,m, qi is a private integer of bit-length γ − η.

• For i = 1, . . . ,m, ri is a private random integer with |ri| < 2ρ.

In [41], it is shown that the scheme is semantically secure under the Approximate-
GCD assumption which states the following:

Definition 5.2.1 (Approximate-GCD assumption). Let γ, η, ρ be positive
integers. For any η-bit prime number p, given m many positive integers
ci = pqi + ri with m many (γ − η)-bit integers qi and m many integers ri
satisfying |ri| < 2ρ, it is hard to find p.

There exists a variant of DGHV with c1 = pq1 where q1 is a large integer
such that it is hard to find any prime factor that divides c1.

In [36, 41, 87], the security of DGHV has been studied against several
attacks. These attacks served to propose optimal parameters for η, ρ, and γ
in order to improve the security of DGHV. These attacks can be categorized
according to their underling techniques:

• Brute force search [30, 41]: When c1 = pq1, this technique consists in
removing the noise, say r2 from c2 by trying all possibilities for r2 ∈
(−2ρ, 2ρ) and computing gcd(c1, c2−r2) which gives p with overwhelming
probability.

• Continued fractions [41,87]: This consists on recovering qi/qj from ci/cj
using continued fractions, which yields immediate calculation of p =
bci/qie.

• Attacks on the Approximate-GCD assumption [41, 87]: The recovery of
p through the recovery of ri or qi, i = 1, . . . ,m, using a combination of
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lattice reduction and other techniques. These attacks include Copper-
smith’s technique [34], the method for solving simultaneous diophantine
equations [86] and the orthogonal lattice attacks [41,87].

In the case c1 = pq1, the parameters in DGHV are chosen such that direct
factorization is not possible [87].

5.3 The First Proposed attack on DGHV

In this section, we briefly describe the attack on DGHV as presented in [122].

In this section, we assume that c1 = pq1 and ci = pqi + ri for i =
2, . . . ,m. Then one can show that there exist infinitely many solutions of
the linear equation a2c2 + . . . + amcm = a1q1, in integers a1, . . . , am. We
derive a condition on the size of each |ai| under which the above equation
can be solved leading to the cryptanalysis of the scheme. To solve the linear
equation, we use Coppersmith’s technique for linear equations with unknown
modulus, as presented by Herrmann and May in [59].

Theorem 5.3.1 (Herrmann-May). Let N be a composite integer of unknown
factorization with a divisor p ≥ Nβ. Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be
a linear polynomial in n variables. One can find in polynomial time all

solutions
(
x

(0)
1 , . . . , x

(0)
n

)
of the equation f(x1, . . . , xn) ≡ 0 (mod p) with∣∣∣x(0)

1

∣∣∣ < Nλ1, . . . ,
∣∣∣x(0)
n

∣∣∣ < Nλn if

n∑
i=1

λi < 1− (1− β)
n+1
n − (n+ 1)

(
1− n

√
1− β

)
(1− β).

Since q1 is an unknown factor of c1, we apply the former result and get
the following result.

Theorem 5.3.2 ( [122], Theorem 4.1.). Let c1 = pq1 and ci = pqi + ri,
i = 2, . . . ,m, be m positive integers with 2η−1 < p < 2η, 2γ−1 < ci < 2γ and
|ri| < p for i = 2, . . . ,m. Let a1, . . . , am be m integers satisfying |ai| < 2αi
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for i = 2, . . . ,m and a2c2 + . . .+ amcm = a1q1. Define β = γ−η−1
γ . If

m∑
i=2

αi <
(

1− (1− β)
m
m−1 −m

(
1− m−1

√
1− β

)
(1− β)

)
(γ − 1),

then, one can find p, q1, . . . , qm, r2, . . . , rm in polynomial time.

The proof of this result is a straightforward application of Herrmann-
May’s Theorem with the linear modular equation a2c2 + . . . + amcm ≡ 0
(mod q1) with the specific bounds of the unknown parameters. Once a solu-
tion (a2, . . . , am) is found, we compute

q1 = gcd(c1, a2c2 + . . .+ amcm), p =
c1

q1
.

Then for i = 2, . . . ,m, we get ri ≡ ci (mod p) and qi = ci−ri
p . In [122], a

comparison with the former attacks shows that the new attack is significantly
more efficient.

5.4 The Second Proposed attack on DGHV

Next, we describe the second attack on DGHV as presented in [122].

In this section, we consider the situation where the DGHV public values
are of the general form ci = pqi + ri, i = 1, . . . ,m. Since there are infinitely
many linear integer relations between the qi of the form a1q1 + . . .+amqm = 0,
we show that one can find such unknown integers under some conditions.

Theorem 5.4.1 ( [122], Theorem 5.1.). Let ci = pqi + ri, i = 1, . . . ,m, be
m positive integers with c1 < . . . < cm and |ri| < 2ρ for i = 1, . . . ,m. Let
a1, . . . , am be m integers satisfying |ai| < 2α for i = 1, . . . ,m and a1q1 + . . .+
amqm = 0. If

α <
1

m
log2(cm) + log2

( √
m

m+ 1

)
− ρ,

then, one can find p, q1, . . . , qm, r1, . . . , rm in polynomial time.
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The proof of this theorem is based on the LLL algorithm [86] for lattice
reduction. Using ci = pqi + ri and the relation a1q1 + . . .+ amqm = 0, we get
a1c1 + . . .+ amcm = a1r1 + . . .+ amrm. The idea is that, if a1r1 + . . .+ amrm
is close to 0, then so is a1c1 + . . . + amcm. Lattice reduction are then used
to solve this equation to find a1, . . . , am. Then using these values, we need
a1r1 + . . .+ amrm to be close to 0. Again, a second lattice reduction will find
the values r1, . . . , rm. Hence, p = gcd(c1 − r1, c2 − r2) and for i = 1, . . . ,m,
we get qi = ci−ri

p .



Appendices

Appendix A:
Another Generalization of Wiener’s Attack on RSA
AFRICACRYPT 2008

This paper presents an attack on the RSA cryptosystem using a generaliza-
tion of the key equation. The variant equation is in the form eX − (p −
u)(q − v)Y = 1. For suitably small parameters, the continued fraction algo-
rithm and Coppersmith’s technique are used to solve the equation and factor
the RSA modulus N = pq.

Appendix B:
Cryptanalysis of RSA Using the Ratio of the Primes
AFRICACRYPT 2009

In this paper, we consider the RSA cryptosystem with a modulus N = pq and
a public exponent e satisfying an equation of the form eX−(N−(ap+bq))Y =
Z with suitably small integers X, Y , Z, where a

b is an unknown convergent
of the continued fraction expansion of q

p . We combine the continued frac-
tion algorithm, Coppersmith’s technique and the elliptic curve method for
factorization (ECM) to solve the equation and factor the modulus.

Appendix C:
A New Attack on RSA with Two or Three Decryption Exponents
Journal of Applied Mathematics and Computing 2013
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In this paper, we consider two or three instances of RSA with the same
modulus N = pq and two or three different public exponents ei satisfying
equations of the form eixi− (p− 1)(q− 1)yi = zi. We show how, under some
specific conditions, one can solve the system of equations and then factor the
RSA modulus.

Appendix D:
An Attack on RSA Using LSBs of Multiples of the Prime Factors
AFRICACRYPT 2013

One of the recommendations of the ANSI Standard X9.31-1998 is to choose
an RSA modulus N = pq such that the ratio of the prime factors is not too
close to a rational fraction with small integers. In this paper, we consider an
instance of RSA where the public exponent satisfies an equation of the form
ed− k(N + 1− ap− bq) = 1 where a

b is an unknown approximation of q
p . We

show that such instance is insecure when the integers d, a and b are suitably
small.

Appendix E:
Implicit Factorization of Unbalanced RSA Moduli
with Muhammad Rezal Kamel Ariffin
Journal of Applied Mathematics and Computing 2015

In this paper, we consider k ≥ 2 RSA muduli Ni = piqi such that some
unknown multiples aipi share an amount of least or most significant bits. We
show that using continued fraction and lattice reduction techniques, one can
factor the moduli under some suitable conditions. This paper generalizes
many results on the problem of implicit factorization.

Appendix F:
Factoring RSA Moduli with Weak Prime Factors
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with Tajjeeddine Rachidi
C2SI 2015

The paper presents an attack to factor a RSA modulus N = pq with k
constants Mi if the factor p satisfies a linear equation u0+M1u1+. . .+Mkuk =
ap where the unknown parameters ui and a are small for given constants Mi.
The method is based on Coppersmith’s technique and lattice reduction.

Appendix G:
New attacks on RSA with Moduli N = prq

with Tajjeeddine Rachidi
C2SI 2015

In this paper, we consider the prime power RSA variant of RSA with modulus
N = prq. We study the generalized equation ex− φ(N)y = z where φ(N) =
pr−1(p − 1)(q − 1) and show that Coppersmith’s method can be applied to
solve it under suitable conditions on the unknown parameters. The attack of
this paper generalizes the former attacks on the prime power RSA with the
key equation es− φ(N)k = 1.

Appendix H:
A New Attack on the KMOV Cryptosystem
Bulletin of the Korean Mathematical Society 2014

KMOV is a cryptosystem introduced by Koyama, Maurer, Okamoto and
Vanstone in 1991. It is based on an elliptic curve with equation y2 = x3 + b
(mod n) where n = pq is an RSA modulus. The public key is an integer e
satisfying an equation ed− k(p+ 1)(q + 1) = 1. In this paper, we show how
to attack KMOV by solving the general equation ex− (p+ 1)(q+ 1)y = z by
applying lattice reduction techniques.

Appendix I:
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A Generalized Attack on RSA Type Cryptosystems
with Martin Bunder, Willy Susilo and Joseph Tonien
Theoretical Computer Science 2016

In this paper, we consider three RSA variants of the RSA cryptosystem,
one based on singular cubic curves, one based in Lucas sequences and one
based on Gaussian integers. The three schemes use an RSA modulus N = pq
and a public key e satisfying an equation ed − k

(
p2 − 1

) (
q2 − 1

)
= 1. We

apply continued fractions and Coppersmith’s technique to solve the general
equation ex −

(
p2 − 1

) (
q2 − 1

)
y = z with suitably small parameters. Any

solution of the equation will be used to break the scheme.

Appendix J:
Cryptanalysis of NTRU with two Public Keys
International Journal of Network Security 2014

We consider an instance of NTRU with two public keys. We show that, if
the private keys share an amount of coefficients, then one can apply lattice
reduction to break the system. The attack on NTRU with two public keys
extends the former attack of Coppersmith and Shamir when only one public
key is available.

Appendix K:
Dirichlet Product for Boolean Functions
Journal of Applied Mathematics and Computing 2016

Boolean functions play a central role in symmetric cryptography. For secu-
rity reasons, boolean functions are required to satisfy a certain number of
cryptographic properties. In this paper, we introduce a new notion, called
Dirichlet product and study various properties and applications.

Appendix L:
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New Attack on RSA and Demytko’s Elliptic Curve Cryptosystem
with Emmanuel Fouotsa
Submitted to Mathematics in Computer Science

In this paper, we study the elliptic curve scheme of Demytko. This system
uses an RSA modulus N and an elliptic curve on the ring Z/NZ. The public
key satisfies a variant equation of the RSA equation. We show that, under
some conditions on the unknown parameters of the equation, on can solve
the equation and break the system. The attack is based on Coppersmith’s
method and the elliptic method for factoring ECM.

Appendix M:
Lattice Attacks on the DGHV Homomorphic Encryption Scheme
with Tajjeeddine Rachidi
Submitted to Discrete Applied Mathematics

In this paper, we study the somewhat homomorphic encryption scheme of van
Dijk, Gentry, Halevi, and Vaikuntanathan. We consider a set of m public
ciphers ci = pqi + ri, i = 1, · · · ,m where p is a private prime number and qi,
ri are private integers. We propose two lattice based attacks to retrieve all
the parameters when some suitable conditions are fulfilled.
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Appendix A

Another Generalization of Wiener’s
Attack on RSA

AFRICACRYPT 2008
[104]

Abstract :
A well-known attack on RSA with low secret-exponent d was given by Wiener
in 1990. Wiener showed that using the equation ed − (p − 1)(q − 1)k = 1
and continued fractions, one can efficiently recover the secret-exponent d and
factor N = pq from the public key (N, e) as long as d < 1

3N
1
4 . In this paper,

we present a generalization of Wiener’s attack. We show that every public
exponent e that satisfies eX − (p− u)(q − v)Y = 1 with

1 ≤ Y < X < 2−
1
4N

1
4 , |u| < N

1
4 , v =

[
− qu

p− u

]
,

and all prime factors of p−u or q−v are less than 1050 yields the factorization
of N = pq. We show that the number of these exponents is at least N

1
2−ε.
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A.1 Introduction

The RSA cryptosystem invented by Rivest, Shamir and Adleman [131] in
1978 is today’s most important public-key cryptosystem. The security of
RSA depends on mainly two primes p, q of the same bit-size and two integers
e, d satisfying ed ≡ 1 (mod (p− 1)(q− 1)). Throughout this paper, we label
the primes so that q < p < 2q. The RSA modulus is given by N = pq and
Euler’s totient function is φ(N) = (p− 1)(q − 1). The integer e is called the
public (or encrypting) exponent and d is called the private (or decrypting)
exponent.

To reduce the decryption time or the signature-generation time, one may
wish to use a short secret exponent d. This was cryptanalysed by Wiener [147]
in 1990 who showed that RSA is insecure if d < 1

3N
0.25. Wiener’s method

is based on continued fractions. These results were extended by Boneh and
Durfee [17] in 1999 to d < N 0.292. The method of Boneh and Durfee is
based on Coppersmith’s results for finding small solutions of modular poly-
nomial equations [34]. In 2004, Blömer and May [13] presented a gener-
alization of Wiener’s attack by combining continued fractions and Copper-
smith’s method. They showed that RSA is insecure for every (N, e) satisfying
ex+ y ≡ 0 (mod φ(N)) with x < 1

3N
1/4 and |y| = O

(
N−3/4ex

)
.

In this paper, we present another generalization of Wiener’s attack. Our
method combines continued fractions, integer partial factorization, integer
relation detection algorithms and Coppersmith’s method. Let us introduce
the polynomial

ψ(u, v) = (p− u)(q − v).

Observe that ψ(1, 1) = (p − 1)(q − 1) = φ(N), so ψ could be seen as a
generalization of Euler’s function. We describe an attack on RSA that works
for all public exponents e satisfying

eX − ψ(u, v)Y = 1, (A.1)

with integers X, Y , u, v such that

1 ≤ Y < X < 2−
1
4N

1
4 , |u| < N

1
4 , v =

[
− qu

p− u

]
,
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with the extra condition that all prime factors of p−u or q−v are less than the
Elliptic Curve Method of Factoring smoothness bound Becm = 1050. Here
and throughout this paper, we let [x] and bxc denote the nearest integer to
the real number x and the fractional part of x.

Observe that when u = 1, we get v = −1 and rewriting (A.1) as

eX − (p− 1)(q + 1)Y = 1,

a variant of Wiener’s attack enables us to compute p and q without assuming
any additional condition on the prime divisors of p− 1 nor q + 1.

Our new method works as follows: We use the Continued Fraction Al-
gorithm (see e.g. [57], p. 134) to find the unknowns X and Y among the con-
vergents of e

N . Then we use Lenstra’s Elliptic Curve Factorization Method
(ECM) [84] to partially factor eX−1

Y . Afterwards, we use an integer relation
detection algorithm (notably LLL [86] or PSLQ [47]) to find the divisors of
the Becm-smooth part of eX−1

Y in a short interval. Finally, we show that a
method due to Coppersmith [34] can be applied. Moreover, we show that the
number of keys (N, e) for which our method works is at least N

1
2−ε.

Organization of the paper. Section 2 presents well known results from
number theory that we use. After presenting some useful lemmas in Section
3, and some properties of ψ in Section 4, we present our attack in Section
5 and in Section 6, we show that the number of keys (N, e) for which our
method works is lower bounded by N

1
2−ε. We briefly conclude the paper in

Section 7.

A.2 Preliminaries

A.2.1 Continued fractions and Wiener’s attack

The continued fraction expansion of a real number ξ is an expression of the
form

ξ = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
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where a0 ∈ Z and ai ∈ N−{0} for i ≥ 1. The numbers a0, a1, a2, · · · are called
the partial quotients. As usual, we adopt the notation ξ = [a0, a1, a2, · · · ].
For i ≥ 0, the rationals ri

si
= [a0, a1, a2, · · · , ai] are called the convergents of

the continued fraction expansion of ξ. If ξ = a
b is rational with gcd(a, b) = 1,

then the continued fraction expansion is finite and the Continued Fraction
Algorithm (see [57], p. 134) finds the convergents in time O((log b)2). We
recall a result on diophantine approximations (see Theorem 184 of [57]).

Theorem A.2.1. Suppose gcd(a, b) = gcd(x, y) = 1 and∣∣∣∣ab − x

y

∣∣∣∣ < 1

2y2
.

Then x
y is one of the convergents of the continued fraction expansion of a

b .

Let us recall Wiener’s famous attack on RSA with N = pq and q <

p < 2q. The idea behind Wiener’s attack on RSA [147] with small secret
exponent d is that for d < 1

3N
1/4, the fraction e/N is an approximation to

k/d and hence, using Theorem A.2.1, k/d can be found from the convergents
of the continued fraction expansion of e/N . Wiener’s attack works as follows.
Since ed − kφ(N) = 1 with φ(N) = N − (p + q − 1) and p + q − 1 < 3

√
N

then kN − ed = k(p+ q − 1)− 1. Therefore,∣∣∣∣kd − e

N

∣∣∣∣ =
|k(p+ q − 1)− 1|

Nd
<

3k
√
N

Nd
.

Now, assume that d < 1
3N

1/4. Since kφ(N) = ed − 1 < ed and e < φ(N),
then k < d < 1

3N
1/4. Hence∣∣∣∣kd − e

N

∣∣∣∣ < N 3/4

Nd
=

1

dN 1/4
<

1

2d2
.

From Theorem A.2.1, we know that k/d is one of the convergents of the
continued fraction expansion of e/N .

A.2.2 Coppersmith’s method

The problem of finding small modular roots of a univariate polynomial has
been extensively studied by Coppersmith [34], Howgrave-Graham [65], May [91]
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and others. Let f(x) be a monic univariate polynomial with integer co-
efficients of degree δ. Let N be an integer of unknown factorization and
B = N 1/δ. The problem is to find all integers x0 such that |x0| < B and
f(x0) ≡ 0 (mod N). In 1997, Coppersmith presented a deterministic algo-

rithm using
(
2δ logN

)O(1)
bit operations to solve this problem. The algorithm

uses lattice reduction techniques, and as an application, the following theo-
rem was proved (see also [91], Theorem 11).

Theorem A.2.2. Let N = pq be an RSA modulus with q < p < 2q. Given an
approximation p̃ of p with |p− p̃| < N

1
4 , N can be factored in time polynomial

in logN .

A.2.3 Smooth numbers

A few words about notation: let f and g be functions of x. The notation f � g

denotes that f(x)/g(x) is bounded above and below by positive numbers
for large values of x. The notation f = O(g) denotes that ∃c such that

f(x) ≤ cg(x). The notation f ∼ g denotes that limx→∞
f(x)
g(x) = 1.

Let y be a positive constant. A positive number n is y-smooth if all
prime factors of n are less than y. As usual, we use the notation Ψ(x, y) for
the counting function of the y-smooth numbers in the interval [1, x], that is,

Ψ(x, y) = # {n : 1 ≤ n ≤ x, n is y-smooth} .

The ratio Ψ(x, y)/[x] may be interpreted as the probability that a randomly
chosen number n in the interval [1, x] has all its prime factors less than
y. The function Ψ(x, y) plays a central role in the running times of many
integer factoring and discrete logarithm algorithms, including the Elliptic
Curve Method (ECM) [84] and the number field sieve method (NFS) [85]. Let
ρ(u) be the Dickman-de Bruijn function (see [53]). In 1986, Hildebrand [60]
showed that

Ψ(x, y) = xρ(u)

{
1 +O

(
log(u+ 1)

log y

)}
where x = yu (A.2)

holds uniformly in the range y > exp
{

(log log x)5/3+ε
}

. Studying the distri-
bution in short intervals of integers without large prime factors, Friedlander
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and Granville [48] showed that

Ψ(x+ z, y)−Ψ(x, y) ≥ c
z

x
Ψ(x, y), (A.3)

in the range x ≥ z ≥ x
1
2+δ, x ≥ y ≥ x1/γ and x is sufficiently large where δ

and γ are positive constants and c = c(δ, γ) > 0.

In order to study the distribution of divisors of a positive integer n, Hall
and Tenenbaum [54] studied the counting function

U(n, α) = #

{
(d, d′) : d|n, d′|n, gcd(d, d′) = 1,

∣∣∣∣log
d

d′

∣∣∣∣ < (log n)α
}
, (A.4)

where α is a real number. They proved that for any fixed α < 1 and almost
all n,

U(n, α) ≤ (log n)log 3−1+α+o(1), (A.5)

where the o(1) term tends to 0 as n tends to +∞.

A.2.4 ECM

The Elliptic Curve Method (ECM) was originally proposed by Lenstra [84]
in 1984 and then extended by Brent [21] and Montgomery [96]. It is suited to
find small prime factors of large numbers. The original part of the algorithm
proposed by Lenstra is referred to as Phase 1, and the extension by Brent
and Montgomery is called Phase 2. ECM relies on Hasse’s theorem: if p is a
prime factor of a large number M , then an elliptic curve over Z/pZ has group
order p+ 1− t with |t| < 2

√
p, where t depends on the curve. If p+ 1− t is

a smooth number, then ECM will probably succeed and reveal the unknown
factor p. ECM is a sub-exponential factoring algorithm, with expected run
time of

O
(

exp
{√

(2 + o(1)) log p log log p
}
Mult(M)

)
where the o(1) term tends to 0 as p tends to +∞ and Mult(M) denotes the
cost of multiplication mod M . The largest factor known to have been found
by ECM is a 67-digit factor of the number 10381 +1, found by B. Dodson with
P. Zimmerman’s GMP-ECM program in August 2006 (see [150]). According



A.3. USEFUL LEMMAS 61

Table A.1: Running times for factoring N = pq with q < p < 2q
n = Number of bits of q 60 70 80 90 100 110 120 130
T = Time in seconds 0.282 0.844 3.266 13.453 57.500 194.578 921.453 3375.719

to Brent’s formula [22]
√
D = (Y − 1932.3)/9.3 where D is the number of

decimal digits in the largest factor found by ECM up to a given date Y , a
70-digit factor could be found by ECM around 2010.

In Table 1, we give the running times obtained on a Intel(R) Pentium(R)
4 CPU 3.00 GHz to factor an RSA modulus N = pq of size 2n bits with
q < p < 2q with ECM, using the algebra system Pari-GP [125].

Extrapolating Table 1, we find the formula

log T = 2.609
√
n− 21.914 or equivalently T = exp

{
2.609

√
n− 21.914

}
,

where T denotes the running time to factor an RSA modulus N = pq with 2n
bits. Extrapolating, we can extract a prime factor of 50 digits (≈ 166 bits)
in 1 day, 9 hours and 31 minutes. Throughout this paper, we then assume
that ECM is efficient to extract prime factors up to the bound Becm = 1050.

A.3 Useful lemmas

In this section we prove three useful lemmas. We begin with a simple lemma
fixing the sizes of the prime factors of the RSA modulus.

Lemma A.3.1. Let N = pq be an RSA modulus with q < p < 2q. Then

2−
1
2N

1
2 < q < N

1
2 < p <

√
2N

1
2 .

Proof. Assume q < p < 2q. Multiplying by p, we get N < p2 < 2N or
equivalently N

1
2 < p <

√
2N

1
2 . Since q = N

p , we obtain 2−
1
2N

1
2 < q < N

1
2 and

the lemma follows.

Our second lemma is a consequence of Theorem A.2.2 and Lemma A.3.1.
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Lemma A.3.2. Let N = pq be an RSA modulus with q < p < 2q. Suppose
|u| < N

1
4 . If p− u < N

1
2 or p− u >

√
2N

1
2 , then the factorization of N can

be found in polynomial time.

Proof. Assume q < p < 2q and |u| < N
1
4 . If p− u < N

1
2 , then p < N

1
2 + u <

N
1
2 +N

1
4 . Combining this with Lemma A.3.1, we obtain

N
1
2 < p < N

1
2 +N

1
4 .

It follows that p̃ = N
1
2 is an approximation of p with 0 < p − p̃ < N

1
4 .

By Theorem A.2.2, we deduce that the factorization of N can be found in
polynomial time.

Similarly, if p − u >
√

2N
1
2 , then p >

√
2N

1
2 + u >

√
2N

1
2 − N

1
4 and

using Lemma A.3.1, we get

√
2N

1
2 > p >

√
2N

1
2 −N

1
4 .

It follows that p̃ =
√

2N
1
2 satisfies 0 > p − p̃ > −N 1

4 . Again, by Theo-
rem A.2.2, we conclude that the factorization of N can be found in polynomial
time.

Our third lemma is a consequence of the Fermat Factoring Method (see
e.g. [146]). We show here that it is an easy consequence of Theorem A.2.2
and Lemma A.3.1.

Lemma A.3.3. Let N = pq be an RSA modulus with q < p < 2q. If
p− q < N

1
4 , then the factorization of N can be found in polynomial time.

Proof. Assume q < p < 2q and p − q < N
1
4 . Combining with Lemma A.3.1,

we get

N
1
2 < p < q +N

1
4 < N

1
2 +N

1
4 .

It follows that p̃ = N
1
2 is an approximation of p with 0 < p − p̃ < N

1
4 .

By Theorem A.2.2, we conclude that the factorization of N can be found in
polynomial time.
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A.4 Properties of ψ(u, v)

Let N = pq be an RSA modulus with q < p < 2q. The principal object of
investigation of this section is the polynomial ψ(u, v) = (p− u)(q − v) when
p and q are fixed.

Lemma A.4.1. Let u be an integer with |u| < N
1
4 . Put v =

[
− qu
p−u

]
. Then

|ψ(u, v)−N | < 2−
1
2N

1
2 .

Proof. Since v is the nearest integral value to − qu
p−u , then

−1

2
≤ − qu

p− u
− v < 1

2
.

Hence

q +
qu

p− u
− 1

2
≤ q − v < q +

qu

p− u
+

1

2
.

Multiplying by p− u, we get

N − 1

2
(p− u) ≤ (p− u)(q − v) < N +

1

2
(p− u).

It follows that

|(p− u)(q − v)−N | ≤ 1

2
(p− u).

Since |u| < N
1
4 , then by Lemma A.3.2, we can assume p − u <

√
2N

1
2 and

we obtain

|(p− u)(q − v)−N | ≤ 2−
1
2N

1
2 .

This completes the proof.

Lemma A.4.2. Let u be an integer with |u| < N
1
4 . Set v =

[
− qu
p−u

]
. Then

|v| ≤ |u|.

Proof. Assume q < p < 2q and |u| < N
1
4 . By Lemma A.3.3, we can assume

that p− q > N
1
4 . Then

u < N
1
4 < p− q,
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and q < p− u. Hence

|v| =
[
q|u|
p− u

]
≤ q|u|
p− u

+
1

2
< |u|+ 1

2
.

Since u and v are integers, then |v| ≤ |u| and the lemma follows.

Lemma A.4.3. Let u, u′, be integers with |u|, |u′| < N
1
4 . Define

v =

[
− qu

p− u

]
and v′ =

[
− qu′

p− u′

]
.

If v = v′, then |u′ − u| ≤ 1.

Proof. Suppose v′ = v. Then, from the definitions of v and v′, we obtain∣∣∣∣ qu′

p− u′
− qu

p− u

∣∣∣∣ < 1,

Transforming this, we get

|u′ − u| < (p− u)(p− u′)
N

.

By Lemma A.3.3 we can assume that p − u <
√

2N
1
2 and p − u′ <

√
2N

1
2 .

Then

|u′ − u| <

(√
2N

1
2

)2

N
= 2.

Since u and u′ are integers, the lemma follows.

Lemma A.4.4. Let u, u′, be integers with |u|, |u′| < N
1
4 . Define

v =

[
− qu

p− u

]
and v′ =

[
− qu′

p− u′

]
.

If ψ(u, v) = ψ(u′, v′), then u = u′.

Proof. Assume that ψ(u, v) = ψ(u′, v′), that is (p−u)(q−v) = (p−u′)(q−v′).
If v = v′, then p−u = p−u′ and u = u′. Next, assume for contradiction that
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v 6= v′. Without loss of generality, assume that u > u′. Put ψ = ψ(u, v) =
ψ(u′, v′) and let U(ψ, α) as defined by (A.4), i.e.

U(ψ, α) = #

{
(d, d′) : d|ψ, d′|ψ, gcd(d, d′) = 1,

∣∣∣∣log
d

d′

∣∣∣∣ < (logψ)α
}
.

Let g = gcd(p− u, p− u′), d = p−u
g and d′ = p−u′

g . Hence gcd(d, d′) = 1. We
have

d

d′
=
p− u
p− u′

= 1− u− u′

p− u′
.

By Lemma A.3.2, we can assume that p− u > N
1
4 . For N > 28 we have

0 <
u− u′

p− u′
<

2N
1
4

N
1
2

= 2N−
1
4 <

1

2
.

Using that | log(1− x)| < 2x holds for 0 < x < 1
2 this yields∣∣∣∣log

d

d′

∣∣∣∣ =

∣∣∣∣log

(
1− u− u′

p− u′

)∣∣∣∣ < 2× u− u′

p− u′
< 2
√

2N−
1
4 = (logψ)α ,

where

α =
log
(

2
√

2N−
1
4

)
log(log(ψ))

.

It follows that U(ψ, α) ≥ 1. On the other hand, we have

α =
log
(

2
√

2N−
1
4

)
log(log(ψ))

≤
log
(

2
√

2N−
1
4

)
log
(

log
(
N − 2−

1
2N

1
2

)) < 1− log 3,

where we used Lemma A.4.1 in the medium step and N > 27 in the final
step. Using the bound (A.5), we have actually

U(ψ, α) ≤ (logψ)log 3−1+α+o(1) ≤ (logN)δ+o(1),

where δ = log 3 − 1 + α < 0 and we deduce U(ψ, α) = 0, a contradiction.
Hence v = v′, u = u′ and the lemma follows.

Lemma A.4.5. Let u, u′ be integers with |u|, |u′| < N
1
4 . Define

v =

[
− qu

p− u

]
and v′ =

[
− qu′

p− u′

]
.
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Assume that ψ(u, v) < ψ(u′, v′). Let [a0, a1, a2, · · · ] be the continued fraction

expansion of ψ(u,v)
ψ(u′,v′). Then a0 = 0, a1 = 1 and a2 > 2−

1
2N

1
2 − 1

2.

Proof. Let us apply the continued fraction algorithm (see e.g. of [57], p. 134).
Assuming ψ(u, u) < ψ(u′, v′), we get

a0 =

⌊
ψ(u, v)

ψ(u′, v′)

⌋
= 0.

Next, we have

a1 =

⌊
1

ψ(u,v)
ψ(u′,v′) − a0

⌋
=

⌊
ψ(u′, v′)

ψ(u, v)

⌋
.

By Lemma A.4.1, we have

0 < ψ(u′, v′)− ψ(u, v) ≤ |ψ(u, v)−N |+ |ψ(u′, v′)−N | <
√

2N
1
2 . (A.6)

Combining this with Lemma A.4.1, we get

0 <
ψ(u′, v′)

ψ(u, v)
− 1 =

ψ(u′, v′)− ψ(u, v)

ψ(u, v)
<

√
2N

1
2

ψ(u, v)
<

√
2N

1
2

N − 2−
1
2N

1
2

< 1.

From this, we deduce a1 = 1. Finally, combining (A.6) and Lemma A.4.1,
we get

a2 =

⌊
1

ψ(u′,v′)
ψ(u,v) − a1

⌋
=

⌊
ψ(u, v)

ψ(u′, v′)− ψ(u, v)

⌋
>
N − 2−

1
2N

1
2

√
2N

1
2

= 2−
1
2N

1
2 − 1

2
.

This completes the proof.

A.5 The new attack

In this section we state our new attack. Let N = pq be an RSA modulus
with q < p < 2p. Let e be a public exponent satisfying an equation eX −
ψ(u, v)Y = 1 with integers X, Y , u, v such that

1 ≤ Y < X < 2−
1
4N

1
4 , |u| < N

1
4 , v =

[
− qu

p− u

]
,
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and with the condition that all prime factors of p−u or q− v are ≤ Becm =
1050. Our goal is to solve this equation. As in Wiener’s approach, we use the
continued fraction algorithm to recover the unknown values X and Y .

Theorem A.5.1. Let N = pq be an RSA modulus with q < p < 2p. Suppose
that the public exponent e satisfies an equation eX − ψ(u, v)Y = 1 with

|u| < N
1
4 , v =

[
− qu

p− u

]
, 1 ≤ Y < X < 2−

1
4N

1
4 .

Then Y
X is one of the convergents of the continued fraction expansion of e

N .

Proof. Starting with the equation eX − ψ(u, v)Y = 1, we get

eX −NY = 1− (N − ψ(u, v))Y.

Together with Lemma A.4.1, this implies∣∣∣∣ eN − Y

X

∣∣∣∣ =
|1− (N − ψ(u, v))Y |

NX

≤ 1 + |(N − ψ(u, v))|Y
NX

≤ 1 + 2−
1
2N

1
2Y

NX

≤ 2 +
√

2N
1
2 (X − 1)

2NX
.

Suppose we can upperbound the right-hand side term by 1
2X2 , that is

2 +
√

2N
1
2 (X − 1)

2NX
<

1

2X2
,

then, applying Theorem A.2.1 the claim follows. Rearranging to isolate X,
this leaves us with the condition

√
2N

1
2X2 −

(√
2N

1
2 − 2

)
X −N < 0.

It is not hard to see that the condition is satisfied if X < 2−
1
4N

1
4 . This gives

us the theorem.
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Afterwards, we combine ECM, integer relation detection algorithms and
Coppersmith’s method to factor N = pq.

Theorem A.5.2. Let N = pq be an RSA modulus with q < p < 2p. Let
Becm be the ECM-bound. Suppose that the public exponent e < N satisfies
an equation eX − ψ(u, v)Y = 1 with

|u| < N
1
4 , v =

[
− qu

p− u

]
, 1 ≤ Y < X < 2−

1
4N

1
4 .

If p− u or q − v is Becm-smooth, then we can efficiently factor N .

Proof. By Theorem A.5.1 we know that X and Y can be found among the
convergents of the continued expansion of e

N . From X and Y , we get

ψ(u, v) = (p− u)(q − v) =
eX − 1

Y
.

Without loss of generality, suppose that p− u is Becm-smooth. Using ECM,
write eX−1

Y = M1M2 where M1 is Becm-smooth. Let ω(M1) denote the
number of distinct prime factors of M1. Then the prime factorization of
M1 is of the form

M1 =

ω(M1)∏
i=1

paii ,

where the ai ≥ 1 are integers and the pi are distinct primes ≤ Becm. Since
p− u is Becm-smooth, then p− u a divisor of M1, so that

p− u =

ω(M1)∏
i=1

pxii , (A.7)

where the xi are integers satisfying 0 ≤ xi ≤ a1. By Lemma A.3.2, we can
assume that N

1
2 < p − u <

√
2N

1
2 . Combining this with (A.7) and taking

logarithms, we get

0 <

ω(M1)∑
i=1

xi log pi −
1

2
logN <

1

2
log 2. (A.8)
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These inequalities are related to Baker’s famous theory of linear forms in
logarithms [7] and can be formulated as a nearly closest lattice problem in the
1-norm. They can be solved using the LLL [86] or the PSLQ algorithm [47].
The complexity of LLL and PSLQ depends on ω(M1). Since Hardy and
Ramanujan (see e.g.Theorem 431 of [57]), we know that, in average, ω(M1) ∼
log logM1 if M1 is uniformly distributed. Since X < 2−

1
4N

1
4 , we have for

e < N

M1 ≤
eX − 1

Y
<
eX

Y
≤ eX < N

5
4 ,

This implies that the number of primes dividing M1 satisfies

ω(M1) ∼ log logM1 ∼ log logN.

Next, let us investigate the number of solutions of (A.8) which is related
to the number of divisors of M1. Let τ(M1) denote the number of positive
divisors of M1. The prime decomposition of M1 gives the exact value

τ(M1) =

ω(M1)∏
i=1

(1 + ai).

By Dirichlet’s Theorem, we know that if M1 is uniformly distributed, then
the average order of τ(M1) is logM1 (see Theorem 319 of [57]). It follows
that the average number of divisors of M1 is

τ(M1) ∼ log(M1) ∼ log(N).

This gives in average the number of solutions to the inequalities (A.8).

Next, let D be a divisor of M1 satisfying (A.8). If D is a good candidate
for p − u with |u| < N

1
4 , then applying Theorem A.2.2, we get the desired

factor p. This concludes the theorem.

Notice that the running time is dominated by ECM since every step in
our attack can be done in polynomial time and the number of convergents
and divisors are bounded by O(logN).



70 APPENDIX A. ANOTHER GENERALIZATION OF WIENER’S ATTACK ON RSA

A.6 The number of exponents for the new method

In this section, we estimate the number of exponents for which our method
works. Let N = pq be an RSA modulus with q < p < 2q. The principal
object of investigation of this section is the set

H(N) =
{
e : e < N, ∃u ∈ V (p), ∃X < 2−

1
4N

1
4 , e ≡ X−1 (mod ψ(u, v))

}
,

where

V (p) =
{
u : |u| < p

1
2 , p− u is Becm-smooth

}
, (A.9)

and v =
[
− qu
p−u

]
.

We will first show that every public exponent e ∈ H(N) is uniquely
defined by a tuple (u,X). We first deal with the situation when an exponent
e is defined by different tuples (u,X) and (u,X ′).

Lemma A.6.1. Let N = pq be an RSA modulus with q < p < 2p. Let u, v,
X, X ′ be integers with 1 ≤ X,X ′ < 2−

1
4N

1
4 and gcd(XX ′, ψ(u, v)) = 1 where

v =
[
− qu
p−u

]
. Define

e ≡ X−1 (mod ψ(u, v)) and e′ ≡ X ′−1 (mod ψ(u, v)).

If e = e′, then X = X ′.

Proof. Since e ≡ X−1 (mod ψ(u, v)), there exists a positive integer Y such
that eX − ψ(u, v)Y = 1 with gcd(X, Y ) = 1. Similarly, e′ satisfies e′X ′ −
ψ(u, v)Y ′ = 1 with gcd(X ′, Y ′) = 1. Assume that that e = e′. Then

1 + ψ(u, v)Y

X
=

1 + ψ(u, v)Y ′

X ′
.

Combining this with Lemma A.4.1, we get

|XY ′ −X ′Y | = |X
′ −X|

ψ(u, v)
<

2−
1
4N

1
4

N − 2−
1
2N

1
2

< 1.

Hence XY ′ = X ′Y and since gcd(X, Y ) = 1, we get X ′ = X and the lemma
follows.
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Next, we deal with the situation when an exponent e is defined by dif-
ferent tuples (u,X) and (u′, X ′) with u 6= u′ and v = v′.

Lemma A.6.2. Let N = pq be an RSA modulus with q < p < 2p. Let u,
u′ be integers with |u|, |u′| < N

1
4 . Let X, X ′ be integers with 1 ≤ X,X ′ <

2−
1
4N

1
4 , gcd(X,ψ(u, v)) = 1, gcd(X ′, ψ(u′, v′)) = 1 where v =

[
− qu
p−u

]
and

v′ =
[
− qu′

p−u′

]
. Define

e ≡ X−1 (mod ψ(u, v)) and e′ ≡ X ′−1 (mod ψ(u′, v′)).

If v = v′ and e = e′, then X = X ′ and u = u′.

Proof. As in the proof of Lemma A.6.1, rewrite e and e′ as

e =
1 + ψ(u, v)Y

X
and e′ =

1 + ψ(u′, v′)Y ′

X ′
.

Suppose e = e′. Then

|ψ(u′, v′)XY ′ − ψ(u, v)X ′Y | = |X ′ −X|. (A.10)

Assuming v = v′ and using ψ(u, v) = (p−u)(q−v), ψ(u′, v′) = (p−u′)(q−v)
in (A.10), we get

(q − v) |(p− u′)XY ′ − (p− u)X ′Y | = |X ′ −X|.

By Lemma A.2.2, we have q − v > 2−
1
2N

1
2 −N 1

4 > N
1
4 and since |X ′ −X| <

2−
1
4N

1
4 , we get {

X ′ −X = 0,
(p− u′)XY ′ − (p− u)X ′Y = 0.

Hence X = X ′ and (p − u′)Y ′ = (p − u)Y . Suppose for contradiction that
u′ 6= u. Put g = gcd(p − u′, p − u). Then g divides (p − u) − (p − u′) =
u′ − u. Since v = v′, by Lemma A.4.3 we have |u′ − u| ≤ 1, so g = 1.
Hence gcd(p − u′, p − u) = 1 and p − u divides Y ′. Since p − u > N

1
2 and

Y ′ < X ′ < 2−
1
4N

1
4 , this leads to a contradiction, so we deduce that u′ = u.

This terminates the proof.

Using the methods used to prove Lemma A.6.1 and Lemma A.6.2 plus
some additional arguments, we shall prove the following stronger result.
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Theorem A.6.3. Let N = pq be an RSA modulus with q < p < 2p. Let u,
u′ be integers with |u|, |u′| < N

1
4 . Let X, X ′ be integers with 1 ≤ X,X ′ <

2−
1
4N

1
4 , gcd(X,ψ(u, v)) = 1, gcd(X ′, ψ(u′, v′)) = 1 where v =

[
− qu
p−u

]
and

v′ =
[
− qu′

p−u′

]
. Define

e ≡ X−1 (mod ψ(u, v)) and e′ ≡ X ′−1 (mod ψ(u′, v′)).

If e = e′, then u = u′, v = v′ and X = X ′.

Proof. Assume that e = e′. Then, as in the proof of Lemma A.6.2, e and e′

satisfy (A.10). We first take care of some easy cases.

If u = u′, then v = v′ and by Lemma A.6.1, we get X = X ′.

If v = v′, then by Lemma A.6.2, we get u = u′ and X = X ′.

Without loss of generality, suppose that ψ(u, v) < ψ(u′, v′). Transform-
ing (A.10), we get∣∣∣∣XY ′X ′Y

− ψ(u, v)

ψ(u′, v′)

∣∣∣∣ =
|X ′ −X|

X ′Y ψ(u′, v′)
≤ max(X ′, X)

X ′Y ψ(u′, v′)
<

1

2(X ′Y )2
,

where the final step is trivial since, for N ≥ 210

2 max(X ′, X)X ′Y < 2×
(

2−
1
4N

1
4

)3

< N − 2−
1
2N

1
2 < ψ(u′, v′).

Combined with Theorem A.2.1, this implies that XY ′

X ′Y is one of the convergents

of the continued fraction expansion of ψ(u,v)
ψ(u′,v′) . By Lemma A.4.5, the first non

trivial convergents are 1
1 and a2

a2+1 where a2 > 2−
1
2N

1
2 − 1

2 . Observe that

a2 + 1 > 2−
1
2N

1
2 − 1

2
+ 1 = 2−

1
2N

1
2 +

1

2
> 2−

1
2N

1
2 =

(
2−

1
4N

1
4

)2

> X ′Y.

This implies that the only possibility for XY ′

X ′Y to be a convergent of ψ(u,v)
ψ(u′,v′) is 1

1 .

This gives XY ′ = X ′Y . Since gcd(X, Y ) = gcd(X ′, Y ′) = 1 then X = X ′ and
Y = Y ′. Replacing in (A.10), we get ψ(u′, v′) = ψ(u, v) and by Lemma A.4.4,
we deduce u = u′. This completes the proof.

We now determine the order of the cardinality of the set H(N). Recall
that the elements of H(N) are uniquely defined by the congruence

e ≡ X−1 (mod ψ(u, v)),
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where |u| < N
1
4 , v =

[
− qu
p−u

]
, 1 ≤ X < 2−

1
4N

1
4 and gcd(X,ψ(u, v)) = 1. In

addition, p− u is Becm-smooth.

Theorem A.6.4. Let N = pq be an RSA modulus with q < p < 2p. We have

#H(N) ≥ N
1
2−ε,

where ε is a small positive constant.

Proof. Assume Becm < p − p
1
2 . Let us consider the set V (p) as defined

by (A.9). Put x = p − p 1
2 , z = 2p

1
2 and y = Becm. Define δ > 0 and γ > 0

such that
x

1
2+δ ≤ z, y = x1/γ.

Then x ≥ z ≥ x
1
2+δ, x ≥ y ≥ x1/γ and the conditions to apply (A.3) are

fulfilled. On the other hand, we have y > exp
{

(log log x)5/3+ε
}

for x <

exp
{

107−ε} and the condition to apply (A.2) is fulfilled. Combining (A.3)
and (A.2), we get

#V (p) = Ψ(x+z, y)−Ψ(x, y) ≥ c
z

x
Ψ(x, y) = czρ (γ)

{
1 +O

(
log (γ + 1)

log(y)

)}
,

where c = c(δ, γ) > 0 and ρ (γ) is the Dickman-de Bruijn ρ-function (see
Table 2). Hence

#V (p) ≥ cρ (γ) z = 2cρ (γ) p
1
2 .

Since trivially #V (p) < z = 2p
1
2 , we get #V (p) � p

1
2 . Combining this with

Table 2, we conclude that #V (p) is lower bounded as follows

#V (p) ≥ p
1
2−ε

′
= N

1
4−ε1,

with small constants ε′ > 0 and ε1 > 0.

Next, for every integer u with |u| < N
1
4 put

W (u) =
{
X : 1 ≤ X < 2−

1
4N

1
4 , (X,ψ(u, v)) = 1

}
,

where v =
[
− qu
p−u

]
. Setting m =

⌊
2−

1
4N

1
4

⌋
, we have

#W (u) =
m∑

X=1
(X,ψ(u,v))=1

1 =
∑

d|ψ(u,v)

µ(d)
⌊m
d

⌋
≥ m

∑
d|ψ(u,v)

µ(d)

d
=
mφ(ψ(u, v))

ψ(u, v)
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Table A.2: Table of values of ρ (γ) with
(
p−√p

) 1
γ = Becm = 1050

Number of bits of p 256 512 1024 2048

γ =
log
(
p−√p

)
logBecm

≈ 1.5 3 6.25 12.50

ρ (γ) ≈(see [53]) 5.945× 10−1 4.861× 10−2 9.199× 10−6 1.993× 10−15

where µ(.) is the Möbius function and φ(.) is the Euler totient function. We
shall need the well known result (see Theorem 328 of [57]),

φ(n)

n
≥ C

log log n
,

where C is a positive constant. Applying this with n = ψ(u, v) and using
Lemma A.4.1, we get

#W (u) ≥ Cm

log logψ(u, v)
≥ 2−

1
4CN

1
4

log log
(
N + 2−

1
2N

1
2

) = N
1
4−ε2,

with a small constant ε2 > 0.

It remains to show that #H(n) ≥ N
1
4−ε where ε is a positive constant.

Indeed, for every u ∈ V (p) there are at least N
1
4−ε2 integers X ∈ W (u).

Hence
#H(n) ≥ #V (p)#W (u) ≥ N

1
2−ε1−ε2.

Setting ε = ε1 + ε2, this completes the proof of the theorem.

A.7 Conclusion

Wiener’s famous attack on RSA with d < 1
3N

0.25 shows that using the equa-
tion ed − k(p − 1)(q − 1) = 1 and a small d makes RSA insecure. In this
paper, we performed a generalization of this attack. We showed that we can
find any X and Y with 1 ≤ Y < X < 2−0.25N 0.25 from the continued fraction
expansion of e/N when they satisfy an equation

eX − Y (p− u)

(
q +

[
qu

p− u

])
= 1,
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and if p − u or q + [qu/(p − u]) is smooth enough to factor, then p and q
can be found from X and Y . Our results illustrate that one should be very
cautious when choosing some class of RSA exponent. Note that our attack,
as well as all the attacks based on continued fractions do not apply to RSA
with modulus N and small public exponents as the popular values e = 3 or
e = 216 + 1 because the non-trivial convergents of e

N are large enough to use
diophantine approximation techniques, namely Theorem A.2.1.
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Appendix B

Cryptanalysis of RSA Using the Ratio
of the Primes

AFRICACRYPT 2009
[107]

Abstract :
LetN = pq be an RSA modulus, i.e. the product of two large unknown primes
of equal bit-size. In the X9.31-1997 standard for public key cryptography,
Section 4.1.2, there are a number of recommendations for the generation of
the primes of an RSA modulus. Among them, the ratio of the primes shall
not be close to the ratio of small integers. In this paper, we show that if
the public exponent e satisfies an equation eX − (N − (ap + bq))Y = Z
with suitably small integers X, Y , Z, where a

b is an unknown convergent of
the continued fraction expansion of q

p , then N can be factored efficiently. In

addition, we show that the number of such exponents is at least N
3
4−ε where

ε is arbitrarily small for large N .

77
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B.1 Introduction

The RSA public-key cryptosystem [131] was invented by Rivest, Shamir, and
Adleman in 1978. Since then, the RSA system has been the most widely
accepted public key cryptosystem. In the RSA cryptosystem, the modulus
N = pq is a product of two primes of equal bit-size. Let e be an integer
coprime with φ(N) = (p − 1)(q − 1), the Euler function of N . Let d be the
integer solution of the equation ed ≡ 1 (mod φ(N)) with d < φ(N). We call
e the public exponent and d the private exponent. The pair (N, e) is called
the public key and the pair (N, d) is the corresponding private key.

RSA is computationally expensive as it requires exponentiations mod-
ulo the large RSA modulus N . For efficient modular exponentiation in the
decryption/signing phase, one may be tempted to choose a small d. Unfortu-
nately, Wiener [147] showed in 1990 that using continued fractions, one can
efficiently recover the secret exponent d from the public key (N, e) as long as
d < 1

3N
1
4 . Wiener’s attack is based on solving the equation ex− φ(N)y = 1

where x < 1
3N

1
4 . Since then, attacking RSA using information encoded in

the public key (N, e) has been a stimulating area of research.

Based on the lattice basis reduction, Boneh and Durfee [17] proposed
in 1999 a new attack on the use of short secret exponent d, namely, they
improved the bound to d < N0.292.

In 2004, Blömer and May [13] showed that N can be factored in poly-
nomial time for every public key (N, e) satisfying an equation ex− (N + 1−
(p+ q))k = y, with x < 1

3N
1
4 and |y| < N−

3
4ex.

Another attack using information encoded in (N, e) was recently pro-
posed by Nitaj in [104]. The idea of [104] is based on solving the equa-
tion satisfied by the public exponent e. Suppose e satisfies an equation
eX − (p − u)(q − v)Y = 1 with 1 ≤ Y ≤ X < 2−

1
4N

1
4 , |u| < N

1
4 and

v =
[
− qu
p−u

]
. If the prime factors of p− u or q− v are less than 1050, then N

can be factored efficiently.

In this paper, we propose new attacks on RSA. Let N = pq be an RSA
modulus with q < p < 2q. Let a

b be an unknown convergent of the continued



B.1. INTRODUCTION 79

fraction expansion of q
p . Define α such that ap+ bq = N

1
2+α with 0 < α < 1

2 .
We focus on the class of the public exponents satisfying an equation

eX − (N − (ap+ bq))Y = Z,

with small parameters X, Y , Z satisfying

1 ≤ Y ≤ X <
1

2
N

1
4−

α
2 , gcd(X, Y ) = 1,

and Z depends on the size of |ap−bq|. We present three attacks according to
the size of the difference |ap− bq|. The first attack concerns small difference,
i.e. |ap−bq| < (abN)

1
4 , the second attack will work for medium difference, i.e.

(abN)
1
4 < |ap− bq| < aN

1
4 , and the third attack concerns large difference, i.e.

|ap− bq| > aN
1
4 . The first attack always lead to the factorization of N . The

second and the third attacks work if, in addition, b ≤ 1052. This corresponds
to the current limit of the Elliptic Curve Method [84] to find large factors of
integers.

The attacks combine techniques from the theory of continued fractions,
Coppersmith’s method [34] for finding small roots of bivariate polynomial
equations and the Elliptic Curve Method [84] for Integer Factorization. We
also show that the set of exponents e for which our approach works is at least
N

3
4−ε where ε is a small positive constant depending only on N .

Our approach is more efficient if q
p is close to a

b with small integers a and
b. This is a step in the direction of the recommendations of the X9.31-1997
standard for public key cryptography (Section 4.1.2) which requires that the
ratio of the primes shall not be close to the ratio of small integers. It is
important to notice that, since q < p < 2q, then 0

1 and 1
1 are among the

convergents of the continued fraction expansion of q
p (see Section 2). For

a = 0, b = 1, the equation eX − (N − (ap+ bq))Y = Z becomes

eX − q(p− 1)Y = Z.

and was studied by Nitaj [104] with suitably small parameters X, Y , Z.
Consequently, in this paper, we focus on the convergents a

b with a ≥ 1. For
a = b = 1, our third attack applies and matches the attack of Blömer and
May [13].
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The rest of the paper is organized as follows. In Section 2 we give a brief
introduction to continued fractions, Coppersmith’s lattice-based method for
finding small roots of polynomials [34] and the Elliptic Curve Method of
Factorization. In Section 3 we study the properties of the convergents of the
continued fraction expansion of the ratio of the primes of N = pq. In Section
4 we present the new attacks. In Section 5, we give an estimate for the size
of the set of the public exponents for which our attacks work. Section 6
concludes the paper.

B.2 Preliminaries on Continued Fractions, Coppersmith’s Method
and The Elliptic Curve Method (ECM)

We first introduce some notation. The integer closest to x is denoted [x] and
the largest integer less than or equal to x is denoted bxc.

B.2.1 Continued Fractions and the Euclidean Algorithm

We briefly recall some basic definitions and facts that we use about continued
fractions and the Euclidean algorithm, which can be found in [57].

The process of finding the continued fraction expansion of a rational
number q

p involves the same series of long divisions that are used in the
application of the Euclidean algorithm to the pair of integers (q, p). Starting
with r−2 = q and r−1 = p, define the recursions

ai =

⌊
ri−2

ri−1

⌋
, ri = ri−2 − airi−1, i ≥ 0, (B.1)

where ai is the integer quotient bri−2/ri−1c and ri is the integer remainder
that satisfies 0 ≤ ri < ri−1. The Euclidean algorithm terminates with a series
of remainders satisfying

0 = rm < rm−1 < · · · < r2 < r1 < r0 < r−1 = p.
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The continued fraction expansion of q
p is then

q

p
= a0 +

1

a1 +
1

a2 +
1

· · · +
1

am

,

or alternatively, q
p = [a0, a1, · · · , am]. The rational number [a0, a1, · · · , ai]

with 0 ≤ i ≤ m is called the i-th convergent of q
p and satisfies

[a0, a1, · · · , ai] =
pi
qi
,

where the integers pi and qi are coprime positive integers. Note that the
integers pi and qi are also defined by the double recursions

p−2 = 0, p−1 = 1, pi = aipi−1 + pi−2, i ≥ 0, (B.2)

q−2 = 1, q−1 = 0, qi = aiqi−1 + qi−2, i ≥ 0. (B.3)

Since q < p < 2q, we have q
p < 1 and taking i = 0 in (B.1), (B.2) and (B.3),

we get

a0 =

⌊
r−2

r−1

⌋
=

⌊
q

p

⌋
= 0, r0 = q, p0 = 0, q0 = 1.

Similarly, we have 1 < p
q < 2 and taking i = 1 in (B.1), (B.2) and (B.3), we

get

a1 =

⌊
r−1

r0

⌋
=

⌊
p

q

⌋
= 1, p1 = 1, q1 = 1.

From this we deduce that the first convergents of the continued fraction
expansion of q

p are 0
1 and 1

1 .

Proposition B.2.1. Let q
p = [a0, a1, · · · , am] be a continued fraction. For

0 ≤ i < m, we have ∣∣∣∣qp − pi
qi

∣∣∣∣ < 1

q2
i

.

We terminate with a famous result on good rational approximations.
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Theorem B.2.2. Let q
p = [a0, a1, · · · , am]. If a and b are coprime positive

integers such that b < p and ∣∣∣∣qp − a

b

∣∣∣∣ < 1

2b2
,

then a = pi and b = qi for some i with 0 ≤ i ≤ m.

B.2.2 Coppersmith’s Method

At Eurocrypt’96, Coppersmith [34] introduced two lattice reduction based
techniques to find small roots of polynomial diophantine equations. The first
technique works for modular univariate polynomials, the second for bivari-
ate integer polynomial equations. Since then, Coppersmith’s techniques have
been used in a huge variety of cryptanalytic applications. Coppersmith illus-
trated his technique for solving bivariate integer polynomial equations with
the problem of finding the factors of n = xy if we are given the high order
1
4 log2 n bits of y.

Theorem B.2.3. Let n = xy be the product of two unknown integers such
that x < y < 2x. Given an approximation of y with additive error at most
n

1
4 , then x and y can be found in polynomial time.

B.2.3 The Elliptic Curve Method of Factorization

The difficulty of factoring a large number is an element of the security of
the RSA system. In the recent years, the limits of the best factorization
algorithms have been extended greatly. There are two classes of algorithms
for finding a nontrivial factor p of a composite integer n. The algorithms
in which the run time depends on the size of n: Lehman’s algorithm [83],
the Continued Fraction algorithm [97], the Multiple Polynomial Quadratic
Sieve algorithm [142], the Number Field Sieve [85]. And the algorithms in
which the run time depends on the size of p: Trial Division, Pollard’s “rho”
algorithm [129], Lenstra’s Elliptic Curve Method [84].

The Elliptic Curve Method (ECM for short) was originally proposed
by H.W. Lenstra [84] and subsequently extended by Brent [21], [22], and
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Montgomery [96]. The original part of the algorithm proposed by Lenstra is
typically referred to as Phase 1, and the extension by Brent and Montgomery
is called Phase 2. ECM is suited to find small factors p of large numbers n
and has complexity

O
(

exp
{
c
√

log p log log p
}
M(n)

)
,

where c > 0 and M(n) denotes the cost of multiplication (mod n). R.
Brent [22] extrapolated that the Elliptic Curve Method record will be a D-
digit factor in year Y (D) = 9.3

√
D + 1932.3. According to this formula,

Y (50) ≈ 1998 and Y (67) ≈ 2008. A table of the largest factors found using
the ECM is maintained by Zimmermann [150]. The largest prime factor
found using the ECM had 67 decimal digits and was found by B. Dodson on
August 24, 2006.

B.3 Useful Lemmas and Properties

First we recall a very useful lemma (see [104]).

Lemma B.3.1. Let N = pq be an RSA modulus with q < p < 2q. Then

2−
1
2N

1
2 < q < N

1
2 < p < 2

1
2N

1
2 .

The following lemma shows that a and b are of the same bit-size.

Lemma B.3.2. Let N = pq be an RSA modulus with q < p < 2q. If a
b is a

convergent of q
p with a ≥ 1, then a ≤ b ≤ 2a.

Proof. If b = 1, then a = 1 and the inequalities a ≤ b ≤ 2a are satisfied. Next,
suppose b ≥ 2. Observe that if ab is a convergent of qp then by Proposition B.2.1
we have |ap− bq| ≤ p

b ≤
p
2 . Isolating bq and dividing by q, we get

a
p

q
− p

2q
≤ b ≤ a

p

q
+

p

2q
.

Combining this with 1 < p
q < 2, we get

a− p

2q
< a

p

q
− p

2q
≤ b ≤ a

p

q
+

p

2q
< 2a+

p

2q
.
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Since p < 2q, then 0 < p
2q < 1. Hence a ≤ b ≤ 2a which completes the

proof.

The following lemma plays an important role in this paper. Recall that
the integer closest to x is denoted [x].

Lemma B.3.3. Let N = pq be an RSA modulus with q < p < 2q and
a
b a convergent of the continued fraction expansion of q

p with a ≥ 1. Let

ap+ bq = N
1
2+α with α < 1

2. If |ap+ bq −M | < 1
2N

1
2−α, then

ab =

[
M 2

4N

]
.

Proof. Set M = ap + bq + x. Using (ap− bq)2 = (ap + bq)2 − 4abN , we get,
after rearrangement,

M 2 − 4abN = (ap+ bq + x)2 − 4abN = (ap− bq)2 + 2(ap+ bq)x+ x2.(B.4)

Consider the term (ap − bq)2 on the right side of (B.4). If b = 1, then by
Lemma B.3.2, a = 1. Hence, since q < p < 2q, we have |ap− bq| = |p− q| =
p − q < p

2 . If b ≥ 2, then by Proposition B.2.1, we have |ap − bq| < p
b ≤

p
2 .

Combining with Lemma B.3.1, we get in both cases

(ap− bq)2 <
(p

2

)2

<

(
2

1
2N

1
2

2

)2

=
N

2
.

Hence, using |x| < 1
2N

1
2−α, the right side of (B.4) becomes∣∣(ap− bq)2 + 2(ap+ bq)x+ x2

∣∣ ≤ (ap− bq)2 + 2(ap+ bq)|x|+ x2

<
N

2
+ 2N

1
2+α · 1

2
N

1
2−α +

1

4
N 1−2α

=

(
1

2
+ 1 +

1

4
N−2α

)
N

< 2N,

where we used α > 0. Plugging this in (B.4) and dividing by 4N , we get∣∣∣∣M 2

4N
− ab

∣∣∣∣ =

∣∣M 2 − 4abN
∣∣

4N
=

∣∣(ap− bq)2 + 2(ap+ bq)x+ x2
∣∣

4N
<

2N

4N
=

1

2
.
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It follows that ab =
[
M2

4N

]
which terminates the proof.

The following lemma indicates that ap and bq are of the same bit-size.

Lemma B.3.4. Let N = pq be an RSA modulus with q < p < 2q and a
b a

convergent of the continued fraction expansion of q
p with a ≥ 1. Then

ap < bq < 2ap or bq < ap < 2bq

Proof. First, assume ap < bq. By Lemma B.3.2, we have b ≤ 2a. Combining
this with q < p, we get bq < 2ap, and consequently ap < bq < 2ap.

Next, assume bq < ap. By Lemma B.3.2, we have a ≤ b. Combining
this with p < 2q, we get ap < 2bq and finally bq < ap < 2bq. This terminates
the proof.

B.4 The New Attacks on RSA

In this section, we show how to factor the RSA modulus N if (N, e) is a
public key satisfying an equation eX − (N − (ap + bq))Y = Z with small
parameters X, Y and Z where a

b is an unknown convergent of q
p with a ≥ 1.

We shall consider separately the cases when the difference |ap− bq| is small,
i.e. |ap − bq| < (abN)

1
4 , medium, i.e. (abN)

1
4 < |ap − bq| < aN

1
4 , and

large, i.e. |ap − bq| > aN
1
4 . This corresponds approximately to b > 2

1
2N

1
6 ,

2
1
2N

1
6 > b > 2

1
4N

1
8 and b < 2

1
4N

1
8 respectively.

First we present a result based on continued fractions.

Lemma B.4.1. Let N = pq be an RSA modulus with q < p < 2q. Let a, b
be coprime positive integers such that ap + bq = N

1
2+α with α < 1

2. Let e be
a public exponent satisfying the equation eX − (N − (ap + bq))Y = Z with
gcd(X, Y ) = 1. If |Z| < N

1
2+αX and 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 , then Y

X is a
convergent of e

N .

Proof. Set ap + bq = N
1
2+α with α < 1

2 . Rewrite eX − (N − ap − bq)Y = Z

as eX−NY = Z− (ap+ bq)Y . Now suppose |Z| < N
1
2+αX, 1 ≤ Y ≤ X and
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gcd(X, Y ) = 1. Then ∣∣∣∣ eN − Y

X

∣∣∣∣ =
|eX −NY |

NX

=
|Z − (ap+ bq)Y |

NX

≤ |Z|
NX

+
(ap+ bq)Y

NX

<
N

1
2+α

N
+
N

1
2+α

N

= 2N−
1
2+α.

Since X < 1
2N

1
4−

α
2 , then 2N−

1
2+α < 1

2X2 . Hence, by Theorem B.2.2, Y
X is one

of the convergents of the continued fraction expansion of e
N .

B.4.1 An Attack for Small Difference |ap− bq|

We now present the first attack.

Theorem B.4.2. Let N = pq be an RSA modulus with unknown factors p,
q such that q < p < 2q. Let a

b be an unknown convergent of the continued

fraction expansion of q
p with a ≥ 1 and |ap− bq| < (abN)

1
4 . Let e be a public

exponent satisfying an equation eX−(N−ap−bq)Y = Z with gcd(X, Y ) = 1.
Set ap + bq = N

1
2+α with 0 < α < 1

2. If 1 ≤ Y ≤ X < 1
2N

1
4−

α
2 and

|Z| < inf
(

(abN)
1
4 , 1

2N
1
2−α
)
Y , then N can be factored in polynomial time.

Proof. Assume |Z| < inf
(

(abN)
1
4 , 1

2N
1
2−α
)
Y , 1 ≤ Y ≤ X with gcd(X, Y ) =

1. Then

|Z| < inf

(
(abN)

1
4 ,

1

2
N

1
2−α
)
X ≤ 1

2
N

1
2−αX < N

1
2+αX.

Hence by Lemma B.4.1, Y
X is one of the convergents of e

N . Set M = N − eX
Y .

Starting with the equation eX − (N − (ap+ bq))Y = Z, we get

|ap+ bq −M | = |Z|
Y

< inf

(
(abN)

1
4 ,

1

2
N

1
2−α
)
<

1

2
N

1
2−α.
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Hence, by Lemma B.3.3, we find ab =
[
M2

4N

]
. On the other hand, we have

|ap+ bq −M | < inf

(
(abN)

1
4 ,

1

2
N

1
2−α
)
< (abN)

1
4 .

Moreover, if |ap− bq| < (abN)
1
4 , then∣∣∣∣ap− M

2

∣∣∣∣ ≤ 1

2
|ap+ bq −M |+ 1

2
|ap− bq| < 1

2
(abN)

1
4 +

1

2
(abN)

1
4 = (abN)

1
4 .

It follows that the term M
2 is an approximation of the factor ap of n = abN

with additive error at most n
1
4 . In addition, by Lemma B.3.4, the factors ap

and bq of n are of the same bit-size. Hence, using Theorem B.2.3 with n and
M
2 , we find ap, and since a < q, we get p = gcd(N, ap) which terminates the

proof.

Let us summarize the first factorization algorithm.

Algorithm 1 Small |ap− bq|
Require: a public key (N, e) satisfying N = pq, q < p < 2q and eX − (N − (ap + bq))Y = Z for

small parameters X, Y , Z where a
b is an unknown convergent of q

p with a ≥ 1.
Ensure: the prime factors p and q.
1: Compute the continued fraction expansion of e

N .

2: For every convergent Y
X of e

N with X < 1
2N

1
4 :

3: Compute M = N − eX
Y and N0 =

[
M2

4N

]
.

4: Apply Coppersmith’s algorithm (Theorem B.2.3) with n = N0N and M
2 as an approximation

of y.
5: Compute g = gcd(y,N). If 1 < g < N , then stop.

B.4.2 An Attack for Medium Difference |ap− bq|

Here we present the second attack. It is based on the Elliptic Curve Method
(ECM) which can find factors of about 52-digits. Assuming the efficiency
of ECM, every step in this attack can be done in polynomial time and the
number of convergents is bounded by O(logN). To express this fact, the
term efficient is used.
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Theorem B.4.3. Let N = pq be an RSA modulus with unknown factors p,
q such that q < p < 2q. Let a

b be an unknown convergent of the continued

fraction expansion of q
p such that a ≥ 1, (abN)

1
4 < |ap − bq| < aN

1
4 and

b ≤ 1052. Let e be a public exponent satisfying an equation eX − (N − ap−
bq)Y = Z with gcd(X, Y ) = 1. Set M = N − eX

Y and ap + bq = N
1
2+α with

0 < α < 1
2. If 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 and |Z| < min

(
aN

1
4 , 1

2N
1
2−α
)
Y , then,

under ECM, N can be factored efficiently.

Proof. Assume |Z| < min
(
aN

1
4 , 1

2N
1
2−α
)
Y , 1 ≤ Y ≤ X and gcd(X, Y ) = 1.

Then

|Z| < min

(
aN

1
4 ,

1

2
N

1
2−α
)
X ≤ 1

2
N

1
2−αX < N

1
2+αX.

It follows, by Lemma B.4.1, that Y
X is among the convergents of e

N .

Next, set M = N − eX
Y . Using the equation eX − (N − (ap+ bq))Y = Z, we

get

|ap+ bq −M | = |Z|
Y

< min

(
aN

1
4 ,

1

2
N

1
2−α
)
≤ 1

2
N

1
2−α.

Hence, by Lemma B.3.3, we find ab =
[
M2

4N

]
and by Lemma B.3.2, we know

that a and b are of equal bit-size. Hence, applying the Elliptic Curve Method

with
[
M2

4N

]
, we can efficiently find a and b assuming b ≤ 1052.

From |ap+ bq −M | < aN
1
4 , we get

∣∣∣∣p+
bq

a
− M

a

∣∣∣∣ < aN
1
4

a
= N

1
4 . (B.5)

On the other hand, by assumption, |ap − bq| < aN
1
4 . Then

∣∣∣p− bq
a

∣∣∣ < N
1
4 ,
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and combining with (B.5), we get∣∣∣∣p− M

2a

∣∣∣∣ =

∣∣∣∣12
(
p+

bq

a
− M

a

)
+

1

2

(
p− bq

a

)∣∣∣∣
≤ 1

2

∣∣∣∣p+
bq

a
− M

a

∣∣∣∣+
1

2

∣∣∣∣p− bq

a

∣∣∣∣
<

1

2
N

1
4 +

1

2
N

1
4

= N
1
4 .

This implies that M
2a is an approximation of p with additive error at most N

1
4 .

Then, using Theorem B.2.3, this gives p which terminates the proof.

Here we summarize the second factorization algorithm.

Algorithm 2 Medium |ap− bq|
Require: a public key (N, e) satisfying N = pq, q < p < 2q and eX − (N − (ap + bq))Y = Z for

small parameters X, Y , Z where a
b is an unknown convergent of q

p with a ≥ 1.
Ensure: the prime factors p and q.
1: Compute the continued fraction expansion of e

N .

2: For every convergent Y
X of e

N with X < 1
2N

1
4 :

3: Compute M = N − eX
Y and N0 =

[
M2

4N

]
.

4: if N0 < 10104 then
5: Apply ECM to find a and b such that N0 = ab and a ≤ b ≤ 2a.
6: Apply Coppersmith’s algorithm (Theorem B.2.3) with n = N and M

2a as an approximation
of y. If Coppersmith’s algorithm outputs the factors p and q of N , then stop.

7: end if

B.4.3 An Attack for Large Difference |ap− bq|

Here we present the last attack. We suppose |ap − bq| > aN
1
4 so that the

Small and the Medium difference attacks should not succeed. This attack
depends on the efficiency of the Elliptic Curve Method (ECM) to find factors
up to 1052. Assuming the efficiency of ECM, the term efficient is also used
to express the fact that every step in this attack can be done in polynomial
time.

Theorem B.4.4. Let N = pq be an RSA modulus with unknown factors p,
q such that q < p < 2q. Let a

b be an unknown convergent of the continued
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fraction expansion of q
p such that a ≥ 1 and b ≤ 1052. Let e be a public

exponent satisfying an equation eX−(N−(ap+bq))Y = Z with gcd(X, Y ) =
1. Let M = N − eX

Y . Set D =
√
|M 2 − 4abN | and ap + bq = N

1
2+α with

0 < α < 1
2. If 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 and |Z| < 1

3a|ap − bq|N
− 1

4−αY then,
under ECM, N can be factored efficiently.

Proof. Combining Proposition B.2.1 and Lemma B.3.1, we have

|ap− bq| < p

b
<

2
1
2N

1
2

b
.

Hence, since a ≤ b, this gives

1

3
a|ap− bq|N−

1
4−α <

1

3
a · 2

1
2N

1
2

b
·N−

1
4−α ≤ 2

1
2

3
N

1
4−α. (B.6)

Now, suppose |Z| < 1
3a|ap − bq|N− 1

4−αY , 1 ≤ Y ≤ X and gcd(X, Y ) = 1.
Then using (B.6), we get

|Z| < 2
1
2

3
N

1
4−αX < N

1
2+αX.

Consequently, by Lemma B.4.1, Y
X is a convergent of e

N . Next, set M =
N − eX

Y . Using the equation eX − (N − ap− bq)Y = Z, we get

|ap+ bq −M | = |Z|
Y

<
1

3
a|ap− bq|N−

1
4−α. (B.7)

Then using (B.6), we get

|ap+ bq −M | < 2
1
2

3
N

1
4−α <

1

2
N

1
2−α.

Hence, by Lemma B.3.3, ab =
[
M2

4N

]
and by Lemma B.3.2, we know that a

and b are of the same bit-size. Hence, if b ≤ 1052, then applying the Elliptic

Curve Method with
[
M2

4N

]
, we can find a and b.

Next, using |ap− bq| < 2N
1
2 , we can rewrite (B.7) as

|ap+ bq −M | < 1

3
a · 2N

1
2 ·N−

1
4−α =

2

3
aN

1
4−α < aN

1
4 . (B.8)
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Now, let D =
√
|M 2 − 4abN |. Then∣∣|ap− bq|2 −D2

∣∣ =
∣∣|ap− bq|2 − ∣∣M 2 − 4abN

∣∣∣∣
≤
∣∣(ap− bq)2 −M 2 + 4abN

∣∣
=
∣∣(ap+ bq)2 −M 2

∣∣ .
From this we deduce∣∣|ap− bq| −D∣∣ ≤ |ap+ bq −M ||ap+ bq +M |

|ap− bq|+D
.

Next, by (B.8), we have |ap+ bq−M | < aN
1
4 . Then M < ap+ bq+aN

1
4 and

ap+ bq +M < 2(ap+ bq) + aN
1
4 < 3(ap+ bq) = 3N

1
2+α.

Combining with (B.7), this leads to∣∣|ap− bq| −D∣∣ < 3 · 1
3a|ap− bq|N

− 1
4−αN

1
2+α

|ap− bq|
= aN

1
4 .

If ap− bq > 0, then combining with (B.8), we get

|2ap−M −D| =
∣∣ap+ bq −M + |ap− bq| −D

∣∣
≤
∣∣ap+ bq −M

∣∣+
∣∣|ap− bq| −D∣∣

< 2aN
1
4 .

Dividing by 2a, we find that M+D
2a is an approximation of p with additive

error at most N
1
4 .

If ap− bq < 0, then combining with (B.8), we get

|2ap−M +D| = |ap+ bq −M − (bq − ap−D)|
< |ap+ bq −M |+

∣∣|ap− bq| −D∣∣
< 2aN

1
4 .

Dividing again by 2a, we find that M−D
2a is an approximation of p with additive

error at most N
1
4 . We can then apply Theorem B.2.3 to the values M±D

2a . The
correct term will lead to the factorization of N .

Now we summarize the third factorization algorithm.
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Algorithm 3 Large |ap− bq|
Require: a public key (N, e) satisfying N = pq, q < p < 2q and eX − (N − (ap + bq))Y = Z for

small parameters X, Y , Z where a
b is an unknown convergent of q

p with a ≥ 1.
Ensure: the prime factors p and q.
1: Compute the continued fraction expansion of e

N .

2: For every convergent Y
X of e

N with X < 1
2N

1
4 :

3: Compute M = N − eX
Y and N0 =

[
M2

4N

]
.

4: if N0 < 10104 then
5: Apply ECM to find a and b such that N0 = ab and a ≤ b ≤ 2a.
6: Compute D =

√
|M2 − 4N0N |.

7: Compute m1 = M+D
2a and m2 = M−D

2a .
8: Apply Coppersmith’s algorithm (Theorem B.2.3) with n = N and m1 and m2 as approxima-

tions of y. If Coppersmith’s algorithm outputs the factors p and q, then stop.
9: end if

B.5 Estimation of the Public Exponents for which the Attacks
Apply

In this Section, we will study the size of the class of the public keys for which
our attacks can be applied. Let a

b be a convergent of q
p with a ≥ 1. Define α

by ap+ bq = N
1
2+α with 0 < α < 1

2 and let

P(a, b) =

{
(X, Y, z)

∣∣ 1 ≤ Y ≤ X <
1

2
N

1
4−

α
2 , gcd(X, Y ) = 1, |z| < N

1
4−

α
2

}
,

be the set of the parameters and

E(a, b) =

{
e
∣∣ e =

⌊
(N − (ap+ bq))

Y

X

⌋
+ z, (X, Y, z) ∈ P(a, b)

}
,

the set of the exponents. We will show that much of these exponents are
vulnerable to our attacks. To find a lower bound for the size of the sets
E(a, b), we show that different convergents a

b of q
p and different parameters in

the set P(a, b) define different exponents in the sets E(a, b).

First, we show that our attacks will work for the exponents in E(a, b):
given an exponent in E(a, b), it is possible to find the factorization of N
according to Theorem B.4.2, Theorem B.4.3 or Theorem B.4.4. First, we
start with a result for small difference |ap− bq|.
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Corollary B.5.1. Let N = pq be an RSA modulus with q < p < 2q. Let a
b

be an unknown convergent of q
p with a ≥ 1 and |ap − bq| < (abN)

1
4 . Let X,

Y be unknown coprime positive integers with 1 ≤ Y ≤ X < 1
2N

1
4−

α
2 where

ap + bq = N
1
2+α and 0 < α < 1

2. If e =
⌊
(N − (ap+ bq))YX

⌋
+ z is a public

exponent with

|z| < inf

(
(abN)

1
4
Y

X
,N

1
4−

α
2

)
,

then N can be factored in polynomial time.

Proof. Set e0 =
⌊
(N − (ap+ bq))YX

⌋
, e = e0 + z, Z = eX − (N − (ap+ bq))Y .

We want to show that the conditions of Theorem B.4.2 are satisfied. Assume
that |z| < inf

(
(abN)

1
4
Y
X , N

1
4−

α
2

)
. Then, since∣∣∣∣(N − (ap+ bq))

Y

X
− e0

∣∣∣∣ < 1,

we get

|Z| = |eX − (N − (ap+ bq))Y | = |(e0 + z)X − (N − (ap+ bq))Y |
≤ |e0X − (N − (ap+ bq))Y |+ |z|X
< (1 + |z|)X.

Observe that (1 + |z|)X < (abN)
1
4Y and, assuming X < 1

2N
1
4−

α
2 , we find

(1 + |z|)X < N
1
4−

α
2 · 1

2
N

1
4−

α
2 ≤ 1

2
N

1
2−αY.

From this, we deduce |Z| < inf
(

(abN)
1
4 , 1

2N
1
2−α
)
Y. It follows that the condi-

tions of Theorem B.4.2 are fulfilled which leads to the factorization of N .

Next, we give a result for medium difference |ap− bq|.
Corollary B.5.2. Let N = pq be an RSA modulus with q < p < 2q. Let a

b be

an unknown convergent of q
p with a ≥ 1, b ≤ 1052 and (abN)

1
4 < |ap− bq| <

aN
1
4 . Let X, Y be unknown coprime positive integers with 1 ≤ Y ≤ X <

1
2N

1
4−

α
2 where ap+ bq = N

1
2+α and 0 < α < 1

2. If e =
⌊
(N − (ap+ bq))YX

⌋
+ z

is a public exponent with

|z| < inf

(
aN

1
4
Y

X
,N

1
4−

α
2

)
,
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then, under ECM, N can be factored efficiently.

Proof. The proof is similar to that of Corollary B.5.1 and the parameters
satisfy the condition of Theorem B.4.3.

Finally, we give a result which concerns large difference |ap− bq|.

Corollary B.5.3. Let N = pq be an RSA modulus with q < p < 2q. Let a
b

be an unknown convergent of q
p with a ≥ 1, b ≤ 1052 and |ap − bq| > aN

1
4 .

Let X, Y be unknown coprime positive integers with 1 ≤ Y ≤ X < 1
2N

1
4−

α
2

where ap + bq = N
1
2+α and 0 < α < 1

2. If e =
⌊
(N − (ap+ bq))YX

⌋
+ z is a

public exponent with

|z| < min

(
1

3
a|ap− bq|N−

1
4−α

Y

X
,N

1
4−

α
2

)
,

then, under ECM, N can be factored efficiently.

Proof. Let Z = eX − (N − (ap + bq))Y , e =
⌊
(N − (ap+ bq))YX

⌋
+ z with

|z| < min
(

1
3a|ap− bq|N

− 1
4−α Y

X , N
1
4−

α
2

)
and 1 ≤ Y ≤ X < 1

2N
1
4−

α
2 . Using the

same arguments as in the proof of Corollary B.5.1, we get

|Z| < (1 + |z|)X <
1

3
a|ap− bq|N−

1
4−αY.

It follows that all the conditions of Theorem B.4.4 are fulfilled which leads
to the factorization of N .

The following result shows that distinct parameters from P(a, b) define
different exponents in E(a, b).

Lemma B.5.4. Let N = pq be an RSA modulus with q < p < 2q. Let a
b be a

convergent of q
p with a ≥ 1 and ap + bq = N

1
2+α. Let (X, Y, z), (X ′, Y ′, z′) ∈

P(a, b). Let

e =

⌊
(N − (ap+ bq))

Y

X

⌋
+ z, e′ =

⌊
(N − (ap+ bq))

Y ′

X ′

⌋
+ z′.

If e = e′ then X = X ′, Y = Y ′ and z = z′.
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Proof. Let e0 =
⌊
(N − (ap+ bq))YX

⌋
, e′0 =

⌊
(N − (ap+ bq))Y

′

X ′

⌋
. If e = e0 + z

and e′ = e′0 + z′ then∣∣∣∣(N − (ap+ bq))

(
Y ′

X ′
− Y

X

)
− e′ + e

∣∣∣∣
≤
∣∣∣∣(N − (ap+ bq))

Y ′

X ′
− e′0 − z′

∣∣∣∣+

∣∣∣∣(N − (ap+ bq))
Y

X
− e0 − z

∣∣∣∣
≤
∣∣∣∣(N − (ap+ bq))

Y ′

X ′
− e′0

∣∣∣∣+ |z′|+
∣∣∣∣(N − (ap+ bq))

Y

X
− e0

∣∣∣∣+ |z|

< 2 + |z|+ |z′|.
Suppose e = e′. Then, multiplying by XX ′, we get

(N − (ap+ bq)) |Y ′X − Y X ′| < (2 + |z|+ |z′|)XX ′. (B.9)

We want to compare the sides of (B.9). Assume that X,X ′ < 1
2N

1
4−

α
2 and

|z|, |z′| < N
1
4−

α
2 . Then

(2 + |z|+ |z′|)XX ′ < 2N
1
4−

α
2 · 1

4
N

1
2−α =

1

2
N

3
4−

3α
2 .

On the other hand, we have

N − (ap+ bq) = N −N
1
2+α = N

3
4−

3α
2

(
N

1
4+ 3α

2 −N−
1
4+ 5α

2

)
.

Since 0 < α < 1
2 , then 1

4 + 3α
2 > −1

4 + 5α
2 and N

1
4+ 3α

2 > N−
1
4+ 5α

2 + 1. Hence

N − (ap + bq) > N
3
4−

3α
2 . From our comparison of the sides of (B.9), we

conclude that Y ′X − Y X ′ = 0. Since gcd(X, Y ) = 1 and gcd(X ′, Y ′) = 1,
we find X = X ′ and Y = Y ′ and consequently z = z′. This terminates the
proof.

Finally, the following result shows that different convergents of q
p lead to

different exponents in E(a, b).

Lemma B.5.5. Let N = pq be an RSA modulus with q < p < 2q. Let a
b and a′

b′

be convergents of q
p with a ≥ 1, a′ ≥ 1, ap+bq = N

1
2+α and a′p+b′q = N

1
2+α′.

Let (X, Y, z) ∈ P(a, b) and (X ′, Y ′, z′) ∈ P(a′, b′). Let

e =

⌊
(N − (ap+ bq))

Y

X

⌋
+ z, e′ =

⌊
(N − (a′p+ b′q))

Y ′

X ′

⌋
+ z′.

If e = e′ then X = X ′, Y = Y ′, a = a′, b = b′ and z = z′.
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Proof. Assume for contradiction that a 6= a′, a < a′ say. Then b < b′. Hence
ap+ bq < a′p+ b′q and α < α′. Combining with Lemma B.3.1, we get

N − (ap+ bq)− (N − (a′p+ b′q)) = (a′ − a)p+ (b′ − b)q > p+ q > p > N
1
2 ,

which leads to

N − (ap+ bq) > N − (a′p+ b′q) +N
1
2 (B.10)

Now, set e =
⌊
(N − (ap+ bq))YX

⌋
+ z, e′ =

⌊
(N − (a′p+ b′q))Y

′

X ′

⌋
+ z′ and

assume e = e′. Then, since |z| < N
1
4−

α
2 and |z′| < N

1
4−

α′
2 < N

1
4−

α
2 , we get∣∣∣∣(N − (a′p+ b′q))

Y ′

X ′
− (N − (ap+ bq))

Y

X

∣∣∣∣ < 2 + |z|+ |z′| < 2N
1
4−

α
2 .(B.11)

On the other hand, we know that Y
X and Y ′

X ′ are convergents of the continued

fraction expansion of e
N . Hence Y

X ≈
Y ′

X ′ and, combining (B.10) with X <
1
2N

1
4−

α
2 , we get

(N − (ap+ bq))
Y

X
> (N − (a′p+ b′q))

Y

X
+N

1
2
Y

X

> (N − (a′p+ b′q))
Y

X
+N

1
2 · 1

1
2N

1
4−

α
2

≈ (N − (a′p+ b′q))
Y ′

X ′
+ 2N

1
4+α

2

It follows that∣∣∣∣(N − (a′p+ b′q))
Y ′

X ′
− (N − (ap+ bq))

Y

X

∣∣∣∣ > 2N
1
4+α

2 .

Comparing with (B.11), we get a contradiction. Hence a = a′ and b =
b′. Now, we have

⌊
(N − (ap+ bq))YX

⌋
+ z =

⌊
(N − (ap+ bq))Y

′

X ′

⌋
+ z′. By

Lemma B.5.4, we conclude that X = X ′, Y = Y ′ and z = z′. This terminates
the proof.

Let us now prove a lower bound for the size of the number of the ex-
ponents e that are vulnerable to our approach. Note that we do not require
gcd(e, φ(N)) = 1 as usual.
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Theorem B.5.6. Let N = pq be an RSA modulus with q < p < 2q. Then
the number of the exponents e ∈ E(a, b) that are vulnerable to the attacks for
some convergent a

b 6=
0
1 of q

p is at least N
3
4−ε where ε is arbitrarily small for

suitably large N .

Proof. We focus on E(1, 1) since the total number of exponents is much higher.
Let α0 such that p + q = N

1
2+α0. Since q < p, then 2q < p + q < 2p and by

Lemma B.3.1, we get 2
1
2N

1
2 < N

1
2+α0 < 2

3
2N

1
2 . From this we deduce α0 ≈ 0.

On the other hand, by Corollary B.5.3, we need

|z| < min

(
1

3
|p− q|N−

1
4−α0

Y

X
,N

1
4−

α0
2

)
,

where 1 ≤ Y ≤ X < 1
2N

1
4−

α0
2 and gcd(X, Y ) = 1. Observe that for the

normal RSA, we have p− q > cN
1
2 with a constant c > 0. So let

|z| < min

(
c

3
N

1
4−α0

Y

X
,N

1
4−

α0
2

)
,

and put

X0 =

⌊
1

2
N

1
4−

α0
2

⌋
.

We want to estimate

#E(1, 1) =

X0∑
X=1

X−1∑
Y=1

gcd(X,Y )=1

|z|.

Taking |z| < c
3N

1
4−α0 Y

X , we get

#E(1, 1) =
c

3
N

1
4−α0

X0∑
X=1

X−1∑
Y=1

gcd(X,Y )=1

Y

X
=
c

6
N

1
4−α0

X0∑
X=1

φ(X), (B.12)

where we used the well known identity

X−1∑
Y=1

gcd(X,Y )=1

Y =
1

2
Xφ(X).
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Similarly, taking |z| < N
1
4−

α0
2 , we get

#E(1, 1) = N
1
4−

α0
2

X0∑
X=1

X−1∑
Y=1

gcd(X,Y )=1

1 = N
1
4−

α0
2

X0∑
X=1

φ(X). (B.13)

We can rewrite (B.12) and (B.13) in a single expression

#E(1, 1) = N
1
4−ε0

X0∑
X=1

φ(X),

for a suitable ε0 > 0. It is well known (see Theorem 328 of [57]), that

φ(X) >
CX

log logX
,

where C is a positive constant. Since X < N , then φ(X) > XN−ε1 for a
small positive constant ε1. From this, we deduce

#E(1, 1) > N
1
4−ε0−ε1

X0∑
X=1

X > N
1
4−ε0−ε1

X2
0

2
>

1

8
N

3
4−α0−ε0−ε1,

where we used X0 ≈ 1
2N

1
4−

α0
2 . We get finally #E(1, 1) > N

3
4−ε, with a

constant ε ≈ α0+ε0+ε1 depending only on N . This terminates the proof.

B.6 Conclusion

In this paper, we showed how to perform three attacks on RSA using the
ratio of the primes. The attacks apply when the public key (N, e) satisfies
an equation eX − (N − (ap+ bq))Y = Z with suitably small parameters X,
Y and Z where a

b is an unknown convergent of q
p with a ≥ 1. The attacks

combine a variety of techniques, including continued fractions, Coppersmith’s
lattice based method and H.W. Lenstra’s Elliptic Curve Method for Factoring
(ECM). Our results illustrate once again the fact that we should be very
cautious when using RSA with specific exponents. Moreover, we showed
that the number of such exponents is at least N

3
4−ε. Using the notion of

weak keys, as defined by Blömer and May [13], the results of this paper show
that this set of RSA public keys is a class of weak keys.
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C.1 Introduction

The RSA public-key cryptosystem was invented by Rivest, Shamir, and Adle-
man [131] in 1978. Since then, the RSA system has been the best known and
most widely accepted public key cryptosystem. Encryption and decryption in
RSA each requires an exponentiation modulo a large modulus N which is the
product of two large primes, p and q. The exponents in the exponentiations
are the public exponent e for encryption and the private exponent d for de-
cryption. The exponents e and d are related by the equation ed−kφ(N) = 1
for some positive integer k where φ(N) = (p− 1)(q − 1) is the Euler totient
function of N . To reduce the decryption time or signature generation, it may
be tempting to use a small private exponent d. Unfortunately, based on the
convergents of the continued fraction expansion of e

N , Wiener [147] showed

that the RSA system can be totally broken if d < 1
3N

1
4 . Then, in 1999, based

on lattice basis reduction, Boneh and Durfee [17] proposed a new attack on
the use of short secret exponents. They showed that the RSA system can
be totally broken if d < N0.292. In 1994, Blömer and May [13] proposed
a different attack on RSA with a public exponent e satisfying the equation

ex+ y = kφ(N) with x < 1
3N

1
4 and |y| < O

(
N−

3
4ex
)

. This attack combines

the convergents of the continued fraction expansion of e
N and the seminal

work of Coppersmith [34] for solving bivariate polynomial equations.

In 1999, Guo (see [68]) proposed an attack on RSA when there are two or
more instances of RSA, having the same modulus, with public exponents ei,
i = 1, 2, . . .. The attack is based on the continued fraction algorithm and can
be used to factor the modulus if the private exponents di are each less than
N

1
3−ε for some ε > 0. In 1999, Howgrave-Graham and Seifert [68] proposed

an extension of Guo’s attack that allows the RSA system to be broken in
the presence of two decryption exponents (d1, d2) with d1, d2 < N

5
14 . In

the presence of three decryption exponents, Howgrave-Graham and Seifert
improved the bound to N

2
5 . The attack of Howgrave-Graham and Seifert is

based on lattice reduction methods. Very recently, Sarkar and Maitra [133]
used a different lattice based technique and improved the bound N

5
14 for the

case of two decryption exponents up to N 0.416. In [133], Sarkar and Maitra
proposed a generalized attack when n ≥ 2 many decryption exponents di are
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used with the same RSA modulus N and di < N
3n−1
4n+4 for each i, 1 ≤ i ≤ n.

In this paper, we combine the attack of Guo and the attack of Blömer
and May to mount a new attack on RSA with two or three decryption ex-
ponents and a common modulus. Let N = pq be an RSA modulus with
q < p < 2q and ei, i = 1, 2, . . ., be two or three public exponents. Assume
that each exponent satisfies an equation eixi − φ(N)yi = zi. We show, that,
depending on certain inequalities verified by the parameters xi, yi, zi, one can
find the factorization of the RSA modulus N . The new approach still uses
the continued fraction algorithm and the lattice-reduction basis technique of
Coppersmith [34].

The rest of this paper is organized as follows. In Section 2 we present
the attack of Guo as well as the attack of Blömer and May. In Section 3,
we prove three lemmas to be used in our new approach. We present the new
approach for two exponents in Section 4 and for three exponents in Section
5. We conclude the paper in Section 6.

C.2 Former Attacks

Since the motivation for our new attack originates from Guo’s continued frac-
tion attack and the Blömer and May lattice attack, we revisit these attacks
in this section.

C.2.1 Guo’s attack for two exponents

Guo’s attack was described in [68] by Howgrave-Graham and Seifert (see
also [62]). It is based on the continued fraction algorithm and makes use of
the following result (see [57], Theorem 184).

Theorem C.2.1 (Legendre). Let ξ be a real number. If a and b are coprime
integers such that ∣∣∣ξ − a

b

∣∣∣ < 1

2b2
,

then a
b is a convergent of the continued fraction expansion of ξ.
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Guo’s attack concerns at least two public exponents e1, e2 such that
e1d1 − k1φ(N) = 1 and e2d2 − k2φ(N) = 1, where φ(N) = (p − 1)(q − 1).
Eliminating φ(N), we find the equation e1d1k2 − e2d2k1 = k2 − k1. Dividing
by e2d1k2, we get ∣∣∣∣e1

e2
− d2k1

d1k2

∣∣∣∣ =
|k2 − k1|
e2d1k2

.

Hence, if 2|k2 − k1|d1k2 < e2, then

|k2 − k1|
e2d1k2

<
1

2(d1k2)2
.

Thus, by Theorem C.2.1, d2k1d1k2
must be one of the convergents of the continued

fraction of e1
e2

. Moreover, if d1 and d2 are bounded, d1 < N δ, d2 < N δ say,
then k1 and k2 are also bounded since for ei < φ(N) we have

ki =
eidi − 1

φ(N)
<

eidi
φ(N)

< di.

It follows that the condition 2|k2 − k1|d1k2 < e2 reduces to 2N 3δ < N , or
equivalently δ < 1

3 − ε, where ε is a small positive constant.

In practice, Guo’s attack is effective if one can find d1 or d2 using the
convergent d2k1

d1k2
. This means that the quantities di, ki, i = 1, 2, must satisfy

gcd(d1k2, d2k1) = 1. Moreover, it is necessary to factor d1k2 or d2k1. Since
ki < di < N δ, i = 1, 2, then max (d1k2, d2k1) < N 2δ < N

2
3 . Depending on

the structure of the quantities di and ki, i = 1, 2, the numbers d1k2 and d2k1

are not expected to be of a difficult factorization shape and can be factored
easily. Using the exact values of d1 and k1 in e1d1 − k1φ(N) = 1, this gives
the factorization of N .

Later, using lattice based techniques, Howgrave-Graham and Seifert [68]
increased the bound up to d1, d2 < N

5
14 . This bound was recently improved

to d1, d2 < N 0.416 by Sarkar and Maitra [133].

C.2.2 Guo’s attack for three exponents

To avoid the factorization problem, Guo proposed to use three exponents.
Consider that three public exponents e1, e2, e3 satisfying the key equations

e1d1 − k1φ(N) = 1, e2d2 − k2φ(N) = 1, e3d3 − k3φ(N) = 1,
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satisfy also the inequalities 2|k2 − k1|d1k2 < e2 and 2|k3 − k1|d1k3 < e3.
Combining the key equations, we get

e1d1k2 − e2d2k1 = k2 − k1, e1d1k3 − e3d3k1 = k3 − k1.

Proceeding as in Guo’s first attack, we find the inequalities∣∣∣∣e1

e2
− d2k1

d1k2

∣∣∣∣ =
|k2 − k1|
e2d1k2

<
1

2(d1k2)2
,∣∣∣∣e1

e3
− d3k1

d1k3

∣∣∣∣ =
|k3 − k1|
e3d1k3

<
1

2(d1k3)2
.

Using Theorem C.2.1, we see that d2k1
d1k2

is one of the convergents of the con-

tinued fraction of e1
e2

and similarly, d3k1
d1k3

is one of the convergents of the
continued fraction of e1

e3
. Suppose in addition that gcd(d2k1, d1k2) = 1,

gcd(d3k1, d1k3) = 1, gcd(d2, d3) = 1 and gcd(k2, k3) = 1, then d2k1
d1k2

and d3k1
d1k3

are in lowest terms and

gcd(d1k2, d1k3) = d1, gcd(d2k1, d3k1) = k1.

With d1 and k1 known, the factorization of N becomes trivial using the
equation e1d1 − k1φ(N) = 1.

In 1999, it was shown by Howgrave-Graham and Seifert [68] that the
bound di < N

1
3 with i = 1, 2, 3 can be improved using lattice reduction

techniques and very recently, Sarkar and Maitra [134] increased this bound
up to di < N

1
2 .

C.2.3 The Blömer and May attack

In 2004, Blömer and May [13] proposed an attack on RSA with a modulus
N = pq with q < p < 2q and a public exponent e satisfying an equation ex+
y = kφ(N). The attack is based on a combination of the continued fraction
algorithm and Coppersmith’s lattice-based technique for finding small roots
of bivariate polynomial equation [34].

Theorem C.2.2 (Coppersmith). Let N = pq be the product of two unknown
primes such that q < p < 2q. Suppose we know an approximation P̃ of p

such that
∣∣∣p− P̃ ∣∣∣ < 2N

1
4 . Then N can be factored in polynomial time.
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Suppose that e satisfies an equation ex + y = kφ(N). Under the condi-
tions

0 < x <
1

3
N

1
4 and |y| = |ex− kφ(N)| ≤ O

(
N−

3
4ex
)
, (C.1)

the fraction k
x satisfies

∣∣k
x −

e
N

∣∣ < 1
2x2 . By Theorem C.2.1, this shows that k

x

can be found among the convergents of the continued fraction expansion of e
N .

Using φ(N) = (p−1)(q−1) = N + 1−p− q in the equation ex+y = kφ(N),
Blömer and May showed that N+1− ex

k is an approximation of p+q satisfying∣∣∣p+ q −
(
N + 1− ex

k

)∣∣∣ =
|y|
k
<

4

3
cN

1
4 ,

where c < 1 is a positive constant satisfying p− q > cN
1
2 . Next, they derived

that
√(

N + 1− ex
k

)2 − 4N is an approximation of p− q up to an error term

at most 9N
1
4 . Finally, combining the approximations of p+ q and p− q, they

found an approximation of p up to an error term of at most 6N
1
4 which leads

to the exact value of p using Coppersmith’s Theorem C.2.2.

C.3 Useful Lemmas

In this section we state and prove three lemmas needed for the new attack.
The first is the following result.

Lemma C.3.1. Let N = pq be an RSA modulus with q < p < 2q. Suppose
that S is an approximation of p+ q satisfying S > 2

√
N and

|p+ q − S| < D

S
N

1
4 , (C.2)

where D =
√
S2 − 4N. Then P̃ = 1

2 (S +D) is an approximation of p with∣∣∣p− P̃ ∣∣∣ < 2N
1
4 .

Proof. Suppose that S > 2
√
N is a positive integer satisfying (C.2) where
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D =
√
S2 − 4N. We have∣∣∣D2 − (p− q)2

∣∣∣ =
∣∣∣∣∣S2 − 4N

∣∣− (p− q)2
∣∣∣

≤
∣∣∣S2 − 4N − (p− q)2

∣∣∣
=
∣∣∣S2 − (p+ q)2

∣∣∣
= (p+ q + S) |p+ q − S|

≤ (p+ q + S)× DN
1
4

S
.

Dividing by p− q +D, we get

|p− q −D| ≤ p+ q + S

p− q +D
× DN

1
4

S
. (C.3)

Let us find a bound for p+q+S
p−q+D . Since D < S, then from (C.2), we derive

p+ q + S < 2S +
DN

1
4

S
< 2S +N

1
4 < 3S.

On the other hand, we have p− q +D > D. Hence

p+ q + S

p− q +D
<

3S

D

Plugging in (C.3), we deduce

|p− q −D| ≤ 3S

D
× DN

1
4

S
= 3N

1
4 . (C.4)

Now, using (C.2) and (C.4), we get

|2p− S −D| = |p+ q − S + (p− q −D)|
≤ |p+ q − S|+ |p− q −D|

<
DN

1
4

S
+ 3N

1
4

< 4N
1
4 .

Dividing by 2, we find ∣∣∣∣p− S +D

2

∣∣∣∣ =
∣∣∣p− P̃ ∣∣∣ < 2N

1
4 ,

which terminates the proof.
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Notice that when the primes p and q satisfy q < p < 2q, then p + q >
2
√
N and if S is an approximation of p+ q, then S also satisfies S > 2

√
N .

The second lemma is the following.

Lemma C.3.2. Let N = pq be an RSA modulus with q < p < 2q. Let e1, e2

be integers satisfying the equations

e1x1 − φ(N)y1 = z1, e2x2 − φ(N)y2 = z2.

If 2x1y2|z1y2 − z2y1| < e2 then x2y1
x1y2

is a convergent of e1
e2

.

Proof. Suppose that e1, e2 satisfy the equations e1x1 − φ(N)y1 = z1 and
e2x2 − φ(N)y2 = z2. Then eliminating φ(N), we get

e1x1y2 − e2x2y1 = z1y2 − z2y1.

Dividing both sides by e2x1y2, we get∣∣∣∣e1

e2
− x2y1

x1y2

∣∣∣∣ =
|z1y2 − z2y1|
e2x1y2

. (C.5)

Suppose that the parameters satisfy the inequality 2x1y2|z1y2 − z2y1| < e2.

Then (C.5) yields ∣∣∣∣e1

e2
− x2y1

x1y2

∣∣∣∣ < 1

2(x1y2)2
.

Combining with Theorem C.2.1, we see that x2y1
x1y2

is a convergent of e1
e2

.

Finally, we will use the following result.

Lemma C.3.3. Let N = pq be an RSA modulus with q < p < 2q. Let e1

be an integer satisfying the equation e1x1−φ(N)y1 = z1, with known positive
parameters x1, y1. Let

S = N + 1− e1x1

y1
and D =

√
|S2 − 4N |.

Then, under the conditions S > 2
√
N and

|z1| <
D

S
N

1
4y1,

N can be factored in polynomial time.
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Proof. Suppose that e1 satisfies the conditions of the theorem where x1, y1

are known positive integers. Using φ(N) = N + 1 − p − q in the equation
e1x1 − φ(N)y1 = z1, we get∣∣∣∣p+ q −

(
N + 1− e1x1

y1

)∣∣∣∣ =
|z1|
y1

<
D

S
N

1
4 .

This implies that S = N+1− e1x1
y1

is an approximation of p+q up to an error

term satisfying the condition of Lemma C.3.1. Hence P̃ = 1
2

(
S +

√
|S2 − 4N |

)
is an approximation of p up to an error term at most 2N

1
4 . Thus, using Cop-

persmith’s Theorem C.2.2, one can find p in polynomial time.

C.4 The New Attack on RSA with Two Exponents

In this section, we investigate RSA with the same modulus and two public
exponents e1 and e2 satisfying the equations e1x1− φ(N)y1 = z1, and e2x2−
φ(N)y2 = z2, where the parameters satisfy

gcd(x2y1, x1y2) = 1, (C.6)

x1y2|z1y2 − z2y1| <
e2

2
. (C.7)

This means that the conditions of Lemma C.3.2 are satisfied which implies
that x2y1

x1y2
can be found in the continued fraction expansion of e1

e2
. The con-

dition (C.6) implies that the convergent x2y1
x1y2

is in lowest terms which gives
x2y1 and x1y2. Now, we wish to recover the values of the parameters x1, y1,
x2, y2. Using the assumptions that x1, y2, |z1y2 − z2y1| are at most N δ and
that e2 ≈ N , the condition (C.7) is satisfied whenever N 3δ < 1

2N, that is
δ = 1

3 − ε, for some small ε > 0. Moreover, if x2y1 and x1y2 are not of a
difficult factorization shape, then their factorization is feasible for instances
of RSA with a 1024-bit modulus. Thus, factoring x2y1 and x1y2 will reveal
the parameters x1, y1. To find the prime factors p and q of the RSA modulus
N = pq, we must make the assumption that the parameter z1 satisfies

|z1| <
D

S
N

1
4y1,
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where S = N + 1 − e1x1
y1

and D =
√
|S2 − 4N |. Thus, the conditions of

Lemma C.3.3 are satisfied which leads to the factorization of N .

We summarize the first attack in Algorithm 1.

Algorithm 4 Two exponents

Require: N = pq with q < p < 2q, two public exponents ei, i = 1, 2 satisfying eixi − φ(N)yi = zi
with unknown parameters xi, yi, zi.

Ensure: The prime factors p and q.
Compute the continued fraction expansion of e1

e2
.

for every convergent pk
qk

of e1
e2

with max(pk, qk) < N
2
3 do

Factor pk and qk.
for every divisor y1 of pk do

for every divisor x1 of qk do

Compute S = N + 1− e1x1
y1

and P̃ = 1
2

(
S +

√
|S2 − 4N |

)
.

Apply Coppersmith’s algorithm (Theorem C.2.2) with P̃ as an approximation of p.

if Coppersmith’s algorithm outputs the factorization of N , then
stop.

end if
end for

end for
end for

An Example for the New Attack with Two Exponents

As an example, let us take

N = 78783023222142579402299,

e1 = 20339472065400293617,

e2 = 16071808231974749459.

The first 30 partial quotients of e1
e2

are

[1, 3, 1, 3, 3, 1, 2, 59, 1, 2, 2, 2, 1, 1, 3, 1, 1,

4, 3, 1, 7, 18, 10, 1, 13, 1, 1, 316, 4, 1, · · · ]

Each convergent a
b is a candidate for x2y1

x1y2
. The 27th convergent is

a

b
=

3889559329731

3073445144167



C.4. THE NEW ATTACK ON RSA WITH TWO EXPONENTS 109

We see that a ≈ N 0.550, b ≈ N 0.546 are not of difficult factorization shape. We
get easily a = 33 · 229 · 6079 · 103483 and b = 41 · 43 · 71 · 1693 · 14503 and we
see that the largest prime factor is 103483 ≈ N 0.22. Next, the decomposition

a = x2y1 = 71092821 · 54711, b = x1y2 = 211917889 · 14503,

gives x1 = 211917889, y1 = 54711, x2 = 71092821 and y2 = 14503. Using the
equation e1x1−φ(N)y1 = z1, we get p+ q = N + 1− e1x1

y1
+ z1

y1
. We then make

the assumption that

p+ q ≈ S = N + 1− e1x1

y1
≈ 594807230437.

From this, we get the approximation

p− q ≈ D =
√
|S2 − 4N | ≈ 196630487186.

Combining the approximations of p+ q and p− q, we get

p ≈ S +D

2
≈ 395718858812.

Then Coppersmith’s algorithm C.2.2 gives p = 395718860549 and then we
get q = 199088370751.

Note that, in this example, the private exponents di ≡ e−1
i (mod φ(N)),

i = 1, 2, are

d1 = 63426822067770650216953 ≈ N 0.996,

d2 = 68134122111136587656939 ≈ N 0.997,

so that d1, d2 > N
1
2 , which explains why Guo’s attack would fail in this case.

On the other hand, in connection with the attack of Blömer and May as
described in Subsection C.2.3, the fraction y1

x1
is not among the convergents

of the continued fraction of e1
N . Similarly, y2

x2
is not among the convergents

of the continued fraction of e2
N . Moreover, all the convergents x

k of e1
N with

x < 1
3N

1
4 are such that |e1x− kφ(N)| > N−

3
4e1x so that the condition (C.1)

is never satisfied. We have a similar result with the convergents of e2
N . This

explains why Blömer and May’s attack would also fail in this case.
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C.5 The New Attack on RSA with Three Exponents

To avoid factoring integers of size N
2
3 , we consider in this section that a third

instance of RSA with the same modulus is available. Suppose we have three
public exponents e1, e2, e3 satisfying the equations

e1x1 − φ(N)y1 = z1, e2x2 − φ(N)y2 = z2, e3x3 − φ(N)y3 = z3,

where the parameters satisfy gcd(x2y1, x1y2) = 1, gcd(x3y1, x1y3) = 1 and

x1y2 |z1y2 − z2y1| <
e2

2
,

x1y3 |z1y3 − z3y1| <
e3

2
.

This immediately shows that the conditions of Lemma C.3.2 are satisfied for
(e1, e2) and for (e1, e3). Hence x2y1

x1y2
is in lowest terms and is a convergent of

e1
e2

. Similarly, x3y1
x1y3

is in lowest terms and is a convergent of e1
e3

. This gives

gcd(x1y2, x1y3) = x1, gcd(x2y1, x3y1) = y1.

Now, if the condition

|z1| <
D

S
N

1
4y1,

is satisfied, where S = N + 1 − e1x1
y1

and D =
√
|S2 − 4N |, then by

Lemma C.3.3 one can find p using Coppersmith’s Theorem with the ap-
proximation

P̃ =
1

2

(
S +

√
|S2 − 4N |

)
.

of p.

We summarize the attack in Algorithm 2

An Example for the New Attack with Three Exponents

Here we take an RSA modulus N = pq and three public exponents e1, e2 and
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Algorithm 5 Three Exponents

Require: N = pq with q < p < 2q, three public exponents ei, i = 1, 2, 3, satisfying eixi−φ(N)yi =
zi with unknown parameters xi, yi, zi.

Ensure: The prime factors p and q.
Compute the continued fraction expansion of e1

e2
.

Compute the continued fraction expansion of e1
e3

.
for every convergent a

b of e1
e2

do
for every convergent c

d of e1
e3

do
Compute x1 = gcd(b, d), y1 = gcd(a, c).

Compute S = N + 1− e1x1
y1

and P̃ = 1
2

(
S +

√
|S2 − 4N |

)
.

Apply Coppersmith’s algorithm (Theorem C.2.2) with P̃ as an approximation of p.
if Coppersmith’s algorithm outputs the factorization of N , then

stop.
end if

end for
end for

e3 as

N = 95026423511070214659367,

e1 = 988283832402044225959,

e2 = 35887685050144510339,

e3 = 4465685820126103902929.

The candidates for x2y1
x1y2

are the convergents of e1
e2

. Indeed, the 25th convergent

of e1
e2

is 44398785042941
1612259112200 . Similarly, the candidates for x3y1

x1y3
are the convergents of

e1
e3

. The 35th convergent of e1
e3

is 6433869008153
29072252986700 . From the two convergents, we

get

x1 = gcd(1612259112200, 29072252986700) = 59365900,

y1 = gcd(44398785042941, 6433869008153) = 617411.

Using the equation e1x1−φ(N)y1 = z1, we get p+ q = N + 1− e1x1
y1

+ z1
y1
, and

neglecting z1
y1

, we get

p+ q ≈ S = N + 1− e1x1

y1
≈ 642772787002.

From this, we get the approximation

p− q ≈ D =
√
|S2 − 4N | ≈ 181799784560.
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Using the approximations S and D, we get p ≈ S+D
2 ≈ 412286285781. Finally,

applying Coppersmith’s Theorem C.2.2, we get

p = 412286285849, q =
N

p
= 230486501183.

We notice that, for i = 1, 2, 3, the integers di related to ei by the relations
eidi ≡ 1 (mod φ(N)) satisfy di > N0.98 which is far from Guo’s upper bound
N

1
3 as described in Subsection C.2.2. This shows that Guo’s method would

fail here. On the other hand, for i = 1, 2, 3, the convergents of the rational
numbers ei

N are all different from the expected convergents yi
xi

. Moreover, for
i = 1, 2, 3, the conditions (C.1) are not satisfied by the convergents of ei

N .
This shows that the method of Blömer and May would also fail in this case.

C.6 Conclusion

In this paper, we have presented a new attack on RSA with the same modulus
N = pq and two or three exponents satisfying equations eixi − φ(N)yi = zi
with specific unknown parameters xi, yi, zi. Our attack is an extension of
Guo’s attack as well as an extension of the Blömer and May attack. The new
attack enables us to find p and q efficiently with two exponents and in poly-
nomial time with three exponents. This proves once again that, under some
conditions, RSA is insecure even when the private exponents are sufficiently
large.
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Abstract :
Let N = pq be an RSA modulus with a public exponent e and a private
exponent d. Wiener’s famous attack on RSA with d < N0.25 and its exten-
sion by Boneh and Durfee to d < N0.292 show that using a small d makes
RSA completely insecure. However, for larger d, it is known that RSA can
be broken in polynomial time under special conditions. For example, various
partial key exposure attacks on RSA and some attacks using additional in-
formation encoded in the public exponent e are efficient to factor the RSA
modulus. These attacks were later improved and extended in various ways.
In this paper, we present a new attack on RSA with a public exponent e
satisfying an equation ed − k(N + 1 − ap − bq) = 1 where a

b is an unknown
approximation of q

p . We show that RSA is insecure when certain amount
of the Least Significant Bits (LSBs) of ap and bq are known. Further, we
show that the existence of good approximations a

b of q
p with small a and b

113
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substantially reduces the requirement of LSBs of ap and bq.

D.1 Introduction

The RSA cryptosystem was invented by Rivest, Shamir and Adleman [131] in
1977 and is today’s most important public-key cryptosystem. The standard
notations in RSA are as follows:

• p and q are two large primes of the same bit size.

• N = pq is the RSA modulus and φ(N) = (p− 1)(q− 1) is Euler’s totient
function.

• e and d are respectively the public and the private exponents and satisfy
ed− kφ(N) = 1 for some positive integer k.

There have been a large number of attacks on RSA. Some attacks, called small
private key attacks can break RSA in polynomial time when the private key
is small. For example, Wiener [147] showed that if the private key satisfies
d < 1

3N
1
4 , then N can be factored and Boneh and Durfee [17] showed that

RSA is insecure if d < N0.292. Some attacks, called partial key exposure
attacks exploit the knowledge of a portion of the private exponent or of one
of the prime factors. Partial key exposure attacks are mainly motivated by
using side-channel attacks, such as fault attacks, power analysis and timing
attacks ( [76], [77]). Using a side-channel, an attacker can expose a part
of one of the modulus prime factors p or q or of the private key d. In 1998,
Boneh, Durfee and Frankel [18] presented several partial key exposure attacks
on RSA with a public key e < N1/2 where the attacker requires knowledge
of most significant bits (MSBs) or least significant bits (LSBs) of the private
exponent d. In [13], Ernest et al. [44] proposed several partial key exposure
attacks that work for e > N 1/2. Notice that Wiener’s attack [147] and the
attack of Boneh and Durfee [17] can be seen as partial key exposure attacks
because the most significant bits of the private exponent are known and are
equal to zero. Sometimes, it is possible to factor the RSA modulus even if
the private key is large and no bits are exposed. Such attacks exploit the
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knowledge of special conditions verified by the modulus prime factors or by
the exponents. In 2004, Blömer and May [13] showed that RSA can be broken
if the public exponent e satisfies an equation ex = y + kφ(N) with x < 1

3N
1
4

and |y| < N−
3
4ex. At Africacrypt 2009, Nitaj [107] presented an attack

when the exponent e satisfies an equation eX − (N − (ap+ bq))Y = Z with
the constraints that a

b is an unknown convergent of the continued fraction

expansion of q
p , 1 ≤ Y ≤ X < 1

2
N

1
4√
a
, gcd(X, Y ) = 1, and Z depends on

the size of |ap − bq|. Nitaj’s attack combines techniques from the theory
of continued fractions, Coppersmith’s method [34] for finding small roots of
bivariate polynomial equations and the Elliptic Curve Method [84] for integer
factorization.

In this paper we revisit Nitaj’s attack by studying the generalized RSA
equation ed − k(N + 1 − ap − bq) = 1 with different constraints using Cop-
persmith’s method [34] only. We consider the situation when an amount of
LSBs of ap and bq are exposed where a

b is an unknown approximation of q
p ,

that is when a =
[
bq
p

]
. More precisely, assume that ap = 2m0p1 + p0 and

bq = 2m0q1 + q0 where m0, p0 and q0 are known to the attacker. We show
that one can factor the RSA modulus if the public key e satisfies an equation
ed1 − k1(N + 1 − ap − bq) = 1 where e = Nγ, d1 < N δ, 2m0 = Nβ and
a < b < Nα satisfy

δ ≤

{
δ1 if γ ≥ 1

2(1 + 2α− 2β),

δ2 if γ < 1
2(1 + 2α− 2β).

with

δ1 =
7

6
+

1

3
(α− β)− 1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1,

δ2 =
1

4
(3− 2(α− β)− 2γ).

We notice the following facts

• When a = b = 1, the equation becomes ed1 − k1(N + 1 − p − q) = 1 as
in standard RSA.

• When γ = 1 and α = β, the RSA instance is insecure if d < 7
6 −

√
7

3 ≈
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0.284. This is a well known boundary in the cryptanalysis of RSA (see
e.g. [17]).

• When γ = 1 and β = 0, that is no LSBs of ap nor of bq are known,
the RSA instance is insecure if δ < 7

6 + 1
3α −

1
3

√
α2 + 16α + 7. This

considerably improve the bound δ < 1
4(1− 2α) of [107].

• The ANSI X9.31 standard [1] requires that the prime factors p and q
shall not be near the ratio of two small integers. Our new attack shows
that this requirement is necessary and can be easily checked once one
has generated two primes simply by computing the convergents of the
continued fraction expansion of q

p .

The rest of the paper is organized as follows. In Section 2 we review some
basic results from lattice theory and their application to solve modular equa-
tions as well as two useful lemmas. In Section 3 we describe the new attack
on RSA. In Section 4, we present various numerical experiments. Finally, we
conclude in Section 5.

D.2 Preliminaries

D.2.1 Lattices

Let ω and n be two positive integers with ω ≤ n. Let b1, · · · , bω ∈ Rn be ω
linearly independent vectors. A lattice L spanned by {b1, · · · , bω} is the set
of all integer linear combinations of b1, · · · , bω, that is

L =

{
ω∑
i=1

xibi | xi ∈ Z

}
.

The set 〈b1 . . . , bω〉 is called a lattice basis for L. The lattice dimension is
dim(L) = ω. We say that the lattice is full rank if ω = n. If the lattice
is full rank, then the determinant of L is equal to the absolute value of the
determinant of the matrix whose rows are the basis vectors b1, · · · , bω. In
1982, Lenstra, Lenstra and Lovász [86] invented the so-called LLL algorithm
to reduce a basis and to find a short lattice vector in time polynomial in
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the bit-length of the entries of the basis matrix and in the dimension of the
lattice. The following lemma, gives bounds on LLL-reduced basis vectors.

Theorem D.2.1 (Lenstra, Lenstra, Lovász). Let L be a lattice of dimension
ω. In polynomial time, the LLL- algorithm outputs two reduced basis vectors
v1 and v2 that satisfy

‖v1‖ ≤ 2
ω
2 det(L)

1
ω , ‖v2‖ ≤ 2

ω
2 det(L)

1
ω−1 .

Using the LLL algorithm, Coppersmith [34] proposed a method to ef-
ficiently compute small roots of bivariate polynomials over the integers or
univariate modular polynomials. Howgrave-Graham [65] gave a simple refor-
mulation of Coppersmith’s method in terms of the norm of the polynomial
f(x, y) =

∑
aijx

iyj which is defined by

‖f(x, y)‖ =
√∑

a2
ij.

Theorem D.2.2 (Howgrave-Graham). Let f(x, y) ∈ Z[x, y] be a polynomial
which is a sum of at most ω monomials. Suppose that f(x0, y0) ≡ 0 (mod em)
where |x0| < X and |y0| < Y and ‖f(xX, yY )‖ < em√

ω
. Then f(x0, y0) = 0

holds over the integers.

D.2.2 Useful Lemmas

Let N = pq be an RSA modulus. The following lemma is useful to find a
value of ap− bq using a known value of ap+ bq.

Lemma D.2.3. Let N = pq be an RSA modulus with q < p < 2q and S
be a positive integer. Suppose that ap + bq = S where a

b is an unknown
approximation of q

p. Then

ab =

⌊
S2

4N

⌋
and |ap− bq| =

√
S2 − 4

⌊
S2

4N

⌋
N.

Proof. Observe that multiplying q < p < 2q by p gives N < p2 < 2N and
consequently

√
N < p <

√
2
√
N . Suppose that a

b is an approximation of q
p ,
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that is a =
[
bq
p

]
. Hence

∣∣∣a− bq
p

∣∣∣ ≤ 1
2 , which gives

|ap− bq| ≤ p

2
≤
√

2
√
N

2
< 2
√
N.

Next, suppose that ap+bq = S. We have S2 = (ap+bq)2 = (ap−bq)2+4abN.
Since |ap−bq| < 2

√
N , then the quotient and the remainder in the Euclidean

division of S2 by 4N are respectively ab and (ap− bq)2. Hence

ab =

⌊
S2

4N

⌋
and |ap− bq| =

√
S2 − 4abN,

which terminates the proof.

The following lemma shows how to factor N = pq using a known value
of ap+ bq.

Lemma D.2.4. Let N = pq be an RSA modulus with q < p < 2q and S

be a positive integer. Suppose that ap + bq = S where a
b is an unknown

approximation of q
p. Then N can be factored.

Proof. Suppose that a
b is an approximation of q

p and that ap + bq = S. By

Lemma D.2.3, we get ab =
⌊
S2

4N

⌋
and |ap− bq| = D where

D =
√
S2 − 4abN.

Hence ap−bq = ±D. Combining with ap+bq = S, we get 2ap = S±D. Since
a < q, then gcd(N,S ± D) = gcd(N, 2ap) = p. This gives the factorization
of N .

D.3 The New Attack

Let e, d1, k1 be positive integers such that ed1− k1(N + 1− ap− bq) = 1. In
this section, we consider the following parameters.
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• 2m0 = Nβ where m0 is a known integer.

• a < b < Nα with α < 1
2 where a

b is an unknown approximation of q
p .

• ap = 2m0p1 + p0 where p0 is a known integer.

• bq = 2m0q1 + q0 where q0 is a known integer.

• e = Nγ.

• d1 = N δ.

The aim in this section is to prove the following result.

Theorem D.3.1. Suppose that ap = 2m0p1 + p0 and bq = 2m0q1 + q0 where
m0, p0 and q0 are known with 2m0 = Nβ and a

b is an unknown approximation
of q

p satisfying a, b < Nα. Let e = Nγ, d1 = N δ and k1 be positive integers
satisfying an equation ed1 − k1(N + 1 − ap − bq) = 1. Then one can factor
N in polynomial time when

δ ≤

{
δ1 if γ ≥ 1

2(1 + 2α− 2β),

δ2 if γ ≤ 1
2(1 + 2α− 2β),

where

δ1 =
7

6
+

1

3
(α− β)− 1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1,

δ2 =
1

4
(3− 2(α− β)− 2γ).

Proof. Suppose that ap = 2m0p1 + p0 and bq = 2m0q1 + q0 with known m0, p0

and q0. Then ap+ bq = 2m0(p1 + q1) + p0 + q0. Starting with the variant RSA
equation ed1 − k1(N + 1− ap− bq) = 1, we get

ed1 − k1 (N + 1− p0 − q0 − 2m0(p1 + q1)) = 1.

Reducing modulo e, we get

−2m0k1(p1 + q1) + (N + 1− p0 − q0)k1 + 1 ≡ 0 (mod e).

Observe that gcd(2m0, e) = 1. Then multiplying by −2−m0 (mod e), we get

k1(p1 + q1) + a1k1 + a2 ≡ 0 (mod e),
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where

a1 ≡ −(N + 1− p0 − q0)2
−m0 (mod e),

a2 ≡ −2−m0 (mod e).

Consider the polynomial

f(x, y) = xy + a1x+ a2.

Then (x, y) = (k1, p1 + q1) is a modular root of the equation f(x, y) ≡ 0
(mod e). Assuming that α� 1

2 , we get

k1 =
ed1 − 1

N + 1− ap− bq
∼ Nγ+δ−1.

On the other hand, we have

p1 + q1 <
ap+ bq

2m0
< N

1
2+α−β.

Define the bounds X and Y as

X = Nγ+δ−1, Y = N
1
2+α−β.

To find the small modular roots of the equation f(x, y) ≡ 0 (mod e), we
apply the extended strategy of Jochemsz and May [72]. Let m and t be
positive integers to be specified later. For 0 ≤ k ≤ m, define the set

Mk =
⋃

0≤j≤t
{xi1yi2+j

∣∣∣ xi1yi2 monomial of fm(x, y)

and
xi1yi2

(xy)k
monomial of fm−k}.

Observe that fm(x, y) satisfies

fm(x, y) =
m∑
i1=0

(
m

i1

)
xi1(y + a1)

i1am−i12

=
m∑
i1=0

(
m

i1

)
xi1

(
i1∑
i2=0

(
i1
i2

)
yi2ai1−i21 am−i12

)

=
m∑
i1=0

i1∑
i2=0

(
m

i1

)(
i1
i2

)
xi1yi2ai1−i21 am−i12 .
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Hence, xi1yi2 is a monomial of fm(x, y) if

i1 = 0, . . . ,m, i2 = 0, . . . , i1.

Consequently, for 0 ≤ k ≤ m, when xi1yi2 is a monomial of fm(x, y), then
xi1yi2

(xy)k
is a monomial of fm−k(x, y) if

i1 = k, . . . ,m, i2 = k, . . . , i1.

Hence, for 0 ≤ k ≤ m, we obtain

xi1yi2 ∈Mk if i1 = k, . . . ,m, i2 = k, . . . , i1 + t.

Similarly,

xi1yi2 ∈Mk+1 if i1 = k + 1, . . . ,m, i2 = k + 1, . . . , i1 + t.

For 0 ≤ k ≤ m, define the polynomials

gk,i1,i2(x, y) =
xi1yi2

(xy)k
f(x, y)kem−k with xi1yi2 ∈Mk

∖
Mk+1.

For 0 ≤ k ≤ m, these polynomials reduce to the following sets
k=0, . . . ,m,
i1=k, . . . ,m,
i2=k,

or


k=0, . . . ,m,
i1=k,
i2=k + 1, . . . , i1 + t.

This gives rise to the polynomials

Gk,i1(x, y) = xi1−kf(x, y)kem−k, for k = 0, . . .m, i1 = k, . . .m,

Hk,i2(x, y) = yi2−kf(x, y)kem−k, for k = 0, . . .m, i2 = k + 1, . . . , k + t.

Let L denote the lattice spanned by the coefficient vectors of the polynomials
Gk,i1(xX, yY ) andHk,i2(xX, yY ). The ordering of two monomials xi1yi2, xi

′
1yi
′
2

is as in the following rule: if i1 < i′1, then xi1yi2 < xi
′
1yi2 and if i1 = i′1 and

i2 < i′2, then xi1yi2 < xi
′
1yi
′
2. Notice that the matrix is left triangular. For

m = 3 and t = 1, the coefficient matrix for L is presented in Table D.1. The
non-zero elements are marked with an ‘~’.

From the triangular form of the matrix, the ~ marked values do not con-
tribute in the calculation of the determinant. Hence, the determinant of L
is

det(L) = eneXnXY nY . (D.1)
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1 x x2 x3 y xy x2y x3y xy2 x2y2 x3y2 x2y3 x3y3 x3y4

G0,0 e3 0 0 0 0 0 0 0 0 0 0 0 0 0

G0,1 0 Xe3 0 0 0 0 0 0 0 0 0 0 0 0

G0,2 0 0 X2e3 0 0 0 0 0 0 0 0 0 0 0

G0,3 0 0 0 X3e3 0 0 0 0 0 0 0 0 0 0

H0,1 0 0 0 0 Y e3 0 0 0 0 0 0 0 0 0

G1,1 ~ ~ 0 0 0 XY e2 0 0 0 0 0 0 0 0

G1,2 0 ~ ~ 0 0 0 X2Y e2 0 0 0 0 0 0 0

G1,3 0 0 ~ ~ 0 0 0 X3Y e2 0 0 0 0 0 0

H1,2 0 0 0 0 ~ ~ 0 0 XY 2e2 0 0 0 0 0

G2,2 ~ ~ ~ 0 0 ~ ~ 0 0 X2Y 2 0 0 0 0

G2,3 0 ~ ~ ~ 0 0 ~ ~ 0 0 X3Y 2e 0 0 0

H2,3 0 0 0 0 ~ ~ ~ 0 ~ ~ 0 X2Y 3e 0 0

G3,3 ~ ~ ~ ~ 0 ~ ~ ~ 0 ~ ~ 0 X3Y 3 0

H3,4 0 0 0 0 ~ ~ ~ 0 ~ ~ ~ ~ ~ X3Y 4

Table D.1: The coefficient matrix for the case m = 3, t = 1.

From the construction of the polynomials Gk,i1(x, y) and Hk,i2(x, y), we get

ne =
m∑
k=0

m∑
i1=k

(m− k) +
m∑
k=0

k+t∑
i2=k+1

(m− k) =
1

6
m(m+ 1)(2m+ 3t+ 4).

Similarly, we have

nX =
m∑
k=0

m∑
i1=k

i1 +
m∑
k=0

k+t∑
i2=k+1

k =
1

6
m(m+ 1)(2m+ 3t+ 4),

and

nY =
m∑
k=0

m∑
i1=k

k +
m∑
k=0

k+t∑
i2=k+1

i2 =
1

6
(m+ 1)(m2 + 3mt+ 3t2 + 2m+ 3t).

Finally, we can calculate the dimension of L as

ω =
m∑
k=0

m∑
i1=k

1 +
m∑
k=0

k+t∑
i2=k+1

1 =
1

2
(m+ 1)(m+ 2t+ 2).

For the following asymptotic analysis we let t = τm. For sufficiently large
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m, the exponents ne, nX , nY and the dimension ω reduce to

ne =
1

6
(3τ + 2)m3 + o(m3),

nX =
1

6
(3τ + 2)m3 + o(m3),

nY =
1

6
(3τ 2 + 3τ + 1)m3 + o(m3),

ω =
1

2
(2τ + 1)m2 + o(m2).

To apply Theorem D.2.2 to the shortest vector in the LLL-reduced basis of
L, we have to set

2
ω
2 det(L)

1
ω−1 <

em√
ω
.

This transforms to

det(L) <
1(

2
ω
2

√
ω
)ω em(ω−1) < emω.

Using (D.1), we get

eneXnXY nY < emω.

Plugging ne, nX , nY , ω as well as the values e = Nγ, X = Nγ+δ−1, and
Y = N

1
2+α−β, we get

1

6
(3τ + 2)m3γ +

1

6
(3τ + 2)m3 (γ + δ − 1) +

1

6
(3τ 2 + 3τ + 1)m3(

1

2
+ α− β)

<
1

2
(2τ + 1)m3γ,

which transforms to

3(2α− 2β + 1)τ 2 + 3(2α + 2δ − 2β − 1)τ + (2γ + 2α + 4δ − 2β − 3) < 0.(D.2)

Next, we consider the cases τ 6= 0 and τ = 0 separately. First, we consider
the case τ > 0. The optimal value for τ in the left side of (D.2) is

τ =
1 + 2β − 2α− 2δ

2(1 + 2α− 2β)
. (D.3)
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Observe that for α < 1
2 and β < 1

2 , we have 1+2α−2β > 0. To ensure τ > 0,
δ should satisfy δ < δ0 where

δ0 =
1

2
(1− 2(α− β)) . (D.4)

Replacing τ by the optimal value (D.3) in the inequation (D.2), we get

−12δ2 + 4(7 + 2α− 2β)δ + 4(α− β)2 + 4(4γ − 1)(α− β) + 8γ − 15 < 0,

which will be true if δ < δ1 where

δ1 =
1

3
(α− β) +

7

6
− 1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1. (D.5)

Since δ has to satisfy both δ < δ0 and δ < δ1 according to (D.4) and (D.5), let
us find the minimum min(δ0, δ1). A straightforward calculation shows that

min(δ0, δ1) =

{
δ0 if γ ≤ 1

2(1 + 2α− 2β),

δ1 if γ ≥ 1
2(1 + 2α− 2β).

Now, consider the case τ = 0, that is t = 0. Then the inequation (D.2)
becomes

2γ + 2α + 4δ − 2β − 3 < 0,

which leads to δ < δ2 where

δ2 =
1

4
(2β + 3− 2γ − 2α). (D.6)

To obtain an optimal value for δ, we compare δ2 as in (D.6) to min(δ0, δ1),
obtained respectively with τ > 0 and τ = 0. First suppose that γ ≤ 1

2(1 +
2α− 2β). Then

min(δ0, δ1)− δ2 = δ0 − δ2 =
1

2

(
g − 1

2
(1 + 2α− 2β)

)
≤ 0.

Hence min(δ0, δ1) ≤ δ2. Next suppose that γ ≥ 1
2(1 + 2(α− β)). Then

min(δ0, δ1)− δ2 = δ1 − δ2

=
5

6
(α− β) +

1

2
γ +

5

12

−1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1.
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On the other hand, we have(
5

6
(α− β) +

1

2
γ +

5

12

)2

−
(

1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1

)2

=
1

16
(1 + 2(α− β)− 2γ)2,

which implies that min(δ0, δ1) ≥ δ2.

Summarizing, the attack will succeed to find k1, p1 + q1 and d1 = N δ when
δ < δ′ with

δ′ =

{
δ1 if γ ≥ 1

2(1 + 2α− 2β),

δ2 if γ ≤ 1
2(1 + 2α− 2β),

where δ1 and δ2 are given by (D.5) and (D.6).

Next, using the known value of p1 + q1, we can precisely calculate the value
ap + bq = 2m0(p1 + q1) + p0 + q0 = S. Then using Lemma D.2.3 and
Lemma D.2.4, we can find p and q. Since every step in the method can
be done in polynomial time, then N can be factored in polynomial time.
This terminates the proof.

For example, consider the standard instance with the following parame-
ters

• 2m0 = Nβ with β = 0.

• a ≤ b ≤ Nα with α = 0, that is ap+ bq = p+ q.

• ap = 2m0p1 + p0 = p1, that is p0 = 0.

• bq = 2m0q1 + q0 = q1, that is q0 = 0.

• e = Nγ with γ = 1.

• d1 = N δ.

Then γ ≥ 1
2(1 + 2α− 2β) > 1

2 and the instance is insecure if δ < δ1, that is if

δ < 7
6 −

√
7

3 ≈ 0.284 which is the same boundary as in various cryptanalytic
approaches to RSA (see e.g. [17]).
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Now suppose that γ = 1 and that a, b are small. Then α ≈ 0 and the
boundary (D.5) becomes

δ1 <
7

6
− 1

3
β − 1

3

√
4β2 − 16β + 7,

where the right side increases from 0.284 to 1 when β ∈
[
0, 1

2

[
. This implies

that the existence of good approximation a
b of q

p substantially reduces the
requirement of LSBs of ap and bq for the new attack. This confirms the
recommendation of the X9.31-1997 standard for public key cryptography [1]
regarding the generation of primes, namely that q

p shall not be near the ratio
of two small integers.

D.4 Experimental Results

We have implemented the new attack for various parameters. The machine
was with Windows 7 and Intel(R) Core(TM)2 Duo CPU, 2GHz and the
algebra system was Maple 12 [90]. For each set of parameters, we solved
the modular equation f(x, y) ≡ 0 (mod e) using the method described in
Section D.3. We obtained two polynomials f1(x, y) and f2(x, y) with the
expected root (k1, p1 + q1). We then solved the equation obtained using the
resultant of f1(x, y) and f2(x, y) in one of the variables. For every instance,
we could recover k1 and p1 +q1 and hence factor N . The experimental results
are shown in Table D.2

In the rest of this section, we present a detailed numerical example. Con-
sider an instance of a 200-bit RSA public key with the following parameters.

• N = 246320082143813941567955319095334323576128\
7240746891883363309.

• e = 266625289801406462041749617541089513158406\
651283204161816153.
Hence e = Nγ with γ = 0.984.

• m0 = 35. Hence 2m0 = Nβ with β = 0.174.

• a < b < N 0.080. Hence α = 0.080.
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N γ β α δ lattice parameters LLL-time (sec)

2048 0.999 0.219 0.008 0.340 m = 2, t = 1, dim=9 54

2048 0.999 0.230 0.018 0.340 m = 3, t = 2, dim=18 2818

2048 0.999 0.172 0.114 0.273 m = 2, t = 1, dim=9 22

2048 0.999 0.150 0.096 0.272 m = 2, t = 1, dim=9 20

2048 0.999 0.091 0.019 0.280 m = 2, t = 1, dim=9 16

1024 0.999 0.326 0.123 0.368 m = 3, t = 2, dim=18 429

1024 0.999 0.326 0.123 0.339 m = 2, t = 1, dim=9 7

1024 0.998 0.229 0.050 0.326 m = 2, t = 1, dim=9 7

1024 0.995 0.102 0.008 0.297 m = 2, t = 1, dim=9 4

1024 0.999 0.131 0.123 0.239 m = 2, t = 1, dim=9 4

Table D.2: Experimental results.

• m = 4, t = 2.

Now suppose we know p0 = 28297245379 and q0 = 28341074839 such that
ap = 2m0p1 + p0 and bq = 2m0q1 + q0. The modular equation to solve is then
f(x, y) = xy + a1x+ a2 ≡ 0 (mod e), where

a1 = 39647847095344866596181159701545336706740936762\
997081713297,

a2 = 23087066210610578500111693688056153546690310769\
3317985538102.

Working with m = 4 and t = 2, we get a lattice with dimension ω = 25.
Using the parameters γ = 0.984, α = 0.080, and β = 0.174, the method will
succeed with the bounds X and Y satisfying

p1 + q1 < X = Nγ+δ−1 ≈ 252,

k1 < Y = N
1
2+α−β ≈ 281,

if δ < 0.356. Applying the LLL algorithm, we find two polynomials f1(x, y)
and f2(x, y) sharing the same integer solution. Then solving the resultant
equation in y, we get x = 4535179907267444 and solving the resultant equa-
tion in x, we get y = 3609045068101717298446784. Hence

p1 + q1 = 4535179907267444,

k1 = 3609045068101717298446784.
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Next, define

S = 2m0(p1 + q1) + p0 + q0 = 124005844298295748786131327649328730.

Then S is a candidate for ap+ bq, and using Lemma D.2.3, we get

ab =

⌊
S2

4N

⌋
= 1560718201,

|ap− bq| = D =
√
S2 − 4abN = 1089287630585421413834056059092.

Using S for ap+ bq and D for |ap− bq|, we get 2ap = S −D, and finally

p = gcd (N,S −D) = 2973592513804257910045501261169.

Hence q = N
p = 828358562917839001533347328061. This terminates the

factorization of the modulus N . Using the equation ed1 = k1(N + 1 − ap −
bq) + 1, we get d1 = 41897971798817657 ≈ N 0.275. We notice that, with the
standard RSA equation ed − kφ(N) = 1, we have d ≡ e−1 (mod φ(N)) ≈
N 0.994 which is out of reach of the attack of Boneh and Durfee as well as the
attack of Blömer and May. Also, using 2ap = S−D, we get a = S−D

2p = 20851.

Similarly, using 2bq = S + D, we get b = S+D
2q = 74851. We notice that

gcd(a, b) = 1 and a
b is not among the convergents of qp . This shows that Nitaj’s

attack as presented in [107] can not succeed to factor the RSA modulus in
this example.

D.5 Conclusion

In this paper, we propose a new polynomial time attack on RSA with a
public exponent satisfying an equation ed1 − k1(N + 1− ap− bq) = 1 where
a
b is an unknown approximation of q

p and where certain amount of the Least
Significant Bits of ap and aq are known to the attacker. The attack is based
on the method of Coppersmith for solving modular polynomial equations.
This attack can be seen as an extension of the well known partial key attack
on RSA when a = b = 1 and certain amount of the Least Significant Bits of
one of the modulus prime factors is known.
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Abstract :
Let N1 = p1q1 and N2 = p2q2 be two RSA moduli, not necessarily of the same
bit-size. In 2009, May and Ritzenhofen proposed a method to factor N1 and
N2 given the implicit information that p1 and p2 share an amount of least
significant bits. In this paper, we propose a generalization of their attack as
follows: suppose that some unknown multiples a1p1 and a2p2 of the prime
factors p1 and p2 share an amount of their Most Significant Bits (MSBs) or
an amount of their Least Significant Bits (LSBs). Using a method based
on the continued fraction algorithm, we propose a method that leads to the
factorization of N1 and N2. Using simultaneous diophantine approximations
and lattice reduction, we extend the method to factor k ≥ 3 RSA moduliNi =
piqi, i = 1, . . . , k given the implicit information that there exist unknown

129
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multiples a1p1, . . . , akpk sharing an amount of their MSBs or their LSBs.
Also, this paper extends many previous works where similar results were
obtained when the pi’s share their MSBs or their LSBs.

E.1 Introduction

Research in determining pre-requisites for strong primes for the integer fac-
torization problem (IFP) of a product of two primes N = pq has been in-
triguing and have captured the attention of researchers since IFP came into
prominence via the RSA algorithm. The simplicity of the problem statement
raised interest on whether such a simple problem statement describing the
IFP could only be solved in exponential time for all cases, i.e. all types of
primes. As can be found in the literature, this is not the case. So-called
weak primes were identified by researchers and this caused an avalanche of
research output on this matter. In this paper, we focus on IFP when N = pq

is unbalanced, that is when q is much smaller than p.

In PKC 2009, May and Ritzenhofen [94] presented a method for factoring
large integers with some implicit hints. More precisely, let N1 = p1q1 and
N2 = p2q2 be two RSA moduli of the same bit-size such that q1 and q2 are
α-bit primes and p1 and p2 share at least t least significant bits (LSBs). The
method of May and Ritzenhofen is a lattice based method that allows to find
the factorization of N1 and N2 when t ≥ 2α + 3. May and Ritzenhofen’s
method heuristically generalizes to a lattice based method to simultaneously
factor k RSA moduli N1 = p1q1, . . . , Nk = pkqk when the pi’s share t ≥ k

k−1α

many LSBs.

In [135], Sarkar and Maitra reconsidered the method of May and Ritzen-
hofen for two RSA moduli. Sarkar and Maitra’s method works when N1 =
p1q1 and N2 = p2q2 are such that p1 and p2 share their LSBs or most signifi-
cant bits (MSBs) as well as a contiguous portion of bits at the middle.

In PKC 2010, Faugère, Marinier and Renault [45] presented a new and
rigorous lattice-based method that addresses the implicit factoring problem
when p1 and p2 share t MSBs. Moreover, when N1 = p1q1 and N2 = p2q2

are two RSA moduli of the same bit-size and the prime factors qi are α-bit
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primes, the method of Faugère et al. provably factors N1 and N2 as soon
as p1 and p2 share t ≥ 2α + 3 MSBs. The method heuristically generalizes
to the case when p1 and p2 share an amount of bits in the middle. It also
heuristically generalizes to k RSA moduli N1 = p1q1, . . . , Nk = pkqk when the
pi’s share t ≥ k

k−1α + 6 of MSBs.

In IWSEC 2013, Kurosawa and Ueda [82] presented a lattice-based
method to factor two RSA moduli N1 = p1q1 and N2 = p2q2 of the same
bit size when p1 and p2 share t LSBs with t ≥ 2α + 1 where q1 ≈ q2 ≈ 2α.
Their method takes advantage on using Gaussian reduction techniques. It
slightly improves the bound t ≥ 2α + 3 of May and Ritzenhofen. We no-
tice that Kurosawa and Ueda did not study a number of possible extensions
of their method, namely, when p1 and p2 share t MSBs and also when the
multiple of the primes share LSB’s and MSB’s.

All the former attacks apply when the RSA moduli N1 = p1q1, . . . , Nk =
pkqk are of the same bit-size and the pi’s share an amount of MSBs, LSBs
or bits in the middle. In this paper, we present novel approaches of implicit
factoring that generalize the former attacks and apply when some unknown
multiples aipi of the prime factors pi share an amount of MSBs or of LSBs.

Our first method concerns two RSA moduli N1 = p1q1, N2 = p2q2 of
arbitrarily sizes in the situation that there exist two integers a1, a2 such
that a1p1 and a2p2 share t many MSBs. We show that, using the continued
fraction expansion of N2

N1
, one can factor simultaneously N1 and N2 whenever

|a1p1−a2p2| < p1
2a2q1q2

. In particular, when N1 and N2 are of the same bit size

and q1, q2 are α-bit primes, then one can factor N1 and N2 whenever ai ≤ 2β

for i = 1, 2 and t ≥ 2α+ 2β + 1. When β = 0, that is a1 = a2 = 1, our result
becomes t ≥ 2α + 1 and improves the bound t ≥ 2α + 3 presented in [135]
and [45] where the methods are based on lattice reduction techniques.

Our second method is a heuristic generalization of the first method to an
arbitrary number k ≥ 3 of RSA moduli Ni = piqi, i = 1, . . . , k in the situation
that there exist k integers ai such that the aipi’s share t many MSBs. When
the RSA moduli are of the same bit size and the factors qi, i = 1, . . . , k, are
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α-bit primes, the method allows us to factor the RSA moduli as soon as

t >
k

k − 1
α +

k2

k − 1
β +

k

2(k − 1)
(1 + log2(πe)) , (E.1)

where β is such that ai ≤ 2β. Once again, with β = 0, we improve the bound
presented in the attack of [45].

Our third method addresses the implicit factoring problem when two
unbalanced RSA moduli N1 = p1q1 and N2 = p2q2 of arbitrarily sizes are such
that there exist two integers a1 and a2 such that a1p1 and a2p2 share t many
LSBs. We show that it is possible to factor both N1 and N2 if a1a2q1q2 < 2t−1.
This method is also based on the continued fraction algorithm, applied to T

2t

where T ≡ N2N
−1
1 (mod 2t). We notice that, when a1 = a2 = 1 and q1, q2

are α-bit primes, the former condition on t transforms to t ≥ 2α + 1 which
improves the bound on t for LSBs in [94] and [135] and retrieves the bound
of [82].

Our fourth method is a generalization of the third method to k ≥ 3 RSA
moduli Ni = piqi, i = 1, . . . , k. Assume that there exist k integers ai such
that the aipi’s share t many LSBs. If the RSA moduli are of the same bit size
and the qi’s are α-bit primes, our method allows us to address the implicit
factoring problem whenever t satisfies (E.1) where β is such that ai ≤ 2β.

In fact our findings under the four scenarios, further discus possible ma-
licious key generation of RSA moduli by observing not only the difference
between primes, but also the differences of the multiple of primes. At the
same time it generalizes the previous works by [94], [135], [45] and [82]. Con-
trarily to the previous works, we study all the possible situations involving
k = 2 as well as k ≥ 3 in both cases of MSBs and LSBs. In Table E.1, we
compare the applicability of our methods against the previous methods for
the different scenarios.
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Table E.1: Applicability of the methods for k RSA moduli.

Method MSBs LSBs

k = 2 k ≥ 3 k = 2 k ≥ 3

May, Ritzenhofen [94] No No Yes Yes

Sarkar, Maitra [135] Yes No Yes No

Faugère et al. [45] Yes Yes No No

Kurosawa, Ueda [82] No No Yes No

Our methods Yes Yes Yes Yes

Also, we notice that not only the new bounds improve the previous ones,
but also that the rank of the new underlying lattices are often lower than the
ranks of the lattices used in the former methods. In Table E.2 and Table E.3,
we compare our results against the former results with k RSA moduli in
terms of bounds and dimension of the lattices.

We apply our results to the implicit factorization of k ≥ 2 RSA for
Paranoids [138] Ni = piqi, i = 1, . . . , k, where pi ≈ 24500 and qi ≈ 2500. For
example, we show that we can easily factor two RSA for Paranoids moduli
N1 = p1q1, N2 = p2q2 if there exist two integers a1 and a2 such that a1p1 and
a2p2 share t MSBs or t LSBs with t ≥ 1001 + 2β where β is such that ai ≤ 2β

for i = 1, 2.

The rest of this paper is organized as follows. In Section 2, we introduce
some useful background on continued fractions and lattice basis reduction.
In section 3, we present our first method to address the problem of implicit
factoring of two RSA moduli N1 = p1q1 and N2 = p2q2 when a1p1 and a2p2

share t MSBs. In section 4, we present a generalization to k ≥ 3 RSA moduli
Ni = piqi, i = 1, . . . , k, in the situation that the aipi’s share t MSBs. In
section 5, we present an attack on two RSA moduli N1 = p1q1 and N2 = p2q2

when a1p1 and a2p2 share t LSBs and we generalize this attack to k ≥ 3
RSA moduli in Section 6. In Section 7, we present our experiments and we
conclude in Section 8.
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Table E.2: Comparison of the bounds on t for k RSA moduli in the MSB case.

Method for MSBs
Number of RSA
moduli k = 2

Number of RSA moduli
k ≥ 3

May, Ritzenhofen [94] Not studied Not studied

Sarkar, Maitra [135]

For q1 ≈ q2 ≈ 2α

and |p1 − p2| < 2t,
the bound is heuris-
tically better than
t ≥ 2α + 3 and the
dimension of the lat-
tice is at least 9 (m =
t = 1).

Can not be applied

Faugère et al. [45]

For q1 ≈ q2 ≈ 2α

and |p1 − p2| < 2t,
the rigorous bound is
t ≥ 2α + 3 using 2-
dimensional lattices
of Z3.

For q1 ≈ . . . ≈ qk ≈ 2α and
|pi − pj | < 2t, the heuris-
tic bound is t > k

k−1α+1+

k
2(k−1)

(
2 + log2(k)

2 + log2(πe)
)

using k-dimensional lat-

tices of Z
k(k+1)

2 .

Kurosawa, Ueda [82] Not studied. Can not be applied

Our results

For q1 ≈ q2 ≈ 2α

and |a1p1 − a2p2| <
2t for some unknown
integers a1, a2 ≤ 2β,
the rigorous bound is
t ≥ 2α+2β+1 using
the continued frac-
tion algorithm. For
a1 = a2 = 1, β = 0
and the the rigorous
bound is t ≥ 2α+ 1.

For q1 ≈ . . . ≈ qk ≈
2α and |aipi − ajpj | < 2t

for some unknown integers
a1, . . . , ak, the heuristic
bound is t > k

k−1α+ k2

k−1β+
k

2(k−1) (1 + log2(πe)) using
k-dimensional lattices of
Zk. For a1 = . . . = ak = 1,
β = 0 and the the heuris-
tic bound is t > k

k−1α +
k

2(k−1) (1 + log2(πe)).
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Table E.3: Comparison of the bounds on t for k RSA moduli in the LSB case.

Method for LSBs
Number of RSA
moduli k = 2

Number of RSA moduli
k ≥ 3

May, Ritzenhofen [94]

For q1 ≈ q2 ≈ 2α and
p1 ≡ p2 (mod 2t),
the rigorous bound is
t ≥ 2α + 3 using 2-
dimensional lattices
of Z2.

For q1 ≈ . . . ≈ qk ≈
2α and pi ≡ pj (mod 2t),
the heuristic bound is t ≥
k
k−1α using k-dimensional

lattices of Zk.

Sarkar, Maitra [135]

For q1 ≈ q2 ≈ 2α and
p1 ≡ p2 (mod 2t),
the bound is heuris-
tically better than
t ≥ 2α + 3 and the
dimension of the lat-
tice is at least 9 (m =
t = 1).

Can not be applied.

Faugère et al. [45] Not studied. Not studied.

Kurosawa, Ueda [82]

For q1 ≈ q2 ≈ 2α and
p1 ≡ p2 (mod 2t),
the rigorous bound is
t ≥ 3α + 1 using 2-
dimensional lattices
of Z2.

Can not be applied

Our results

For q1 ≈ q2 ≈ 2α

and |a1p1 − a2p2| <
2t for some unknown
integers a1, a2 ≤ 2β,
the rigorous bound is
t ≥ 2α+2β+1 using
the continued frac-
tion algorithm. For
a1 = a2 = 1, β = 0
and the the rigorous
bound is t ≥ 2α+ 1.

For q1 ≈ . . . ≈ qk ≈ 2α

and aipi ≡ ajpj (mod 2t)
for some unknown integers
a1, . . . , ak, the heuristic
bound is t > k

k−1α+ k2

k−1β+
k

2(k−1) (1 + log2(πe)) using
k-dimensional lattices of
Zk. For a1 = . . . = ak = 1,
β = 0 and the the heuris-
tic bound is t > k

k−1α +
k

2(k−1) (1 + log2(πe)).
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E.2 Preliminaries

In this section, we review some knowledge background on continued fractions
and lattice basis reduction.

E.2.1 Continued fractions

First we give the definition of continued fractions and state a related theorem.
The details can be referenced in [57]. For any positive real number ξ, define
ξ0 = ξ and for i = 0, 1, . . . , n, ai = bξic, ξi+1 = 1/(ξi − ai) unless ξn is an
integer. Then ξ can be expanded as a continued fraction in the following
form

x = a0 +
1

a1 +
1

. . . +
1

an +
1

. . .

,

which, for simplicity, can be rewritten as ξ = [a0, a1, . . . , an, . . .]. If ξ is a
rational number, then the process of calculating the continued fraction ex-
pansion would be finished in some finite index n and then ξ = [a0, a1, . . . , an].
The convergents a

b of ξ are the fractions defined by a
b = [a0, . . . , ai] for i ≥ 0.

We note that, if ξ = a
b is a rational number, then the continued fraction ex-

pansion of ξ is finite with the total number of convergents being polynomial
in log(b).

Another important result on continued fractions that will be used through-
out this paper is the following (Theorem 184 of [57]).

Theorem E.2.1 (Legendre). Let ξ be a positive number. Suppose gcd(a, b) =
1 and ∣∣∣ξ − a

b

∣∣∣ < 1

2b2
.

Then a
b is one of the convergents of the continued fraction expansion of ξ.
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E.2.2 Lattice reduction

Let us present some basics on lattice reduction techniques. Let b1 . . . , bd be
d linearly independent vectors of Rn with d ≤ n. The set of all integer linear
combinations of the bi forms a lattice L. Namely,

L =

{
d∑
i=1

xibi | xi ∈ Z

}
.

The integer n is the rank of the lattice L and d is its dimension. The
set (b1, . . . , bd) is called a basis of L. The determinant of L is defined as
det(L) =

√
BtB where B is the basis matrix, i.e., the matrix of the bi’s in

the canonical basis of Rn. The determinant is invariant under unimodular
basis transformations of B and reduces to det(L) = | det(B)| when d = n.
Let us denote by ‖v‖ the Euclidean norm of a vector v ∈ L. A central prob-
lem in lattice reduction is to find short non-zero vectors in L. Vectors with
short norm can be computed by the LLL algorithm of Lenstra, Lenstra, and
Lovász [86].

Theorem E.2.2 (LLL). Let L be a lattice spanned by a basis (u1, . . . , ud).
Then the LLL algorithm produces a new basis (b1, . . . , bd) of L satisfying

‖b1‖ ≤ 2
d−1
4 det(L)

1
d .

On the other hand, for comparison, the Gaussian Heuristic says that the
length of the shortest non-zero vector of a lattice L is usually approximately
σ(L) where

σ(L) ≈
√

d

2πe
det(L)

1
d .

E.3 Factoring two RSA Moduli in the MSB Case

In this section, we study the problem of factoring two RSA moduli N1 = p1q1

and N2 = p2q2 where a1p1 and a2p2 coincide on the t most significant bits
(MSBs), that is when |a2p2 − a1p1| is sufficiently small.



138 APPENDIX E. IMPLICIT FACTORIZATION OF UNBALANCED RSA MODULI

E.3.1 The general attack for two RSA Moduli in the MSB Case

We begin by the following result which applies to two RSA moduli not nec-
essarily of the same bit size.

Theorem E.3.1. Let N1 = p1q1, N2 = p2q2 be two RSA moduli. If there
exist two integers a1, a2 such that a1 < p2, a2 < p1 and |a1p1−a2p2| < p1

2a2q1q2
,

then one can factor N1 and N2 in polynomial time.

Proof. For N1 = p1q1 and N2 = p2q2, let x = a1p1 − a2p2. Multiplying x by
q2, we get a1p1q2− a2N2 = xq2. Suppose that |x| < p1

2a2q1q2
. Then, dividing by

a2N1 = a2p1q1, we get∣∣∣∣N2

N1
− a1q2

a2q1

∣∣∣∣ =
|x|q2

a2p1q1
<

p1

2a2q1q2
× q2

a2p1q1
=

1

2(a2q1)2
.

Hence, from Theorem E.2.1, it follows that a1q2
a2q1

, in lowest term is one of the

convergents in the continued fraction expansion of N2

N1
. If we assume a1 < p2,

a2 < p1, then using a1q2
a2q1

, we get q1 = gcd(N1, a2q1) and therefore p1 = N1

q1
.

Similarly, we get q2 = gcd(N2, a1q2) and p2 = N2

q2
.

Remark E.3.2. The result of Theorem E.3.1 is valid even when the RSA
moduli are not of the same size. Comparatively, the attacks presented by
Sarkar and Maitra in [135] and Faugère et al. in [45] are valid only if N1 ≈ N2

and q1 ≈ q2.

Example E.3.3. Consider the following RSA moduli

N1 = 63431782986412625310912155582547071972279848634479,

N2 = 9946006657067710178027582903059286609914354223.

The first partial quotients of N2

N1
are

[0, 6377, 1, 1, 1, 1, 2, 2, 3, 1, 1, 3, 9, 1, 1, 1, 1, 7, 1, 19, 1, 1, 11,

1, 1, 23, 1, 1, 3, 2, 3, 2, 3, 4, 2, 1, 1, 1, 8, 1, 322, 3, 4, 1, 1, 2, . . .]

Each convergent a
b of N2

N1
is a candidate for a1q2

a2q1
and the good one will reveal

q1 and q2 if the conditions of Theorem E.3.1 are fulfilled. Indeed, the 40th
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convergent is a
b = 1351300027964332

8618068847003717463 and gives

q1 = gcd(N1, b) = 2125300178867,

p1 =
N1

q1
= 29846034747067203786403150576377329237,

q2 = gcd(N2, a) = 9531501481,

p2 =
N2

q2
= 1043487920228935667940393294165327383.

We notice that p1 and p2 do not share any amount of LSBst nor MSBs nor
bits in the middle. This shows that the attacks presented in [135] and [45]
will not give a result in this situation.

E.3.2 Application to unbalanced RSA and RSA for Paranoids

As an application of Theorem E.3.1 to factor two unbalanced RSA moduli of
the same bit-size, we get the following result.

Corollary E.3.4. Let N1 = p1q1, N2 = p2q2 be two unbalanced RSA moduli
of the same bit-size n. Suppose that qi ≈ 2α, pi ≈ 2n−α for i = 1, 2. Let
a1, a2 be two integers such that ai ≤ 2β, i = 1, 2. If a1p1 and a2p2 share t
most significant bits with t ≥ 2α+ 2β + 1, then one can factor N1 and N2 in
polynomial time.

Proof. Let N1 = p1q1, N2 = p2q2 be two RSA moduli with N1 ≈ N2 ≈ 2n and
q1 ≈ q2 ≈ 2α. Suppose that a multiple a1p1 and a multiple a2p2 share the t
most significant bits, that is a1p1 − a2p2 = x with |x| ≤ 2n−α+β−t. Assume
that t ≥ 2α + 2β + 1. Then

2a2q1q2|x| < 21+β+2α+n−α+β−t ≤ 2n−α ≈ p1,

which can be transformed into the inequality |x| < p1
2a2q1q2

. Hence, as in The-

orem E.3.1, it follows that a1q2
a2q1

is a convergent of the continued fraction of N2

N1

which leads to the factorization of N1 and N2.

Remark E.3.5. If we consider β = 0 in Corollary E.3.4, that is, if a1 =
a2 = 1, a sufficient condition to factor the two RSA moduli is t ≥ 2α + 1
which slightly improves the bound t ≥ 2α+ 3 found by Faugère et al. in [45].
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This shows that the bound found by Faugère et al. with lattice reduction
techniques can be achieved using the continued fraction algorithm instead.

Consider two RSA for Paranoids moduli Ni = piqi with Ni ≈ 25000,
qi ≈ 2500 and pi ≈ 24500 for i = 1, 2. Then α = 500 and by Corollary E.3.4, it
is possible to factor N1 and N2 if a multiple a1p1 and a multiple a2p2 share
the t MSBs whenever t ≥ 2α + 2β + 1, that is whenever t ≥ 1001 + 2β.

E.4 Factoring k RSA Moduli in the MSB Case

The attack mounted for two RSA moduli can be generalized to an arbitrary
number k ≥ 3 of moduli Ni = piqi, i = 1 . . . , k where the qi’s are α-bit
primes and the aipi’s share t MSBs. Instead of using the continued fraction
algorithm, we use a lattice based method to find simultaneous diophantine
approximations.

Theorem E.4.1. Let Ni = piqi, i = 1 . . . , k, be k ≥ 3 n-bit RSA moduli
where the qi’s are α-bit primes. Suppose that there exist k integers a1, . . . , ak
with ai ≤ 2β, i = 1, . . . , k, such that the aipi’s share all t most significant
bits. If

t >
k

k − 1
α +

k2

k − 1
β +

k

2(k − 1)
(1 + log2(πe)) ,

then, under the Gaussian Heuristic assumption, one can factor the k RSA
moduli N1, · · · , Nk in polynomial time.

Proof. For 2 ≤ i ≤ k, we set xi = aipi − a1p1. Then, multiplying by q1qi, we
get aiq1Ni − a1qiN1 = q1qixi. Define a =

∏k
j=1 aj. Multiplying by a

ai
, we get

aq1Ni −
aa1qi
ai

N1 =
aq1qixi
ai

.

Let C be a number to be fixed later. Consider the vector

v =

(
Caq1,

aq1q2x2

a2
, . . . ,

aq1qkxk
ak

)
∈ Zk. (E.2)
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Then v =
(
aq1,

aa1q2
a2

. . . , aa1qkak

)
×M, where M is the k × k-matrix

M =



C N2 N3 . . . Nk−1 Nk

0 −N1 0 . . . 0 0

0 0 −N1 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . −N1 0

0 0 0 . . . 0 −N1


.

Let L be the lattice defined by the rows of M . The dimension of L is k and
the determinant is det(L) = CNk−1

1 . The Gaussian Heuristic for L asserts
that the length of its shortest non-zero vector is usually σ(L) where

σ(L) ≈
√

k

2πe
det(L)

1
k =

√
k

2πe
C

1
kN

k−1
k

1 . (E.3)

If we choose C such that σ(L) > ‖v‖, then v can be found among the shortest
non-zero vectors of the lattice L. Using (E.2), we get

‖v‖2 = C2a2q2
1 +

k∑
i=2

a2q2
1q

2
i x

2
i

a2
i

. (E.4)

Suppose that for i = 1, . . . , k, we have

Ni ≈ 2n, qi ≈ 2α, pi ≈ 2n−α, ai ≤ 2β.

Moreover, suppose that the aipi’s share all t MSBs. Then, for i ≥ 2, we have

|xi| = |aipi − a1p1| ≤ 2n−α+β−t.

Hence (E.4) leads to

‖v‖2 < C2 × 22kβ+2α + (k − 1)22kβ+4α+2(n+β−α−t)−2β

= C2 × 22kβ+2α + (k − 1)× 22kβ+2α+2n−2t.

Define C such that C2 × 22kβ+2α ≥ 22kβ+2α+2n−2t, that is C ≥ 2n−t. Then
‖v‖2 < kC2 × 22kβ+2α. On the other hand, using Ni ≈ 2n in (E.3), we get

σ(L)2 ≈ k

2πe
C

2
k × 2

2n(k−1)
k .



142 APPENDIX E. IMPLICIT FACTORIZATION OF UNBALANCED RSA MODULI

Suppose σ(L) > ‖v‖. Then σ(L)2 > ‖v‖2, that is

k

2πe
C

2
k2

2n(k−1)
k > kC2 × 22kβ+2α.

Hence

C
2(k−1)
k <

1

πe
2

2n(k−1)
k −2kβ−2α−1.

Plugging C ≥ 2n−t and extracting t, we get

t >
k

k − 1
α +

k2

k − 1
β +

k

2(k − 1)
(1 + log2(πe)) .

Using (E.2), we get q1 = gcd(Caq1, N1) and for i = 2, . . . , k, qi = gcd(aa1qiai
, Ni).

This terminates the proof.

We notice that with β = 0, that is ai = 1 for i = 1, . . . , k, we get

t >
k

k − 1
α +

k

2(k − 1)
(1 + log2(πe)) ,

which slightly improves the bound obtained by Faugère et al. in [45]. This
shows that our result extends the result of Faugère et al. where they consid-
ered only the case when the pi’s share t MSBs.

E.5 Factoring Two RSA Moduli in the LSB Case

The study of implicit factorization when p1, p2 share some LSBs has been
considered in [94], [135], [45] and [82]. In this section, we extend the former
attacks to the case where an unknown multiple a1p1 of p1 and an unknown
multiple a2p2 of p2 share their t LSBs.

E.5.1 The general attack

Theorem E.5.1. Let N1 = p1q1, N2 = p2q2 be two RSA moduli. Assume
that there exist two integers a1, a2 with a1 < p2, a2 < p1 such that a1p1 and
a2p2 share t many LSBs. If a1a2q1q2 < 2t−1, then one can factor N1 and N2

in polynomial time.
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Proof. Let N1 = p1q1 and N2 = p2q2. Assume that a1p1 and a2p2 share t
many LSBs. Then a1p1 − a2p2 = 2tx for some integer x and we have

q1q2(a1p1 − a2p2) = N1a1q2 −N2a2q1 = 2txq1q2.

Then N1a1q2 − N2a2q1 ≡ 0 (mod 2t). Since gcd(N1, 2) = 1, then N−1
1

(mod 2t) exists and a1q2 − a2q1N2N
−1
1 ≡ 0 (mod 2t). Define T ≡ N2N

−1
1

(mod 2t). Then a1q2−a2q1T ≡ 0 (mod 2t) and there exists an integer y such
that

a1q2 = a2q1T − 2ty. (E.5)

Suppose that a1a2q1q2 < 2t−1. Then dividing by 2ta2q1, we get∣∣∣∣T2t − y

a2q1

∣∣∣∣ =
|a2q1T − 2ty|

2ta2q1
=

a1q2

2ta2q1
<

a1q2

2a1a2q1q2a2q1
=

1

2(a2q1)2
.

Therefore from Theorem E.2.1, it follows that y
a2q1

is one of the conver-

gents in the continued fraction expansion of T
2t . Since a2 < p1, we get

q1 = gcd(N1, a2q1) and p1 = N1

q1
. Using (E.5), we get a1q2 = a2q1T−2ty. Sim-

ilarly, since a1 < p2, we get q2 = gcd(N2, a1q2) and p2 = N2

q2
. This terminates

the proof.

E.5.2 Application to unbalanced RSA and RSA for Paranoids

Here we apply Theorem E.5.1 in the situation that the two RSA moduli
N1 = p1q1, N2 = p2q2 are of the same shape, that is N1 and N2 are of the
same bit-size and the qi’s are α-bit primes.

Corollary E.5.2. Let N1 = p1q1, N2 = p2q2 be two unbalanced n-bit size
RSA moduli with q1 ≈ q2 ≈ 2α. Suppose that there exist two positive integers
a1 ≤ 2β, a2 ≤ 2β such that a1p1 and a2p2 share the t LSBs. If t ≥ 2α+2β+1,
then one can factor N1 and N2 in polynomial time.

Proof. Let N1 = p1q1, N2 = p2q2 be two RSA moduli with N1 ≈ N2 ≈ 2n

and, q1 ≈ q2 ≈ 2α. Suppose that a multiple a1p1 and a multiple a2p2 share
the t least significant bits where ai ≤ 2β for i = 1, 2. Define T ≡ N2N

−1
1

(mod 2t). As in the proof of Theorem E.5.1, we have a1p1 − a2p2 = 2tx and
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a1q2 = a2q1T − 2ty for some integers x and y. Suppose that t ≥ 2α + 2β +
1. Then a1a2q1q2 < 22β+2α ≤ 2t−1. Therefore, using the same arguments
than Theorem E.5.1, we conclude that y

a2q1
is one of the convergents in the

continued fraction expansion of T
2t which leads to the factorization of N1 and

N2.

Remark E.5.3. Here again, if β = 0, then the condition of Corollary E.5.2
becomes t ≥ 2α + 1 which improves the bounds found in the former ap-
proaches of [94], [135], [45] and retrieves the bound of [82].

As an application of Corollary E.5.2, consider two 1024-bit RSA for
Paranoids moduli N1 = p1q1, N2 = p2q2 where q1, q2 are 500-bit primes.
Hence α = 500 and using Corollary E.5.2, one can factor N1 and N2 if there
exist two integers a1 ≤ 2β and a2 ≤ 2β such that a1p1 and a2p2 share t LSBs
with t > 2001 + 2β.

E.6 Factoring k RSA Moduli in the LSB Case

In this section, we assume that we are given k ≥ 3 different RSA moduli
Ni = piqi, i = 1, . . . , k where some unknown multiples aipi’s coincide on the
t least significant bits. For suitably large t, we show that there is an efficient
algorithm that recovers the factorization of the k RSA moduli. To this end,
we use the lattice reduction techniques to solve a simultaneous diophantine
approximations problem.

Theorem E.6.1. Let Ni = piqi, i = 1 . . . , k, be k ≥ 3 n-bit RSA moduli
where the qi’s are α-bit primes. Suppose that there exist k positive integers
a1, . . . , ak with ai ≤ 2β, i = 1, . . . , k, such that the aipi’s share all t least
significant bits. If

t >
k

k − 1
α +

k2

k − 1
β +

k

2(k − 1)
(1 + log2(πe)) ,

then, under the Gaussian Heuristic assumption, one can factor the k RSA
moduli N1, · · ·Nk in polynomial time.
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Proof. For 1 ≤ i ≤ k, suppose that the aipi’s share t least significant bits.
Then, for 1 ≤ i ≤ k, aipi − a1p1 = 2txi. Multiplying by q1qi, we get aiq1Ni −
a1qiN1 = 2tq1qixi. Define a =

∏k
j=1 aj. Multiplying by a

ai
, we get

aq1Ni −
aa1qi
ai

N1 =
2taq1qixi

ai
.

Transforming modulo 2t, we get aq1NiN
−t
1 −

aa1qi
ai
≡ 0 (mod 2t). Define

Ti ≡ NiN
−1
1 (mod 2t). Then aq1Ti − aa1qi

ai
≡ 0 (mod 2t) and there exists an

integer yi such that aq1Ti − 2tyi = aa1qi
ai
. Consider the vector

v =

(
aq1,

aa1q2

a2
, . . . ,

aa1qk
ak

)
∈ Zk. (E.6)

Then v = (aq1, y2 . . . , yk)×M, where M is the k × k-matrix

M =



1 T2 T3 . . . Tk−1 Tk

0 −2t 0 . . . 0 0

0 0 −2t . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . −2t 0

0 0 0 . . . 0 −2t


.

Let L be the lattice defined by the rows of the matrix M . The dimension of
L is k and the determinant is det(L) = 2(k−1)t. The Gaussian Heuristics for
L asserts that the length of its shortest non-zero vector is σ(L) where

σ(L) ≈
√

k

2πe
det(L)

1
k =

√
k

2πe
2

(k−1)t
k . (E.7)

Observe that the norm of v satisfies

‖v‖2 = a2q2
1 +

k∑
i=2

(
aa1qk
ak

)2

.

If the aipi’s share all t least significant bits, then, for i = 1, . . . , k, we have

qi ≈ 2α, ai ≤ 2β, |xi| =
|aipi − a1p1|

2t
< 2n−α+β−t.
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Hence

‖v‖2 < 22kβ+2α + (k − 1)22kβ+2α = k22kβ+2α. (E.8)

Using (E.8) and (M.9) and transforming σ(L)2 > ‖v‖2 into k
2πe2

2(k−1)t
k >

k22kβ+2α, we get

t >
k

k − 1
α +

k2

k − 1
β +

k

2(k − 1)
(1 + log2(πe)) .

Using (E.6), we get q1 = gcd(aq1, N1) and for i = 2, . . . , k, qi = gcd(aa1qiai
, Ni).

This terminates the proof.

Once again, if β = 0, then ai = 1 and the bound of Theorem E.6.1
transforms to t > k

k−1α + k
2(k−1) (1 + log2(πe)) , which improves the bound

of [45].

E.7 Experiments

In this section, we describe the experiments that we conducted for k =
4, 10, 30 and 50 RSA moduli, in connection with Theorem E.4.1 and The-
orem E.6.1. We verified our assumptions by running experiments on a Core2
Duo 2GHz notebook. The lattice reduction basis technique was based on the
LLL algorithm.

Assume that a1p1 and the aipi’s share t MSBs. Then since aipi ≤ 2n−α+β,
we see that |aipi − a1p1| ≤ 2n−α+β−t. Therefore, t ≤ n − α + β. Similarly,
assume that a1p1 and the aipi’s share t LSBs. Then |aipi − a1p1| = 2txi with
t ≤ n−α+β. In both cases, combining with the bound of t in Theorem E.4.1
and Theorem E.5.1, we get

n− α + β ≥ t >
k

k − 1
α +

k2

k − 1
β +

k

2(k − 1)
(1 + log2(πe)) ,

which is satisfied if

β <
n(k − 1)

k2 − k + 1
− 2k − 1

k2 − k + 1
α− k

2(k2 − k + 1)
(1 + log2(πe)) . (E.9)
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Consequently, we only consider the situation where the bit-size β of the ai’s
satisfies condition (E.9).

We generated many random 1024-bit RSA moduli for k = 4, 10, 30, 50
and various values of α and β according to the bound (E.9). All our experi-
ments were successful and the assumptions on the Gaussian Heuristics were
verified. In Table E.4, we notice the experimentally lowest values of t that
have 100% success rate.

Table E.4: Experiments for k RSA moduli in the MSB and the LSB cases.

Number Bit-size Max Used Minimal Experimental Experimental Number

k α of bit-size bit-size theoretical bound bound of

of the β of the β of bound for t in for t in experi-

moduli qi’s ai’s (E.9) the ai’s for t MSB case LSB case ments

4 150 154 100 737 602 611 1000

4 250 100 80 763 655 662 1000

4 350 46 35 657 609 616 1000

4 400 20 15 617 594 601 1000

10 150 69 50 725 649 674 1000

10 250 48 40 725 667 684 1000

10 350 27 20 614 591 603 1000

10 400 17 12 581 563 570 1000

30 150 23 15 623 585 592 500

30 250 17 12 634 596 603 500

30 350 10 8 613 544 572 500

30 400 6 4 541 533 536 500

50 150 14 10 666 648 650 100

50 250 10 7 615 597 605 100

50 350 6 4 564 546 551 100

50 400 4 3 564 556 559 100

E.8 Conclusion

In this work we have designed a technique to factor k ≥ 2 RSA moduli
Ni = piqi, i = 1, . . . , k when some unknown multiples aipi share t many Most
Significant Bits (MSBs) or t many Least Significant Bits (LSBs). The new
technique generalizes many previous results where the prime factors pi share
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t many MSBs or t many LSBs. This provides practitioners tighter conditions
for the primes that are generated for utilization with the RSA algorithm. On
the other hand, our results also serve their purpose to provide a peace of
mind for practitioners knowing that the generated RSA moduli does not fall
into any of the categories mentioned in this work.
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Factoring RSA Moduli with Weak
Prime Factors

C2SI 2015
[117] with Tajjeeddine Rachidi

Abstract :
In this paper, we study the problem of factoring an RSA modulus N = pq
in polynomial time, when p is a weak prime, that is, p can be expressed as
ap = u0 + M1u1 + . . . + Mkuk for some k integers M1, . . . ,Mk and k + 2
suitably small parameters a, u0, . . . uk. We further compute a lower bound
for the set of weak moduli, that is, moduli made of at least one weak prime,
in the interval [22n, 22(n+1)] and show that this number is much larger than
the set of RSA prime factors satisfying Coppersmith’s conditions, effectively
extending the likelihood for factoring RSA moduli. We also prolong our
findings to moduli composed of two weak primes.

149
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F.1 Introduction

The RSA cryptosystem, invented in 1978 by Rivest, Shamir and Adleman [131]
is undoubtedly one of the most popular public key cryptosystems. In the stan-
dard RSA [131], the modulus N = pq is the product of two large primes of the
same bit-size. The public exponent e is an integer such that 1 ≤ e < φ(N)
and gcd(e, φ(N)) = 1 where φ(N) = (p− 1)(q − 1) is the Euler totient func-
tion. The corresponding private exponent is the integer d such that ed ≡ 1
(mod φ(N)). In RSA, the encryption, decryption, signature generation, and
signature verification require substantial CPU cycles because the time to
perform these operations is proportional to the number of bits in public or
secret exponents [131]. To reduce CPU time necessary for encryption and
signature verification, one may be tempted to use a small public exponent
e. This situation has been proven to be insecure against some small public
exponent attacks (see [56] and [55]). To reduce the decryption and signature
generation time, one may also be tempted to use a small private exponent d.
Unfortunately, RSA is also vulnerable to various powerful short secret expo-
nent attacks such as, the attack of Wiener [147], and the attack of Boneh and
Durfee [17] (see also [15]). An alternate way for increasing the performance
of encryption, decryption, signature generation, and signature verification,
without reverting to small exponents, is to use the multi-prime variant of
RSA. The multi-prime RSA is a generalization of the standard RSA cryp-
tosystem in which the modulus is in the form N = p1p2 · · · pk where k ≥ 3 and
the pi’s are distinct prime numbers. Combined with the Chinese Remainder
Theorem, a multi-prime RSA is much more efficient than the standard RSA
(see [33]).

In Section 4.1.2 of the X9.31-1998 standard for public key cryptogra-
phy [1], some recommendations are presented regarding the generation of the
prime factors of an RSA modulus. For example, it is recommended that the
modulus should have 1024 + 256x bits for x ≥ 0. This requirement deters
some factorization attacks, such as the Number Field Sieve (NFS) [85] and
the Elliptic Curve Method (ECM) [84]. Another recommendation is that the
prime difference |p − q| should be large, and p

q should not be near the ratio
of two small integers. These requirements guard against Fermat factoring
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algorithm [146], as well as Coppersmith’s factoring attack on RSA [34] when
one knows half of the bits of p. For example, if N = pq and p, q are of the

same bit-size with |p− q| < N 1/4, then
∣∣∣p− [√N]∣∣∣ < N1/4 (see [104]) where[√

N
]

is the nearest integer to
√
N , which means that half of the bits of p

are those of [
√
N ] which leads to the factorization of N (see [34] and [146]).

Observe that the factorization attack of Coppersmith applies provided that
one knows half of the bits of p, that is p is in one of the forms

p =

{
M1 + u0 with known M1 and unknown u0 ≤ N

1
4 ,

M1u1 +M0 with known (M1,M0) and unknown u1 ≤ N
1
4 .

Such primes are called Coppersmith’s weak primes. In the case of p = M1u1+
M0 with known M1 and M0, the Euclidean division of q by M1 is in the form
q = M1v1 + v0. Hence N = pq = (M1u1 + M0)(M1v1 + v0) which gives
M0v0 ≡ N (mod M1). Hence, since gcd(M0,M1) = 1, then v0 ≡ NM−1

0

(mod M1). This means that when p is of the form p = M1u1 + M0 with
known M1 and M0, then q is necessarily of the form q = M1v1 + v0 with
known v0. Coppersmith’s attack is therefore applicable only when small
enough parameters M0 and v0 can be found such that p = M1u1 + M0 and
q = M1v1 + v0. This reduces the applicability of the attack to the set of
moduli such that p and q are of the form defined above.

In this paper, we consider the generalization of Coppersmith’s attack
by considering a more satisfiable decomposition of any of the multipliers of
p or q, i.e., ap or aq not just p or q, effectively leading to an increased
set of moduli that can be factored. We describe two new attacks on RSA
with a modulus N = pq. The first attack applies in the situation that, for
given positive integers M1, . . . ,Mk, one of the prime factors, p say, satisfies
a linear equation ap = u0 + M1u1 + . . . + Mkuk with suitably small integers
a and u0, . . . , uk. We call such prime factors weak primes for the integers
M1, . . . ,Mk. The second attack applies when both factors p and q are weak
for the integers M1, . . . ,Mk. We note that, for k = 1, the weak primes
are such that ap = u0 + M1u1. This includes the class of Coppersmith’s
weak primes. For both attacks, we give an estimation of the RSA moduli
N = pq with a prime factor p ∈

[
2n, 2n+1

]
which is weak for the integers

M,M2, . . . ,Mk where M =
⌈
2
n
2k

⌉
.
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The rest of the paper is organized as follows. In Section 2, we give some
basic concepts on integer factorization and lattice reduction as well as an
overview of Coppersmith’s method. In Section 3, we present an attack on an
RSA modulus N = pq with one weak prime factor. In Section 4, we present
the second attack an RSA modulus N = pq with two weak prime factors. We
conclude the paper in Section 5.

F.2 Preliminaries

In this section we give the definitions and results that we need to perform our
attacks. These preliminaries include basic concepts on integer factorization
and lattice reduction techniques.

F.2.1 Integer factorization: the state of the art

Currently, the most powerful algorithm for factorizing large integers is the
Number Field Sieve (NFS) [85]. The heuristic expected time TNFS(N) of the
NFS depends on the bitsize of the integer N to be factored:

TNFS(N) = exp
(

(1.92 + o(1))(logN)1/3(log logN)2/3
)
.

If the integer N has small factors, the Elliptic Curve Method (ECM) [84] for
factoring is substantially faster than the NFS. It can compute a non-trivial
factor p of a composite integer N in an expected runtime TECM :

TECM(p) = exp
((√

2 + o(1)
)

(log p)1/2(log log p)1/2
)
,

which is sub-exponential in the bitsize of the factor p. The largest factor
found so far with the ECM is a 83 decimal digits (275 bits) prime factor of
the special number 7337 + 1 (see [150]).
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F.2.2 Lattice reduction

Let m and n be positive integers with m ≤ n. Let u1, . . . , um ∈ Rn be m
linearly independent vectors. The lattice L spanned by u1, . . . , um is the set

L =

{
m∑
i=1

aiui | ai ∈ Z

}
.

The set {u1, . . . , um} is called a lattice basis for L. The dimension (or rank)
of the lattice L is dim(L) = m, and L is called full rank if m = n. It is often
useful to represent the lattice L by the m× n matrix M whose rows are the
coefficients of the vectors u1, . . . , um. The determinant (or volume) of L is
defined as det(L) =

√
M ·M t. When L is full rank, the determinant reduces

to det(L) = | det(M)|. The Euclidean norm of a vector v =
∑m

i=1 aiui ∈ L
is defined as ‖v‖ =

√∑m
i=1 a

2
i . As a lattice has infinitely many bases, some

bases are better than others, and a very important task is to find a basis with
small vectors {b1, . . . , bm} called the reduced basis. This task is very hard
in general, however, the LLL algorithm proposed by Lenstra, Lenstra, and
Lovász [86] finds a basis of a lattice with relatively small vectors in polynimial
time. The following theorem determines the sizes of the reduced basis vectors
obtained with LLL (see [91] for more details).

Theorem F.2.1. Let L be a lattice spanned by a basis {u1, . . . , um}. The
LLL algorithm applied to L outputs a reduced basis {b1, . . . , bm} with

‖b1‖ ≤ ‖b2‖ ≤ . . . ≤ ‖bi‖ ≤ 2
m(m−1)
4(m−i+1) det(L)

1
m+i−1 , for i = 1, 2, . . . ,m.

The existence of a short nonzero vector in a lattice is guaranteed by a
result of Minkowski stating that every m-dimensional lattice L contains a
non-zero vector v with ‖v‖ ≤

√
m det(L)

1
m . On the other hand, the Gaussian

Heuristic asserts that the norm γ1 of the shortest vector of a random lattice
satisfies

γ1 ≈
√

dim(L)

2πe
det(L)

1
dim(L) .

Hereafter, we will use this result as an estimation for the expected minimum
norm of a non-zero vector in a lattice.
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F.2.3 Coppersmith’s Method

In 1996, Coppersmith [34] presented two techniques based on LLL to find
small integer roots of univariate modular polynomials or of bivariate integer
polynomials. Coppersmith showed how to apply his technique to factorize
an RSA modulus N = pq with q < p < 2q when half of the least or the most
significant bits of p is known.

Theorem F.2.2. Let N = pq be an RSA modulus with q < p < 2q. Let
M0 and M1 be two positif integers. If p = M1 + u0 with u0 < N

1
4 or if

p = M1u1 +M0 with u1 < N
1
4 , then N can be factored in time polynomial in

logN .

Coppersmith’s technique extends to polynomials in more variables, but
the method becomes heuristic. The problem of finding small roots of linear
modular polynomials f(x1, . . . , xn) = a1x1 +a2x2 + · · ·+anxn+an+1 (mod p)
for some unknown p that divides the known modulus N has been studied
using Coppersmith’s technique by Herrmann and May [59]. The following
result, due to Lu, Zhang and Lin [88] gives a sufficient condition under which
modular roots can be found efficiently.

Theorem F.2.3 (Lu, Zhang, Lin). Let N be a composite integer with a
divisor pu such that p ≥ Nβ. Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a homoge-
nous linear polynomial. Then one can find all the solutions (y1, . . . , yn) of
the equation f(x1, . . . , xn) = 0 mod pv, v ≤ u with gcd(y1, . . . , yn) = 1 and
|y1| < N δ1, . . . , |yn| < N δn if

n∑
i=1

δi ≤
u

v

(
1−

(
1− u

v
β
) n
n−1 − n

(
1− n−1

√
1− u

v
β

)(
1− u

v
β
))

.

The time complexity of the algorithm for finding such sulution (y1, . . . , yn) is
polynomial in logN .
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F.3 The Attack with One Weak Prime Factor

F.3.1 The Attack

In this section, we present an attack to factor an RSA modulus N = pq
when p satisfies a linear equation in the form ap = u0 +M1u1 + . . .Mkuk for
a suitably small positive integer a and suitably small integers u0, u1, . . . , uk
where M1, . . . ,Mk are given positive integers. Such prime factor p is called a
weak prime for the integers M1, . . . ,Mk.

Theorem F.3.1. Let N = pq be an RSA modulus such that p > Nβ and
M1, . . . ,Mk be k positive integers with M1 < M2 < . . . < Mk. Suppose that
there exists a positive integer a, and k + 1 integers ui, i = 0, . . . , k such that
ap = u0 +M1u1 + . . .+Mkuk with max(ui) < N δ and

δ <
1

k + 1

(
1− (1− β)

k+1
k − (k + 1)

(
1− k

√
1− β

)
(1− β)

)
.

Then one can factor N in polynomial time.

Proof. Let M1, . . . ,Mk be k positive integers such that M1 < M2 < . . . < Mk.
Suppose that ap = u0 +M1u1 + . . .+Mkuk, that is (u0, . . . , uk) is a solution
of the modular polynomial equation

x0 +M1x1 + . . .+Mkxk = 0 (mod p). (F.1)

Suppose that |ui| < N δ for i = 0, . . . , k. Using n = k+ 1, u = 1 and v = 1 in
Theorem F.2.3, means that the equation (F.1) can be solved in polynomial
time, i.e., finding (u0, . . . , uk) if

(k + 1)δ <
(

1− (1− β)
k+1
k − (k + 1)

(
1− k

√
1− β

)
(1− β)

)
,

which gives the bound

δ <
1

k + 1

(
1− (1− β)

k+1
k − (k + 1)

(
1− k

√
1− β

)
(1− β)

)
.

This terminates the proof.
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Remark F.3.2. For a balanced RSA modulus, the prime factors p and q are
of the same bit size. Then p > Nβ with β = 1

2 . Hence, the condition on δ
becomes

δ <
1

k + 1

(
1−

(
1

2

)k+1
k

)
− 1

2

(
1−

(
1

2

) 1
k

)
. (F.2)

In Table F.1, we give the bound for δ for given β and k.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

β = 0.5 0.125 0.069 0.047 0.036 0.029 0.024 0.021 0.018 0.016 0.015

β = 0.6 0.180 0.101 0.071 0.054 0.044 0.037 0.032 0.028 0.025 0.022

β = 0.7 0.245 0.142 0.100 0.077 0.063 0.053 0.046 0.046 0.036 0.032

Table F.1: Upper bounds for δ by Theorem F.3.1.

Remark F.3.3. We note that Coppersmith’s weak primes correspond to
moduli N = pq with q < p < 2q where one of the prime factors is of the
form p = M1 + u0 or p = M1u1 + M0 with u0, u1 < N 0.25 as mentioned
in Theorem F.2.2. This a special case of the equation of Theorem F.3.1.
Indeed, we can solve the equations p = M1 + u0 and p = M1u1 + M0 when
|u0|, |u1| < N

1
4 . Alternatively, Coppersmith’s weak primes correspond to the

cell (k, 2β) = (1, 0.25) in Table F.1.

F.3.2 Numerical Examples

Example F.3.4. Let

N =10009752886312109988022778227550577837081215192005129864784685

185744046801879577421186031638557426812962407688357511963709141,

be a 412-bit RSA modulus with N = pq where q < p < 2q. Then p and
q are balanced and p ≈ N

1
2 ≈ 2206. Hence for β = 0.5, we have p > Nβ.

Suppose that p satisfies an equation of the form ap = u0 + Mu1 + M 2u2.
Typically, M 2 ≈ N

1
2 , that is M ≈ N

1
4 . So let M = 2100. For β = 0.5

and k = 2, Table (F.1) gives the bound δ < 0.069. Assume therefore that
the parameters ui satisfy |ui| < N 0.069 ≈ 228 for i = 0, 1, 2. By applying
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Theorem F.3.1 we should find u0, u1 and u2 as long as u0, u1, u2 < 228. We
apply the method of Lu et al. [88] with m = 4 and t = 1. This gives a
35-dimensional lattice. Applying the LLL algorithm [86], we find a reduced
basis with multivariate polynomials fi(x1, x2, x3) ∈ Z[x1, x2, x3], i = 1, . . . , 3.
Applying the Gröbner basis technique for solving a system of polynomial
equations, we get u0 = 9005, u1 = 7123, u2 = 3915. Using these values, we
can compute ap = u0 + Mu1 + M 2u2 from which we deduce p = gcd(u0 +
Mu1 +M 2u2, N), that is

p = 123356126338704841740132972382836883609800988209539117002682143.

Finally, we can compute q = N
p , that is

q = 81145162250214072465980396192562821802697970661432623765038987.

Note here that there is no linear decomposition of p in the form p = M1 + u0

nor p = M1u1 + M0 with u0, u1 < N 0.25 that makes p vulnerable to the
attack of Coppersmith. This shows that the modulus N is vulnerable to our
attack, while it is not vulnerable to Coppersmith’s attack. Finally, the overall
recorded execution time for our attack using an off-the-shelf computer was
17 seconds.

Example F.3.5. In [10], Bernstein et al. discovered many prime factors
with special forms. Many of these primes were found by computing the
greatest common divisor of a collection of RSA moduli. Others were found
by applying Coppersmith’s technique. We show below that our attack can
find some primes among the list of Bernstein et al. One of these primes is

p =0xc00000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000000000000002f9,

=10055855947456947824680518748654384595609524365444295033292671082

79132302255516023260140572362517757076752389363986453814031541210

8959927459825236754563833.

Using M = 2510, we get p = 3M+761 = Mu1+u0 where u1 = 3 and u0 = 761.
We have u1, u0 < N δ with δ ≈ 0.007 which is less than the bound 0.125 in
Table F.1 for a 1024 bit-size RSA modulus N with β = 0.5, and k = 1. This
implies that the conditions for Theorem F.3.1 are satisfied and our method
finds p when used in any RSA modulus.
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Example F.3.6. Now, consider this other example from the list of Bernstein
et al. [10]

p =0xc000b80000000000000000000000000000000000000000000000000000000000

0000068000000000000000000000000000000000000000000000000000000251

=1005600299430066190917858574741029677291519034741120712409376115

2520749216065545598886037221777994938111659319232428746318812487

609513837263772711701709393

Then p has the form p = 3145774M 7+27262976M 3+593 = M 7u7+M 3u3+u0

where M = 270. The coefficients u7, u3 and u0 satisfy u7, u3, u0 < N δ with
δ ≈ 0.016 while the bound of Theorem F.3.1 is 0.021 (see Table F.1 for k = 7
and β = 0.5). Again, this shows that our method will find the factorization
of any RSA modulus that is a multiple of p.

F.3.3 The Number of Single Weak Primes in an Interval

In this section, we consider two positive integers n and M and present a
study of the weak primes with M , that is the primes p ∈

[
2n, 2n+1

]
such that

there exists a positive integer a that gives the decomposition

ap =
k∑
i=0

M iui

where |ui| < N δ and δ satisfies Theorem F.3.1. We show that the number
of the RSA moduli N in the interval [22n, 22(n+1)] with a weak prime factor
p ∈

[
2n, 2n+1

]
is polynomial in 2n. That is, this number is lower bounded

by 2η where η > 1
2 . We call such a class weak RSA Moduli in the interval

[22n, 22(n+1)].

Theorem F.3.7. Let n be a positive integer. For k ≥ 1, define M =
⌈
2
n
k

⌉
.

Let N be the set of the weak RSA moduli N ∈
[
22n, 22(n+1)

]
such that N = pq,

p and q are of the same bitsize, p > q, and p =
⌊∑k

i=0M
iui

a

⌋
+ b ∈

[
2n, 2n+1

]
for some small integers b, a < N δ and |ui| < N δ for i = 0, . . . , k with

δ =
1

k + 1

(
1−

(
1

2

)k+1
k

)
− 1

2

(
1−

(
1

2

) 1
k

)
.
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Then the cardinality of N satisfies #N ≥ 2η where

η = (1 + 2(k + 1)δ)n+ log2

(
(n− 1)

n(n+ 1) log(2)

)
.

Proof. Let N be an RSA moduli. Suppose that N ∈
[
22n, 22(n+1)

]
with N =

pq where p and q are of the same bitsize. Since p ≈ N
1
2 , then p ∈

[
2n, 2n+1

]
.

Suppose further that for some positive integer a, we have ap =
∑k

i=0M
iui.

Then

Mk =
ap−

∑k−1
i=0 M

iui
uk

≈ a

uk
p,

which implies M ≈ p
1
k ≈ N

1
2k . Now, define

M =
⌈
N

1
2k

⌉
=
⌈
2
n
k

⌉
,

where dxe is the integer greater or equal to x. This yields 2n ≤ Mk ≤ 2n+1.
Consider the set P ⊂

[
2n, 2n+1

]
P =

{
p =

⌊∑k
i=0M

iui
a

⌋
+ b, p is prime, | a < N δ, |ui| < N δ

}
,

where δ satisfies (F.2). Here b is as small as possible so that
⌊∑k

i=0M
iui

a

⌋
+ b

is prime. Also, since Mk is the leading term, then observe that∑k
i=0M

iui
a

−Mk =
uk − a
a

Mk +

∑k
i=1M

iui
a

.

To ensure p ∈
[
2n, 2n+1

]
, we consider only the situation where uk ≥ a. Hence,

using the bounds a < N δ and |ui| < N δ for i = 0, . . . , k − 1, we get a lower
bound for the number of possibilities for a and for ui, which themselves set
a lower bound for the cardinality of P as follows:

#P ≥
⌊
N δ
⌋ ⌊
N δ
⌋k ≈ N (k+1)δ ≈ 22(k+1)nδ. (F.3)

On the other hand, the prime number theorem asserts that the number π(x)
of the primes less than x is

π(x) ≈ x

log(x)
.
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Hence, the number of primes in the interval
[
2n, 2n+1

]
is approximately

π
(
2n+1

)
− π (2n) ≈ 2n+1

log (2n+1)
− 2n

log (2n)
=

(n− 1)2n

n(n+ 1) log(2)
. (F.4)

It follows that the number of RSA moduli N = pq ∈
[
22n, 22(n+1)

]
with a weak

factor p ∈ P and q ∈
[
2n, 2n+1

]
is at least #(N ) ≥ #P×

(
π
(
2n+1

)
− π (2n)

)
.

Using F.3 and F.4, we get

#(N ) ≥ 22(k+1)nδ × (n− 1)2n

n(n+ 1) log(2)

=
(n− 1)

n(n+ 1) log(2)
× 2(1+2(k+1)δ)n

= 2η,

where

η = (1 + 2(k + 1)δ)n+ log2

(
(n− 1)

n(n+ 1) log(2)

)
.

This terminates the proof.

Table F.2 presents a list of values of the bound η in terms of k and n.
In Table F.2, we see that in the situation (β, k) = (0.5, 1), the number #(N )

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 1
2 log2(N) = 512 759 715 698 689 684 680 677

n = 1
2 log2(N) = 1024 1526 1438 1404 1386 1375 1368 1362

n = 1
2 log2(N) = 2048 3061 2885 2818 2782 2759 2744 2733

Table F.2: Lower bounds for η under Theorem F.3.7.

of 1024-bits RSA moduli N = pq ∈
[
21024, 21026

]
with a weak factor p is at

least #(N ) ≥ 2759. Observe that the number of RSA moduli with a weak
Coppersmith’s prime factor in the same interval is approximately N

1
4 ·N 1

2 ≈
2768. Actually, weak Coppersmith’s prime are of the form p = M1 + u0 or
p = M1u1 +M0 with one unknown parameter u0 or u1, while our weak primes
for k = 1 are of the form p = M1u1 + u0 with two unknown parameters
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u0 or u1. This shows that our weak prime factors are different from weak
Coppersmith primes.

F.4 The Attack with Two Weak Prime factors

F.4.1 The Attack

In this section, we present an attack on RSA with a modulus N = pq when
both the prime factors p and q are weak primes.

Theorem F.4.1. Let N = pq be an RSA modulus and M be a positive integer.
Let k ≥ 1. Suppose that there exist integers a, b, ui and vi, i = 1, . . . , k such
that ap =

∑k
i=0M

iui and bq =
∑k

i=0M
ivi with |ui|, |vi| < N δ and

δ <
1

2k + 1
+

log
(
2k3
)

2(2k + 1) log(N)
+

log(2k + 1)− log(2πe)

4 log(N)
−

log
(
4k3
)

4 log(N)
.

Then one can factor N in polynomial time.

Proof. Suppose that ap =
∑k

i=0M
iui and bq =

∑k
i=0M

ivi. Then multiplying
ap and bq, we get

abN =
2k∑
i=0

M iwi, with wi =
i∑

j=0

ujvi−j.

This can be transformed into the equation

M 2kx2k +M 2k−1x2k−1 + . . .+Mx1 − yN = −x0, (F.5)

with the solution (x2k, x2k−1, . . . , x1, y, x0) = (w2k, w2k, . . . , w1, ab, u0v0). For
i = 0, . . . , k, suppose that |ui|, |vi| < N δ. Since for i = 0, . . . , 2k, the maximal
number of terms in wi is k, we get

|xi| = |wi| ≤ kmax
j

(|uj|) ·max
j

(|vj|) < kN 2δ. (F.6)

Let C be a constant to be fixed later. Consider the lattice L generated by
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the row vectors of the matrix

M(L) =



1 0 0 . . . 0 CM 2k

0 1 . . . 0 0 CM 2k−1

...
... . . . ...

...
...

0 0 0 . . . 1 CM

0 0 0 . . . 0 −CN


. (F.7)

The dimension of the lattice L is dim(L) = 2k + 1 and its determinant is
det(L) = CN . According to the Gaussian Heuristic, the length of the shortest
non-zero vector of the lattice L is approximately σ(L) with

σ(L) ≈
√

dim(L)

2πe
det(L)

1
dim(L) =

√
2k + 1

2πe
(CN)

1
2k+1 .

Consider the vector v = (x2k, x2k−1, . . . , x1,−Cx0). Then, using (F.5), we get

(x2k, x2k−1, . . . , x1,−Cx0) = (x2k, xk−1, . . . , x1, y) ·M(L).

This means that v ∈ L. Consequently, if C satisfies ‖v‖ ≤ σ(L), then, by
the Gaussian Heuristic, v is the shortest vector of L. Using the bound (F.6),
the length of the vector v satisfies

‖v‖2 = C2x2
0 +

2k∑
i=1

x2
i ≤

(
C2 +

2k∑
i=1

k2

)
N 4δ =

(
C2 + 2k3

)
N 4δ.

Let C be a positive integer satisfying C ≤
√

2k3. Then the norm of the vector
v satisfies ‖v‖2 < 4k3N 4δ. Hence, using the Gaussian approximation σ(L),
the inequality ‖v‖ ≤ σ(L) is satisfied if

2k
3
2N 2δ ≤

√
2k + 1

2πe

(
2

1
2k

3
2N
) 1

2k+1

.

Solving for δ, we get

δ <
1

2k + 1
+

log
(
2k3
)

2(2k + 1) log(N)
+

log(2k + 1)− log(2πe)

4 log(N)
−

log
(
4k3
)

4 log(N)
.
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If δ satisfies the former bound, then the LLL algorithm, applied to the lattice
L will output the vector v = (x2k, x2k−1, . . . , x1,−Cx0) from which, we deduce

w2k = |x2k|, w2k−1 = |x2k−1|, . . . , w1 = |x1|, w0 =
| − Cx0|

C
.

Using the coefficients wi, i = 1, . . . , 2k, we construct the polynomial P (X) =
w2kX

2k + w2k−1X
2k−1 + . . .+ w1X + w0. Factoring P (X), we get

P (X) =

(
k∑
i=0

M iui

)(
k∑
i=0

M ivi

)
,

from which we deduce all the values ui and vi for i = 1, . . . , k. Using each
ui and vi for i = 1, . . . , k, we get ap =

∑k
i=0M

iui and finally obtain p =

gcd
(∑k

i=0M
iui, N

)
which in turn gives q = N

q . This terminates the proof.

In Table F.3, we give the bound for δ for a given k and a given size of
the RSA modulus.

k = 1 k = 2 k = 3 k = 4 k = 5

log2(N) = 1024 0.332 0.199 0.141 0.109 0.089

log2(N) = 2048 0.333 0.199 0.142 0.110 0.090

Table F.3: Upper bounds for δ with Theorem F.4.1.

F.4.2 Examples

Example F.4.2. Consider the 234 bits RSA modulus

N = 18128727522177729435347634587168292968987318316812435932174117774340029.

Let M = 250. Suppose further that the prime factors p and q are such that
ap = M 2u2 + Mu1 + u0 and bq = M 2v2 + Mv1 + v0, that is k = 2 with the
notation of Theorem F.4.1. We built the matrix (F.7) with C =

√
2k3 = 4

and applied the LLL algorithm [86]. We got a new basis, where the last row
is:

(w4, w3, w2, w1,−Cw0) =

(30223231819936, 68646317659290, 109044283791446, 80821741694637,−162291153390444).
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From this, we form the polynomial P (X) = w4X
4+w3X

3+w2X
2+w1X

1+w0.
which factors as:

P (X) =
(
4678994X2 + 5832048X + 4871673

)(
6459344X2 + 6620037X + 8328307

)
.

From this, we deduce

u2 = 4678994, u1 = 5832048, u0 = 4871673,

v2 = 6459344, v1 = 6620037, v0 = 8328307.

Using these values, we compute

ap = M 2u2 +Mu1 + u0 = 5931329552564290566528965219451557369,

bq = M 2v2 +Mv1 + v0 = 8188191298680619668680362464158618739.

and obtain

p = gcd(ap,N) = 126198501118389160989977983392586327,

q = gcd(bq,N) = 143652478924221397696146709897519627.

This leads to the factorization of N = pq. We note that the first attack
described in Section F.3 does not succeed to factor N . Indeed, we have
log(maxi(|vi|))

logN ≈ 0.098 which is larger than the value δ = 0.069 for k = 2 and
β = 0.5 in Table F.1. Finally, the overall recorded execution time for our
attack using an off-the-shelf computer was 12 seconds.

F.4.3 The Number of Double Weak Primes in an Interval

In this section, we consider two positive integers n and M and present a
study of the double weak primes with M , that is the primes p, q ∈

[
2n, 2n+1

]
such that there exists positive integer a and b that give the decompositions:

ap =
k∑
i=0

M iui, bq =
k∑
i=0

M ivi

where |ui| < N δ, |vi| < N δ and δ satisfies Theorem F.4.1. We show that the
number of the RSA moduli N in the interval [22n, 22(n+1)] with a weak prime
factors p, q ∈

[
2n, 2n+1

]
is lower bounded by 2η2 where η2 >

1
2 .
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Theorem F.4.3. Let n be a positive integer. For k ≥ 1, define M =
⌈
2
n
k

⌉
.

Let N be the set of the weak RSA moduli N ∈
[
22n, 22(n+1)

]
such that N = pq

with p =
⌊∑k

i=0M
iui

a

⌋
+u, q =

⌊∑k
i=0M

ivi
b

⌋
+ v, p, q ∈

[
2n, 2n+1

]
for some small

integers u, v, a < N δ, b < N δ, |ui| < N δ and |vi| < N δ for i = 0, . . . , k with

δ =
1

k + 1

(
1−

(
1

2

)k+1
k

)
− 1

2

(
1−

(
1

2

) 1
k

)
.

Then the cardinality of N is at least #N ≥ 2η2 where η2 = 4(k + 1)nδ.

Proof. As in the proof of Theorem F.3.7, the number of prime numbers p ∈[
2n, 2n+1

]
such that p =

∑k
i=0M

iui
a + u with |ui| < 22nδ is

#P ≥ 22(k+1)nδ.

Then, the number N2 of RSA modulus N ∈
[
22n, 22(n+1)

]
with N = pq, where

both p and q are weak primes is at least

#N2 ≥ 24(k+1)nδ = 2η2,

where η2 = 4(k + 1)nδ. This terminates the proof.

In Table F.3, we present a list of values of the bound η2 in terms of k
and n.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 512 512 424 390 372 361 353 348

n = 1024 1024 848 780 744 722 707 696

n = 2048 2048 1696 1560 1489 1444 1414 1392

Table F.4: Lower bounds for η2 under Theorem F.4.3.

F.5 Conclusions

In this paper we presented and illustrated two attacks based on factoring
RSA moduli with weak primes. We further computed lower bounds for the
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sets of weak moduli -that is, moduli made of at least one or two weak prime
respectively- in the interval [22n, 22(n+1)] and showed that these sets are much
larger than the set of RSA prime factors satisfying Coppersmith’s conditions,
which effectively extending the likelihood for factoring RSA moduli.
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New attacks on RSA with Moduli
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Abstract :
We present three attacks on the Prime Power RSA with modulus N = prq.
In the first attack, we consider a public exponent e satisfying an equation
ex − φ(N)y = z where φ(N) = pr−1(p − 1)(q − 1). We show that one can

factor N if the parameters |x| and |z| satisfy |xz| < N
r(r−1)
(r+1)2 thereby extending

the recent results of Sakar [132]. In the second attack, we consider two public
exponents e1 and e2 and their corresponding private exponents d1 and d2. We
show that one can factor N when d1 and d2 share a suitable amount of their

most significant bits, that is |d1 − d2| < N
r(r−1)
(r+1)2 . The third attack enables

us to factor two Prime Power RSA moduli N1 = pr1q1 and N2 = pr2q2 when
p1 and p2 share a suitable amount of their most significant bits, namely,
|p1 − p2| < p1

2rq1q2
.

167
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G.1 Introduction

The RSA public-key cryptosystem, invented in 1978 by Rivest, Shamir and
Adleman [131], is one of the most popular systems in use today. In the
RSA cryptosystem, the public key is (N, e) where the modulus N = pq is
a product of two primes of the same bitsize, and the public exponent is
a positive integer satisfying ed ≡ 1 (mod φ(N)). In RSA, encryption and
decryption require executing heavy exponential multiplications modulo the
large integer N . To reduce the decryption time, one may be tempted to
use a small private exponent d. However, in 1990 Wiener [147] showed that
RSA is insecure if d < 1

3N
0.25, and Boneh and Durfee [17] improved the

bound to d < N0.292. In 2004, Blömer and May [13] combined both Wiener’s
method and Boneh and Durfee’s method to show that RSA is insecure if the
public exponent e satisfies an equation ex + y = kφ(N) with x < 1

3N
1
4 and

|y| ≤ N−
3
4ex.

Concurrent to these efforts, many RSA variants have been proposed in
order to ensure computational efficiency while maintaining the acceptable
levels of security. One such important variant is the Prime Power RSA. In
Prime Power RSA the modulus N is in the form N = prq for r ≥ 2. In [145],
Takagi showed how to use the Prime Power RSA to speed up the decryption
process when the public and private exponents satisfy an equation ed ≡ 1
(mod (p− 1)(q − 1)). As in the standard RSA cryptosystem, the security of
the Prime Power RSA depends on the difficulty of factoring integers of the
form N = prq.

Therefore, a Prime Power RSA modulus must be appropriately chosen,
since it has to resist factoring algorithms such as the Number Field Sieve [85]
and the Elliptic Curve Method [84]. Table G.1, shows the suggested secure
Power RSA forms as a function of the size of the modulus back in 2002
(see [33]). Note that, due to the ever increasing development of computing
hardware, the form N = p2q is no longer recommended for 1024 bit modulus.

Modulus size (bits) 1024 1536 2048 3072 4096 8192

Form of the modulus N pq, p2q pq, p2q pq, p2q pq, p2q pq, p2q, p3q pq, p2q, p3q, p4q

Table G.1: Optimal number of prime factors of a Prime Power RSA modulus [33].
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In 1999, Boneh, Durfee, and Howgrave-Graham [16] presented a method
for factoring N = prq when r is large. Furthermore, Takagi [145] proved

that one can factor N if d < N
1

2(r+1) , and May [92] improved the bound to

d < N
r

(r+1)2 or d < N
(r−1)2

(r+1)2 . Very recently, Lu, Zhang and Lin [88] improved

the bound to d < N
r(r−1)
(r+1)2 , and Sarkar [132] improved the bound for N = p2q

to d < N 0.395 and gave explicit bounds for r = 3, 4, 5.

In this paper, we focus on the Prime Power RSA with a modulus N =
prq, and present three new attacks: In the first attack we consider a public
exponent e satisfying an equation ex−φ(N)y = z where x and y are positive
integers. Using a recent result of Lu, Zhang and Lin [88], we show that one

can factor N in polynomial time if |xz| < N
r(r−1)
(r+1)2 . In the standard situation

z = 1, the condition becomes d = x < N
r(r−1)
(r+1)2 which improves the bound of

May [92] for r ≥ 3 and retrieves the bound of Lu, Zhang and Lin [88]. Note
that unlike Sarkar [132] who solves ex− φ(N)y = 1, we solve a more general
equation ex − φ(N)y = z. This leads to less constraints on the solution
space, which in turn leads to an increase in the number of solutions to the
equation. Intuitively speaking, our method has higher likelihood of finding
solutions; that is, factoring RSA. In section G.3, we shall present an example
supporting this claim.

In the second attack, we consider an instance of the Prime Power RSA
with modulus N = prq. We show that one can factor N if two private keys
d1 and d2 share an amount of their most significant bits, that is if |d1 − d2|
is small enough. More precisely, we show that if |d1 − d2| < N

r(r−1)
(r+1)2 , then

N can be factored in polynomial time. The method we present is based on
a recent result of [88] with Coppersmith’s method for solving an univariate
linear equation.

In the third attack, we consider two instances of the Prime Power RSA
with two moduli N1 = pr1q1 and N2 = pr2q2 such that the prime factors p1 and
p2 share an amount of their most significant bits, that is |p1 − p2| is small.
More precisely, we show that one can factor the RSA moduli N1 and N2 in
polynomial time if |p1 − p2| < p1

2rq1q2
. The method we use for this attack is

based on the continued fraction algorithm.
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The rest of this paper is organized as follows: In Section 2, we briefly
review the preliminaries necessary for the attacks, namely Coppersmith’s
technique for solving linear equations and the continued fractions theorem.
In Section 3, we present the first attack on the Prime Power RSA, which
is valid with no conditions on the prime factors. In Section 4, we present
the second attack in the situation where two decryption exponents share an
amount of their most significant bits. In Section 5, we present the third
attack on the Prime Power RSA when the prime factors share an amount of
their most significant bits. We then conclude the paper in Section 6.

G.2 Preliminaries

In this section, we present some basics on Coppersmith’s method for solv-
ing linear modular polynomial equations and an overview of the continued
fraction algorithm. Both techniques are used in the crafting of our attacks.

First, observe that if N = prq with q < p, then pr+1 > prq = N , and
p > N

1
r+1 . Hence throughout this paper, we will use the inequality p > Nβ

where β = 1
r+1 .

G.2.1 Linear Modular Polynomial Equations

In 1995, Coppersmith [34] developed powerful lattice-based techniques for
solving both modular polynomial diophantine equations with one variable
and two variables. These techniques have been generalized to more variables,
and have served for cryptanalysis of many instances of RSA. More on this
can be found in [61,93]. In [59], Herrmann and May presented a method for
finding the small roots of a modular polynomial equation f(x1, . . . , xn) ≡ 0
(mod p) where f(x1, . . . , xn) ∈ Z[x1, . . . , xn] and p is an unknown divisor of
a known integer N . Their method is based on the seminal work of Copper-
smith [34]. Very recently, Lu, Zhang and Lin [88] presented a generalization
for finding the small roots of a modular polynomial equation f(x1, . . . , xn) ≡ 0
(mod pv), where pv is a divisor of some composite integer N . For the bivari-
ate case, they proved the following result, which we shall use in the crafting
of our attacks.
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Theorem G.2.1 (Lu, Zhang and Lin). Let N be a composite integer with a
divisor pu such that p ≥ Nβ for some 0 < β ≤ 1. Let f(x, y) ∈ Z[x, y] be a
homogenous linear polynomial. Then one can find all the solutions (x, y) of
the equation f(x, y) = 0 mod pv with gcd(x, y) = 1, |x| < Nγ1, |y| < Nγ2, in
polynomial time if

γ1 + γ2 < uvβ2.

G.2.2 The Continued Fractions Algorithm

We present here the well known result of Legendre on convergents of a contin-
ued fraction expansion of a real number. The details can be found in [57]. Let
ξ be a positive real number. Define ξ0 = ξ and for i = 0, 1, . . . , n, ai = bξic,
ξi+1 = 1/(ξi − ai) unless ξi is an integer. This expands ξ as a continued
fraction in the following form:

ξ = a0 +
1

a1 +
1

. . . +
1

an +
1

. . .

, a0 ∈ N, and ai ∈ N∗ for i ≥ 1,

which is often rewritten as ξ = [a0, a1, . . . , an, . . .]. For i ≥ 0, the rational
numbers [a0, a1, . . . , ai] are the convergents of ξ. If ξ = a

b is a rational number,
then ξ = [a0, a1, . . . , an] for some positive integer n, and the continued fraction
expansion of ξ is finite with the total number of convergents being polynomial
in log(b). The following result enables one to determine if a rational number
a
b is a convergent of the continued fraction expansion of a real number ξ (see
Theorem 184 of [57]).

Theorem G.2.2 (Legendre). Let ξ be a positive real number. Suppose gcd(a, b) =
1 and ∣∣∣ξ − a

b

∣∣∣ < 1

2b2
.

Then a
b is one of the convergents of the continued fraction expansion of ξ.

Note that the continued fractions expansion process is polynomial in
time.
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G.3 The First Attack on Prime Power RSA with Modulus N = prq

In this section, we present an attack on the Prime Power RSA when the
public key (N, e) satisfies an equation ex−φ(N)y = z with small parameters
x and |z|.

Theorem G.3.1. Let N = prq be a Prime Power RSA modulus and e a
public exponent satisfying the equation ex−φ(N)y = z with y 6≡ 0 (mod pq),
1 < e < φ(N) and gcd(e, φ(N)) = 1. Then one can factor N in polynomial
time if

|xz| < N
r(r−1)
(r+1)2 .

Proof. Suppose that e < N satisfies an equation ex−φ(N)y = z with |x| < N δ

and |z| < Nγ. Then, since φ(N) = pr−1(p − 1)(q − 1), we get ex − z ≡ 0
(mod pr−1). Applying Theorem G.2.1 with u = r, v = r− 1 and β = 1

r+1 , we
can solve the equation in polynomial time if

δ + γ < uvβ2 =
r(r − 1)

(r + 1)2
,

that is |xz| < N
r(r−1)
(r+1)2 . Since e

φ(N) < 1, then, using x and z in the equation

ex− φ(N)y = z, we get for sufficiently large N comparatively to r,

y =
ex− z
φ(N)

<
e|x|
φ(N)

+
|z|
φ(N)

< |x|+ |z| ≤ 1 + |xz| < 1 +N
r(r−1)
(r+1)2 < N.

Hence, when y 6≡ 0 (mod pq), we get

gcd(ex− z,N) = gcd(pr−1(p− 1)(q − 1)y, prq) = g,

with g = pr−1, g = pr or g = pr−1q. If g = pr−1, then p = g
1
r−1 , if g = pr, then

p = g
1
r and if g = pr−1q, then p = N

g . This leads to the factorization of N .

Example G.3.2. For r = 2 and N = prq, let us take for N and e the 55
digit numbers

N = 8138044578297117319482018441148072252199996769522371021,

e = 1199995230601021126201343651611107957480251354355883029.
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In order to solve the diophantine equation ex − φ(N)y = z, we trans-
formed it into the equation ex − z ≡ 0 (mod pr−1) using Theorem G.3.1.
To be able to apply Coppersmith’s technique via Theorem G.2.1, we chose
the parameters m = 7, t = 6 so that the dimension of constructed the lat-

tice is 36, and X =

[
N

r(r−1)
(r+1)2

]
= 1592999974064. We built the lattice using

the polynomial f(x1, x2) = x1 + ex2, then applied the LLL algorithm [86],
and used Gröbner basis method to find the smallest solution x1 = −11537
and x2 = 7053 to f(x1, x2) ≡ 0 (mod pr−1) in 174 seconds using an off-the-
shelf computer. From this solution, we deduced p = gcd(x1 + ex2, N) =
2294269585934949239, and finally recovered q = N

p2 = 1546077175000723901.

We then computed φ(N) and d ≡ e−1 (mod φ(N)) as follows:

φ(N) = 8138044578297117310671227668089561946257896925261579800,

d = 2015994747748388772982436393811213317361971865510756269.

Observe that d ≈ N 0.98 which is out of range of Sarkar’s bound [132] which
can only retrieve private keys d < N0.395 for r = 2.

G.4 The Second Attack on Prime Power RSA using Two Decryp-
tion Exponents

In this section, we present an attack on the Prime Power RSA when two
private exponents d1 and d2 share an amount of their most significant bits,
that is |d1 − d2| is small.

Theorem G.4.1. Let N = prq be an RSA modulus and d1 and d2 be two
private exponents such that e1e2(d1 − d2) − (e2 − e1) 6≡ 0 (mod N). Then,
one can factor N in polynomial time, if

|d1 − d2| < N
r(r−1)
(r+1)2 .

Proof. Suppose that e1d1 − k1φ(N) = 1 and e2d2 − k2φ(N) = 1 with e1 > e2.
Hence e1d1 ≡ 1 (mod φ(N)) and e2d2 ≡ 1 (mod φ(N)). Multiplying the first
equation by e2 and the second by e1 and subtracting, we get

e1e2(d1 − d2) ≡ e2 − e1 (mod φ(N)).



174 APPENDIX G. NEW ATTACKS ON RSA WITH MODULI N = PRQ

Since φ(N) = pr−1(p− 1)(q − 1), we get e1e2(d1 − d2) ≡ e2 − e1 (mod pr−1).
Now, consider the modular linear equation

e1e2x− (e2 − e1) ≡ 0 (mod pr−1),

d1− d2 is a root of such equation. Suppose further that |d1− d2| < N δ, then
applying Theorem G.2.1 with u = r, v = r − 1 and β = 1

r+1 will lead to the
solution x = d1 − d2 obtained in polynomial time if

δ < uvβ2 =
r(r − 1)

(r + 1)2
.

That is if |d1 − d2| < N
r(r−1)
(r+1)2 . Computing

gcd(e1e2x− (e2 − e1), N) = gcd
(
pr−1(p− 1)(q − 1)y, prq

)
= g,

and assuming that e1e2(d1 − d2)− (e2 − e1) 6≡ 0 (mod N) will lead to deter-
mining p, hence factoring N as follows: p = g

1
r−1 when g = pr−1, or p = g

1
r

when g = pr, or p = N
g if g = pr−1q.

Example G.4.2. Let us present an example corresponding to Theorem G.4.1.
Consider N = p2q with

N = 6093253851486120878859471958399737725885946526553626219,

e1 = 2749600381847487389715964767235618802529675855606377411,

e2 = 3575081244952414009316396501512372226545892558898276551.

The polynomial equation is f(x) = e1e2x− (e2 − e1) ≡ 0 (mod pr−1), which
can be transformed into g(x) = x − a ≡ 0 (mod pr−1) where a ≡ (e2 −
e1)(e1e2)

−1 (mod N). Using m = 8 and t = 6, we built a lattice with dimen-
sion ω = 9. Applying the LLL algorithm [86] and solving the first reduced
polynomials, we get the solution x0 = 1826732340. Hence gcd(f(x0), N) =
p = 1789386140116417697 and finally q = N

p2 = 1903010275819064491. The
whole process took less than 4 seconds using an off-the-shelf computer. Then,
using φ(N) = p(p − 1)(q − 1), we retrieved the private exponents d1 ≡ e−1

1

(mod φ(N)) and d2 ≡ e−1
2 (mod φ(N)). Note that again d1 ≈ d2 ≈ N 0.99

which Sarkar’s method with the bound d < N0.395 could not possibly re-
trieve.
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G.5 The Third Attack on Prime Power RSA with Two RSA Mod-
uli

In this section, we consider two Prime Power RSA moduli N1 = pr1q1 and
N2 = pr2q2, where p1 and p2 share an amount of their most significant bits.

Theorem G.5.1. Let N1 = pr1q1 and N2 = pr2q2 be two RSA moduli with
p1 > p2. If

|p1 − p2| <
p1

2rq1q2
,

then, one can factor N in polynomial time.

Proof. Suppose that N1 = pr1q1 and N2 = pr2q2 with p1 > p2. Then q2N1 −
q1N2 = q1q2 (pr1 − pr2). Hence∣∣∣∣N2

N1
− q2

q1

∣∣∣∣ =
q1q2 |pr1 − pr2|

q2
1p

r
1

.

In order to apply Theorem G.2.2, we need that q1q2|pr1−pr2|
q21p

r
1

< 1
2q21

, or equivalently

|pr1 − pr2| <
pr1

2q1q2
. (G.1)

Observe that

|pr1 − pr2| = |p1 − p2|
r−1∑
i=0

pr−1−i
1 pi2 < r|p1 − p2|pr−1

1 .

Then (G.1) is fulfilled if r|p1 − p2|pr−1
1 < pr1

2q1q2
, that is if

|p1 − p2| <
p1

2rq1q2
.

Under this condition, we get q2
q1

among the convergents of the continued frac-

tion expansion of N2

N1
. Using q1 and q2, we get p1 =

(
N1

q1

) 1
r

and p2 =
(
N2

q2

) 1
r

.
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Example G.5.2. We present here an example corresponding to Theorem G.5.1.
Consider N1 = p2

1q1 and N2 = p2
2q2 with

N1 = 170987233913769420505896917437304719816691353833034482461,

N2 = 120532911819726882881630714003135237766675602824250965921.

We applied the continued fraction algorithm to compute the first 40 conver-
gents of N2

N1
. Every convergent is a candidate for the ratio q2

q1
of the prime

factors. One of the convergents is 36443689
51698789 leading to q2 = 36443689 and

q1 = 51698789. This gives the prime factors p1 and p2

p1 =

√
N1

q1
= 1818618724382942951460443,

p2 =

√
N2

q2
= 1818618724382943035672683.

G.6 Conclusion

In this paper, we have considered the Prime Power RSA with modulus
N = prq and public exponent e. We presented three new attacks to fac-
tor the modulus in polynomial time. The first attack can be applied if small
parameters x, y and z satisfying the equation ex− φ(N)y = z can be found
. The second attack can be applied when two private exponents d1 and d2

share an amount of their most significant bits. The third attack can be ap-
plied when two Prime Power RSA moduli N1 = pr1q1 and N2 = pr2q2 are such
that p1 and p2 share an amount of their most significant bits.
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H.1 Introduction

In 1991, Koyama, Maurer, Okamoto and Vanstone [79] introduced a new
public key cryptosystem based on elliptic curves, called KMOV. The KMOV
cryptosystem is based on elliptic curves over the ring Zn where n = pq is an
RSA modulus, that is, the product of two large unknown primes of equal bit-
size. Introduced in 1978 by Rivest, Shamir and Adleman, RSA [131] is one of
the most popular cryptosystems in research as well as in commercial domain
(see [15], [61]). The RSA public key is denoted by (n, e) where n = pq
is an RSA modulus and e is an integer satisfying gcd(e, (p − 1)(q − 1)) =
1. The corresponding private exponent d is an integer satisfying ed ≡ 1
(mod (p− 1)(q − 1)). Then, there exists some integer k such that

ed− k(p− 1)(q − 1) = 1. (H.1)

Similarly, the KMOV public key is denoted by (n, e) where n = pq and e is
an integer satisfying gcd(e, (p + 1)(q + 1)) = 1. The corresponding private
exponent d is an integer satisfying ed ≡ 1 (mod (p+ 1)(q+ 1)) which can be
reformulated as an equation

ed− k(p+ 1)(q + 1) = 1. (H.2)

The security of RSA and KMOV is mainly based on the difficulty of factoring
the RSA modulus n. To speed up the encryption or decryption one may try
to use small public or secret decryption exponent. Many important papers
studied RSA and KMOV to explore the weaknesses in using small exponents.
In 1990, Wiener [147] showed that using equation (H.1) and the continued
fraction algorithm, it is possible to break RSA if the private key d satisfies
d < 1

3n
0.25. In 2004, Blömer and May [13] described an attack on RSA

starting with the equation

ex− k(p− 1)(q − 1) = y.

Using the continued fraction algorithm and lattice reduction techniques, they
showed that RSA is insecure if 0 < x < 1

3n
0.25 and |y| = O

(
n−0.75ex

)
. In

this paper, we consider KMOV with a public exponent e satisfying the more
general equation

ed− k(p+ 1)(q + 1) = z. (H.3)
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where x and y are co-prime positive integers. Observe that this equation
has infinitely many solutions but we will focus on small solutions. In 1995,
Pinch [128] extended the Wiener attack to KMOV using similar techniques
applied with equation (H.2), that is when z = 1. Similarly, Ibrahimpasic [69],
studied the security of KMOV with short secret exponents.

We mainly focus on the equation (H.2) which is a generalization of the
equation (H.2). We use Diophantine approximations to find x, y among the
convergents of the continued fraction expansion of e

n when x, y and z satisfy

|z| < (p− q)n 1
4y

3(p+ q)
, xy <

√
2
√
n

12
.

After finding x and y, one can get an approximation p̃ of p satisfying |p− p̃| <
n

1
4 where

p̃ =
1

2

(
ex

y
− n− 1

)
+

1

2

√√√√∣∣∣∣∣
(
ex

y
− n− 1

)2

− 4n

∣∣∣∣∣.
Finally, this approximation leads to the factorization of n by using Copper-
smith’s Theorem [34].

The rest of this paper is organized as follows. In the next section, we
review some necessary definitions and notation on elliptic curves and recall
the KMOV cryptosystem. In section 3, we present our new attack on KMOV.
In Section 4, we propose a numerical example. We conclude in Section 5.

H.2 Preliminaries

In this section, we give a brief description of the KMOV cryptosystem and
elliptic curves (see [140] for more details on elliptic curves).

H.2.1 Elliptic Curves over Fp

An elliptic curve over a field K is an algebraic curve with no singular points,
given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ K,
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together with a single element denoted O and called the point at infinity. The
elliptic curve E over K is denoted E/K and the set of solutions (x, y) ∈ K2

together with O is denoted E(K). Given two points P,Q ∈ E(K) we define
a third point P +Q so that E(K) forms an abelian group with this addition
operation.

• The point O serves as the identity element.

• The opposite of P = (x1, y1), is −P = (x1,−y1 − a1x1 − a3).

• If P = (x1, y1) and Q = (x2, y2) with Q 6= −P , then P + Q = (x3, y3)
where {

x3 = λ2 − x1 − x2 − a2 + a1λ,

y3 = −y1 − (x3 − x1)λ− a1x3 − a3,

where

λ =


y2−y1
x2−x1 if x1 6= x2,

3x21+2a2x1+a4−a1y1
2y21+a1x1+a3

if x1 = x2,

If K is of characteristic different from 2 or 3, the equation of the elliptic curve
E can be transformed into the reduced Weierstrass form

y2 = x3 + ax+ b, a, b ∈ K,

where 4a3 + 27b2 6= 0. When K = Fp for some prime p > 3, such a curve will
be denoted Ep(a, b).

Theorem H.2.1 (Hasse). The order of the group Ep(a, b)(Fp) is given by

#Ep(a, b) = p+ 1− ap,

where |ap| ≤ 2
√
p.

For the special case a = 0, the order #Ep(0, b) can easily be determined.

Lemma H.2.2. Let p > 3 be a prime satisfying p ≡ 2 (mod 3) and 0 < b <
p. Then

#Ep(0, b) = p+ 1.
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H.2.2 Elliptic Curves over Zn

We now consider elliptic curves over the ring Zn = Z/nZ where n = pq is the
product of two large distinct primes p and q. An elliptic curve En(a, b) over
Zn is the set of points (x, y) ∈ Z2

n satisfying

y2 = x3 + ax+ b (mod n)

together with the point at infinity O. The addition law can be extended for
points in a curve En(a, b) over Zn. Note that the addition law is not always
well-defined when using analytical expressions since there are elements in Zn
which are not invertible. It follows that En(a, b)(Zn) is not a group. By the
Chinese Remainder Theorem, the mapping

En(a, b)→ Ep(a, b)× Eq(a, b)

defined by the the natural projections is a bijection. Thus, a point (x, y) of
the elliptic curve En(a, b) is associated to the point

((x (mod p), y (mod p)), (x (mod q), y (mod q)) ∈ Ep(a, b)× Eq(a, b).

The points (O, P ) and (P,O) can not be represented like this. Finding such
a point is, however, very unlikely and would lead to the factorization of n.
The Chinese Remainder Theorem leads to the following lemma.

Lemma H.2.3. Let n = pq be an RSA modulus and En(a, b) an elliptic curve
over Zn with gcd

(
4a3 + 27b2, n

)
= 1. Then for any P ∈ En(a, b) and any

integer k, we have

(1 + k#Ep(a, b)#Eq(a, b))P = P.

H.2.3 KMOV Scheme

In 1991, Koyama, Maurer, Okamoto and Vanstone [79] proposed the so called
KMOV cryptosystem using elliptic curves defined over the elliptic curve
En(a, b) where n = pq is an RSA modulus.

• Key Generation
INPUT: The bit-length k of the RSA modulus.
OUTPUT: The public key (n, e) and the private key (n, d).
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1. Find two primes, p and q, of length k/2 bits satisfying p ≡ q ≡ 2
(mod 3).

2. Compute the RSA modulus n = pq.

3. Choose a public key e co-prime to (p+ 1)(q + 1).

4. Compute the inverse d of e mod ((p+ 1)(q + 1)).

5. Return the public key (n, e) and the private key (n, d).

• KMOV Encryption
INPUT: The public key (n, e) and the plaintext message m.
OUTPUT: The cyphertext (c1, c2).

1. Represent the message m as a couple (m1,m2) ∈ Z2
n.

2. Compute b = m2
2 −m3

1 (mod n).

3. Compute the point (c1, c2) = e(m1,m2) on the elliptic curve y2 =
x3 + b (mod n).

4. Return (c1, c2).

• KMOV Decryption
INPUT: The private key (n, d) and the cyphertext (c1, c2).
OUTPUT: The plaintext message (m1,m2).

1. Compute b = c2
2 − c3

1 (mod n).

2. Compute the point (m1,m2) = d(c1, c2) on the elliptic curve y2 =
x3 + b (mod n).

3. Return (m1,m2).

The decryption scheme is valid since, using Lemma H.2.2 and Lemma H.2.3,
we have

d(c1, c2) = de(m1,m2)

= (1 + k(p+ 1)(q + 1))(m1,m2)

= (1 + k#Ep(0, b)#Eq(0, b))(m1,m2)

= (m1,m2),

where k is the integer satisfying ed = 1 + k(p+ 1)(q + 1).
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H.3 The New attack on the KMOV Cryptosystem

Let n = pq be an RSA modulus as required by the KMOV Cryptosystem.
Suppose that e is an integer satisfying gcd(e, (p+ 1)(q+ 1)) = 1. Let x, y be
co-prime positive integers. Define z by

ex− (p+ 1)(q + 1)y = z.

In this section, we show that, under some conditions, it is possible find x,
y, p, q which leads to the factorization of the RSA modulus and breaks the
system. We shall need the following useful result.

Lemma H.3.1. Let n = pq be an RSA modulus with q < p < 2q. Then

2
√
n < p+ q <

3
√

2

2

√
n.

Proof. We have

(p+ q)2 = (p− q)2 + 4n > 4n.

Then p + q > 2
√
n. On the other hand, since q < p < 2q, then n < p2 < 2n

and
√
n < p <

√
2n. Hence

p+ q = p+
n

p
<
√

2n+
n√
2n

=
3
√

2

2

√
n.

This terminates the proof.

We shall also need the following result (see [57], Theorem 184).

Theorem H.3.2. Let α be a real number. If x and y are positive integers
such that gcd(x, y) = 1 and ∣∣∣α− y

x

∣∣∣ < 1

2x2
,

then y
x is one of the convergents of the continued fraction expansion of α.

Now, we can prove the following theorem which permits to find x and y
using the convergents of the continued fraction expansion of e

n .
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Theorem H.3.3. Let n = pq be an RSA modulus with q < p < 2p. Suppose
that the public exponent e satisfies an equation ex− (p+ 1)(q + 1)y = z with
gcd(x, y) = 1 and

|z| < n
1
4y, xy <

√
2
√
n

12
.

Then y
x is one of the convergents of the continued fraction expansion of e

n.

Proof. Transforming the equation ex− (p+ 1)(q + 1)y = z, we get

ex− ny = (p+ q + 1)y + z.

Dividing by nx, we get

e

n
− y

x
=

(p+ q + 1)y + z

nx
. (H.4)

Assume that |z| < n
1
4y. Then using Lemma H.3.1, we get

|(p+ q + 1)y + z| ≤ (p+ q + 1)y + |z|
≤ (p+ q + 1)y + n

1
4y

= (p+ q + 1 + n
1
4 )y

< 2(p+ q)y

≤ 3
√

2
√
ny.

Now, assume that xy <
√

2
√
n

12 . Then (H.4) implies∣∣∣ e
n
− y

x

∣∣∣ =
|(p+ q + 1)y + z|

nx
<

3
√

2
√
ny

nx
<

1

2x2
.

Then, applying Theorem H.3.2, y
x is a convergent of the continued fraction

expansion of e
N . This terminates the proof.

Next assume that x and y are known in the equation ex−(p+1)(q+1)y =
z. We show how to find p and q. Let us first refer to the following existing
result (see [34]).

Theorem H.3.4 (Coppersmith). Let n = pq be an RSA modulus with q <
p < 2q. Suppose we know an approximation p̃ of p with |p − p̃| < n

1
4 . Then

n can be factored in time polynomial in log n.
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Next we present the main result.

Theorem H.3.5. Let n = pq be an RSA modulus with q < p < 2q. Suppose
that e is an exponent satisfying an equation ex − (p + 1)(q + 1)y = z with
gcd(x, y) = 1 and

|z| < (p− q)n 1
4y

3(p+ q)
, xy <

√
2
√
n

12
.

Then n can be factored in polynomial time.

Proof. Suppose e satisfies an equation ex−(p+1)(q+1)y = z. If |z| < (p−q)n
1
4 y

3(p+q)

then |z| < n
1
4y. In addition if gcd(x, y) = 1 and xy <

√
2
√
n

12 , then, by
Theorem H.3.3, we find x and y among the convergents of e

n . Next, put

U =
ex

y
− n− 1, V =

√
|U 2 − 4n|.

Starting with the equation ex− (p+ 1)(q + 1)y = z, we get

|U − p− q| =
∣∣∣∣exy − n− 1− p− q

∣∣∣∣ =
|z|
y
<

(p− q)n 1
4

3(p+ q)
.

Hence

|U − p− q| < n
1
4 . (H.5)

Now, we have ∣∣(p− q)2 − V 2
∣∣ =

∣∣(p− q)2 −
∣∣U 2 − 4n

∣∣∣∣
≤
∣∣(p− q)2 − U 2 + 4n

∣∣
=
∣∣(p+ q)2 − U 2

∣∣
= |p+ q − U | (p+ q + U) .

Dividing by p− q + V , we get

|p− q − V | ≤ |p+ q − U | (p+ q + U)

p− q + V
. (H.6)

Observe that (H.5) implies

p+ q + U < 2(p+ q) + n
1
4 < 3(p+ q).
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On the other hand, we have p− q + V > p− q. Plugging in (H.6), we get

|p− q − V | < 3(p+ q)(p− q)n 1
4

3(p+ q)(p− q)
= n

1
4 .

Combining this with (H.5), we deduce∣∣∣∣p− U + V

2

∣∣∣∣ =

∣∣∣∣p+ q

2
− U

2
+
p− q

2
− V

2

∣∣∣∣
≤
∣∣∣∣p+ q

2
− U

2

∣∣∣∣+

∣∣∣∣p− q2
− V

2

∣∣∣∣
< n

1
4 .

This implies that U+V
2 is an approximation of p up to an error term of at

most n
1
4 . Then Coppersmith’s Theorem H.3.4 will find p in polynomial time

and the factorization of n follows.

Let us summarize the factorization algorithm.

Algorithm 6 The factorization algorithm

Require: a public key (N, e) satisfying N = pq, q < p < 2q and ex− (p+ 1)(q + 1) = z for some
parameters x, y, z.

Ensure: the prime factors p and q.
1: Compute the continued fraction expansion of e

n .
2: For every convergent y

x of e
n with x <

√
n:

3: Compute U = ex
y − n− 1 and V =

√
|U2 − 4n|.

4: Apply Coppersmith’s algorithm with U+V
2 as an approximation of p.

5: If Coppersmith’s algorithm outputs the factorization of n, then stop.

H.4 A Numerical Example

As an example let us take for n and e the numbers

n = 173428286141894798156748251,

e = 723753947009734907342239.
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The first convergents of the continued fraction expansion of
e

n
are

[0,
1

239
,

1

240
,

2

479
,

3

719
,

5

1198
,

8

1917
,

69

16534
,

146

34985
,

215

51519
,

361

86504
,

5269

1262575
,

16168

3874229
,

21437

5136804
,

80479

19284641
,

262874

62990727
, . . .].

Applying the factorization algorithm with the convergent x
y = 80479

19284641 , we get

U =
ex

y
− n− 1 ≈ 27457254767091,

V =
√
|U 2 − 4n| ≈ 7758072877807.

Applying Coppersmith’s Theorem with U+V
2 = 17607663822449 as an ap-

proximation for p, we get

p = 17607663822197, q = 9849590944783,

which leads to the factorization of N . Using p and q, we can compute the
secret exponent d satisfying ed ≡ 1 (mod (p+ 1)(q + 1)), namely

d ≡ e−1 ≡ 70154311084917810813949567 (mod (p+ 1)(q + 1)),

Observe that d ≈ n0.985. This explains why the attacks on KMOV with small
secret exponents do not work in this example.

H.5 Conclusion

We have presented a new attack on the KMOV cryptosystem with a public
key (n, e) where n = pq is an RSA modulus and e a public exponent satisfying
gcd(e, (p + 1)(q + 1)) = 1 as required by KMOV. We prove that KMOV is
insecure if there exist integers x, y and z with

|z| < (p− q)n 1
4y

3(p+ q)
, xy <

√
2
√
n

12
.

and satisfying an equation ex − (p + 1)(q + 1)y = z. The attack combines
the continued fraction algorithm and Coppersmith’s lattice reduction based
method and can be seen as an extension of Pinch’s attack on small KMOV
secret decryption exponents.
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A Generalized Attack on RSA Type
Cryptosystems

Theoretical Computer Science 2016
[25] with Martin Bunder, Willy Susilo, Joseph

Tonien

Abstract :
Let N = pq be an RSA modulus with unknown factorization. Some variants
of the RSA cryptosystem, such as LUC, RSA with Gaussian primes and RSA
type schemes based on singular elliptic curves use a public key e and a private
key d satisfying an equation of the form ed − k

(
p2 − 1

) (
q2 − 1

)
= 1. In

this paper, we consider the general equation ex−
(
p2 − 1

) (
q2 − 1

)
y = z and

present a new attack that finds the prime factors p and q in the case that x, y
and z satisfy a specific condition. The attack combines the continued fraction
algorithm and Coppersmith’s technique and can be seen as a generalization
of the attacks of Wiener and Blömer-May on RSA.
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I.1 Introduction

In 1978, Rivest, Shamir and Adleman [131] proposed RSA, the first and
widely most used public key cryptosystem. The security of RSA is mainly
based on the hardness of factoring large composite integers, nevertheless,
RSA has been extensively studied for vulnerabilities by various non factor-
ization attacks. The public parameters in RSA are the RSA modulus N = pq
which is the product of two large primes of the same bit-size and a public
exponent e satisfying gcd(e, (p − 1)(q − 1)) = 1. The correspondent private
exponent is the integer d < N satisfying ed ≡ 1 (mod (p− 1)(q − 1)) which
can be rewritten as a key equation ed− k(p− 1)(q− 1) = 1. In RSA, the en-
cryption and decryption time are proportional to the bit-length of the public
and the private exponents. To reduce encryption or decryption time, one may
be tempted to use small public exponents or private exponents. While a few
attacks on RSA with small public exponent e have been launched (see [55]),
many attacks on RSA with small or special private exponent d exploit the
algebraic properties of the key equation. In 1990, Wiener [147] presented an
attack on RSA that solves the key equation and factors N if d is sufficiently
small, namely d < 1

3N
0.25. Wiener’s attack consists on finding k

d among the
convergents of the continued fraction expansion of e

N and then using k
d to

factor N . Wiener’s attack on RSA has been extended in many ways using
lattice reduction and Coppersmith’s method [34] (see [15], [61], [91]). In 1997,
Boneh and Durfee [17] used lattice reduction and Coppersmith’s method to
improve the bound to d < N 0.292. In 2004, Blömer and May studied the
variant equation ex+ y ≡ 0 (mod (p− 1)(q − 1)) and showed that the RSA
modulus can be factored if the unknown parameters satisfy x < 1

3N
0.25 and

|y| ≤ cN−
3
4ex for some constant c ≤ 1.

In order to improve the implementation of the RSA cryptosystem, many
schemes have been presented giving rise to RSA type cryptosystems [20]. One
way to extend RSA is to consider a prime-power modulus of the form N = prq
with r ≥ 2 (see [145]) or a multi-prime modulus of the form N = p1p2 . . . pr.
Another way to extend RSA is to consider the modulus N = pq and the ex-
ponent e with specific arithmetical operations such as elliptic curves [81] [79],
Gaussian domains [43] and quadratic fields [126].
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In 1995, Kuwakado, Koyama and Tsuruoka [81] presented a scheme based
on using an RSA modulus N = pq and a singular cubic equation with
equation y2 = x3 + bx2 mod N where a message M = (mx,my) is repre-
sented as a point on the singular cubic equation. In this system, the pub-
lic exponent e and the private exponent d satisfy an equation of the form
ed− k

(
p2 − 1

) (
q2 − 1

)
.

In 2002, Elkamchouchi, Elshenawy and Shaban [43] adapted RSA to the
Gaussian domain by using a modulus of the form N = PQ where P and Q
are two Gaussian primes. The public exponent e and the private exponent d
satisfy ed ≡ 1 (mod (|P | − 1) (|Q| − 1)). When P = p and Q = q are integer
prime numbers, the equation becomes ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
) = 1.

In 1993, Smith and Lennon proposed LUC [143], where the public exponent
e and the private exponent d are such that ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
).

In 2007, in connection with LUC, Castagnos [29] proposed a scheme that
uses an RSA modulus N = pq and a public exponent e. The two public
parameters N and e are such that gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1 which im-

plies the existence of two positive integers d and k satisfying the equation
ed− k

(
p2 − 1

) (
q2 − 1

)
= 1.

The former four variants of RSA use a modulus N = pq and a public ex-
ponent e satisfying an equation of the form ed − k

(
p2 − 1

) (
q2 − 1

)
= 1.

In [24], an attack is presented that solves the former equation when d satis-

fies d <
√

2N3−18N2

e . The attack, which is related to Wiener’s attack on RSA,

is based on applying the continued fraction algorithm to find k
d among the

covergents of the continued fraction expansion of e
N2− 9

4N+1
. In this paper, we

consider an extension of this attack by studying the more general equation
ex−

(
p2 − 1

) (
q2 − 1

)
y = z where the unknown parameters x, y, z satisfy

xy < 2N − 4
√

2N
3
4 and |z| < (p− q)N

1
4y.

The new attack uses the convergents of the continued fraction expansion of
e

N2+1− 9
4N

to find y
x and then applies Coppersmith’s technique [34] to find p

and q.

The remainder of the paper is organized as follows. In section 2, we
recall some RSA type schemes that are based on a modulus of the form
N = pq with a public exponent satisfying gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1. In



192 APPENDIX I. A GENERALIZED ATTACK ON RSA TYPE CRYPTOSYSTEMS

Section 3, we briefly review some basic results used in the paper, including
continued fractions and Coppersmith’s technique. In Section 4, we present
some lemmas that will be used in the paper. In Section 5, we present our
new method. In Section 6, we give a numerical example. We conclude the
paper in Section 7.

I.2 Variant RSA schemes

Let N = pq be an RSA modulus and e a public integer. In this section,
we briefly describe three schemes that are variants of the RSA cryptosys-
tem with a modulus N = pq and with a public key e and a private key d

satisfying ed − k
(
p2 − 1

) (
q2 − 1

)
= 1. As this equation does not depend

on the underlying variant schemes, we then generalize it to the equation
ex−

(
p2 − 1

) (
q2 − 1

)
y = z which is the main focus of this paper.

I.2.1 LUC cryptosystem

In 1993, Smith and Lennon [143] proposed a variant of the RSA cryptosys-
tem, called LUC, based on a Lucas functions. In LUC, the modulus is a
RSA modulus N = pq and the public exponent e is a positive integer satis-
fying gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
which can be rewritten as an equation ed −

k
(
p2 − 1

) (
q2 − 1

)
= 1. A more general equation is ex−

(
p2 − 1

) (
q2 − 1

)
y =

z with the unknown parameters x, y and z.

I.2.2 Castagnos cryptosystem

In 2007, Castagnos [29] proposed a cryptosystem related to LUC and RSA
where the modulus N = pq and the public exponent e satisfy the condition
gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
or equivalently ed−k

(
p2 − 1

) (
q2 − 1

)
= 1 for some

integers d and k. This equation can be extended to a more general one,
namely ex−

(
p2 − 1

) (
q2 − 1

)
y = z.
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I.2.3 RSA with Gaussian primes

In 2002, Elkamchouchi, Elshenawy and Shaban [43] proposed a generalization
of the RSA cryptosystem to the domain of Guassian integers. A Gaussian
integer is a complexe number z = a+ bi where a and b are both integers. A
Gaussian prime is a Gaussian integer that is not the product of two non-unit
Gaussian integers, the only units being ±1 and ±i. The Gaussian primes are
of one of the following forms

• P = ±1± i,
• P = a where |a| is an integer prime with |a| ≡ 3 (mod 4),
• P = ai where |a| is an integer prime with |a| ≡ 3 (mod 4),
• P = a+ ib where |P | = a2 + b2 ≡ 1 (mod 4) is an integer prime.

In the RSA variant with Gaussian integers, the modulus is N = PQ, a
product of two Gaussian integer primes P and Q. The Euler totient function
is φ(N) = (|P | − 1) (|Q| − 1) and the public exponent e is a positive integer
satisfying gcd(e, φ(N)) = 1. When P = p and Q = q are integer primes, then
φ(N) =

(
p2 − 1

) (
q2 − 1

)
and the public exponent satisfies the key equation

ed−k
(
p2 − 1

) (
q2 − 1

)
= 1 which can be extended to a more general equation

ex−
(
p2 − 1

) (
q2 − 1

)
y = z.

I.2.4 RSA type schemes based on singular cubic curves

Let N = pq be an RSA modulus. For an integer b ∈ Z/nZ, consider the cubic
curve EN(b) defined over the ring Z/nZ given by the Weierstrass equation

EN(b) : y2 = x3 + bx2 mod N.

In 1995, Kuwakado, Koyama, and Tsuruoka [81] proposed a new cryptosys-
tem based the elliptic curve EN(b). The encryption key is a positive integer
satisfying gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
and the decryption key is the integer d

satisfying ed ≡ 1 (mod
(
p2 − 1

) (
q2 − 1

)
), or equivalently

ed− k
(
p2 − 1

) (
q2 − 1

)
= 1.

The encryption and the decryption procedures use operations on the singular
cubic curve EN(b). Using the continued fraction algorithm, it is possible to
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attack the scheme using the key equation ed−k
(
p2 − 1

) (
q2 − 1

)
= 1. A more

general attack on the scheme can be launched by using the equation ex −(
p2 − 1

) (
q2 − 1

)
y = z and by combining the continued fraction algorithm

and Coppersmith’s method.

I.3 Preliminaries

In this section, we present the mathematical preliminaries.

I.3.1 Continued fractions

Let x be a real number. Define the sets (x0, x1, . . .) and [a0, a1, . . .] by x0 = x
and by the recurrences

ai = bxic, xi+1 =
1

xi − ai
, i = 0, 1, . . . .

The set [a0, a1, · · · ] is the continued fraction expansion of x and satisfies

x = a0 +
1

a1 +
1

a2 +
1

. . .

.

The convergents of x are the rational numbers pn
qn

, n = 0, 1, . . . satisfying

pn
qn

= a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

.

Continued fractions have numerous properties and applications in cryptog-
raphy. The following useful result characterizes the approximations to a real
number x (see Theorem 184 of [57]).
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Theorem I.3.1 (Legendre). If a, b be positive integers and

0 <
∣∣∣x− a

b

∣∣∣ < 1

2b2

then a
b is a convergent of the continued fraction of x.

Note that when x = r
s is a rational number, then the list of the con-

vergents of the continued fraction expansion of r
s can be done in polynomial

time in log(max(a, b)).

I.3.2 Coppersmith’s method

In 1997, Coppersmith [34] introduced an algorithm to find small solutions of
univariate modular polynomial equations and another algorithm to find small
roots of bivariate polynomial equations. Since then, Coppersmith’s method
has been applied in various applications in cryptography, mainly to attack
the RSA cryptosystem. A typical example is the following result.

Theorem I.3.2. Let N = pq be the product of two unknown primes such that
q < p < 2q. Given an approximation p̃ of p with an additive error term at
most N

1
4 , one can find p and q in polynomial time in log(N).

As a consequence of Coppersmith’s Theorem, one can show that if N =
pq with |p− q| < N

1
4 , then N can be factored (see [104]). Thus, throughout

this paper, we will consider that the prime difference p− q satisfies |p− q| >
N

1
4 .

I.4 Useful Lemmas

One of the main RSA standard recommendations for safe parameters is to
choose the prime factors factors p, q of the same bit-size. More precisely,
p and q should satisfy 1 < p

q < 2 or equivalently q < p < 2q. Under this

assumption, one can find intervals for p, q, p− q, p+ q and p2 + q2 in terms
of N . We begin by the following results (see [104]).
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Lemma I.4.1. Let N = pq be an RSA modulus with q < p < 2q. Then
√

2

2

√
N < q <

√
N < p <

√
2
√
N and 0 < p− q <

√
2

2

√
N.

We will need the following result.

Lemma I.4.2. Let N = pq be an RSA modulus with q < p < 2q. Then

2
√
N < p+ q <

3
√

2

2

√
N and 2N < p2 + q2 <

5

2
N.

Proof. Assume that N = pq with q < p < 2q. Then 1 < p
q < 2. The

function f(x) = x + 1
x is increasing on [1,+∞). Hence, f(1) < f(pq ) < f(2),

that is

2 <
p

q
+
q

p
<

5

2
.

Multiplying by N = pq, we get

2N < p2 + q2 <
5

2
N.

Similarly, since 1 <
√

p
q <
√

2, then f(1) < f(
√

p
q ) < f(

√
2), or equivalently

2 <

√
p

q
+

√
p

q
<

3
√

2

2
.

Hence, multiplying by
√
N =

√
pq, we get

2
√
N < p+ q <

3
√

2

2

√
N.

This terminates the proof. �

I.5 The New Attack

In this section, we present our new attack to solve the equation ex −(
p2 − 1

) (
q2 − 1

)
y = z when x, y and z are suitably small. The new method

combines two techniques, the continued fraction algorithm and Coppersmith’s
method.
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Theorem I.5.1. Let N = pq be an RSA modulus with q < p < 2q. Let e
be a public exponent satisfying an equation ex−

(
p2 − 1

) (
q2 − 1

)
y = z with

coprime positive integers x and y. If

xy < 2N − 4
√

2N
3
4 and |z| < (p− q)N

1
4y,

then one can find p and q in polynomial time in log(N).

Proof. Suppose that N = pq with q < p < 2q and that a public exponent
e satisfies the equation

ex−
(
p2 − 1

) (
q2 − 1

)
y = z, (I.1)

with x > 0, y > 0 and gcd(x, y) = 1. Then

ex−
(
N 2 + 1− 9

4
N

)
y = ex− (p2 − 1)(q2 − 1)y −

(
p2 + q2 − 9

4
N

)
y

= z −
(
p2 + q2 − 9

4
N

)
y.

(I.2)
From this we deduce∣∣∣∣ e

N 2 + 1− 9
4N
− y

x

∣∣∣∣ ≤ |z|
x
(
N 2 + 1− 9

4N
) +

∣∣p2 + q2 − 9
4N
∣∣ y

x
(
N 2 + 1− 9

4N
) . (I.3)

Using Lemma I.4.2, we get that
∣∣p2 + q2 − 9

4N
∣∣ < 1

4N . Suppose in addition

that |z| < |p− q|N 1
4y. Then, using Lemma I.4.1, we get

|z| < |p− q|N
1
4y <

√
2

2

√
N ·N

1
4y =

√
2

2
N

3
4y. (I.4)

Hence (I.3) leads to∣∣∣∣ e

N 2 + 1− 9
4N
− y

x

∣∣∣∣ <
√

2
2 N

3
4

N 2 + 1− 9
4N
· y
x

+
1
4N

N 2 + 1− 9
4N
· y
x

=
N + 2

√
2N

3
4

4N 2 + 4− 9N
· y
x
.

(I.5)

Now, suppose that xy < 2N − 4
√

2N
3
4 . A straightforward calculation shows

that

2N − 4
√

2N
3
4 <

4N 2 + 4− 9N

2N + 4
√

2N
3
4

.
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Then xy < 4N2+4−9N

2
(
N+2

√
2N

3
4

) and N+2
√

2N
3
4

4N2+4−9N < 1
2xy . Using this in (I.5), we get

∣∣∣∣ e

N 2 + 1− 9
4N
− y

x

∣∣∣∣ < N + 2
√

2N
3
4

4N 2 + 4− 9N
· y
x
<

1

2xy
· y
x

=
1

2x2
.

Hence, if this condition is fulfilled, then one can find y
x amongst the con-

vergents of the continued fraction expansion of e
N2+1− 9

4N
as stated in The-

orem I.3.1. Moreover, since gcd(x, y) = 1, the values of x and y are the
denominator and numerator of the convergent. Plugging x and y in (I.1), we
get

p2 + q2 = N 2 + 1− ex

y
+
z

y
. (I.6)

Adding 2N to both sides of (I.6), we get

(p+ q)2 = (N + 1)2 − ex

y
+
z

y
. (I.7)

Similarly, subtracting 2N to both sides of (I.6), we get

(p− q)2 = (N − 1)2 − ex

y
+
z

y
. (I.8)

Observe that (I.7) can be transformed into∣∣∣∣∣p+ q −

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣×
∣∣∣∣∣p+ q +

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ =
|z|
y
,

from which we deduce∣∣∣∣∣p+ q −

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ =

|z|∣∣∣∣p+ q +

√∣∣∣(N + 1)2 − ex
y

∣∣∣∣∣∣∣ y <
|z|

(p+ q)y
.

By (I.4) we have |z| <
√

2
2 N

3
4y and by Lemma I.4.2 we have p + q > 2

√
N .

Then ∣∣∣∣∣p+ q −

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ <

√
2

2 N
3
4

2
√
N

=

√
2

4
N

1
4 < N

1
4 .
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This means that

√∣∣∣(N + 1)2 − ex
y

∣∣∣ is an approximation of p + q with error

term less than N
1
4 . In a similar way, using (I.8), we get∣∣∣∣∣p− q −

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣×
∣∣∣∣∣p− q +

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ =
|z|
y
,

which leads to∣∣∣∣∣p− q −
√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ =

|z|∣∣∣∣p− q +

√∣∣∣(N + 1)2 − ex
y

∣∣∣∣∣∣∣ y <
|z|

(p− q)y
.

Using the assumption |z| < (p− q)N 1
4y, we get∣∣∣∣∣p− q −

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣ < (p− q)N 1

4y

(p− q)y
= N

1
4 .

Hence,

√∣∣∣(N − 1)2 − ex
y

∣∣∣ is an approximation of p−q with an error term less

than N
1
4 . Combing the approximations of p+ q and p− q, we get∣∣∣∣∣p− 1

2

(√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣+

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
)∣∣∣∣∣

<
1

2

∣∣∣∣∣p+ q −

√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣+

1

2

∣∣∣∣∣p− q −
√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
∣∣∣∣∣

<
1

2
N

1
4 +

1

2
N

1
4

= N
1
4 .

This gives an approximation of p with an error term of at most N
1
4 . Hence,

using Coppersmith’s Theorem I.3.2, one can find p which leads to q = N
p .

Since every step in the proof can be done in polynomial time in log(N), then
the factorization of N can be obtained in polynomial time in log(N). �

We note that, when gcd
(
ex,
(
p2 − 1

) (
q2 − 1

))
= 1, the diophantine

equation ex −
(
p2 − 1

) (
q2 − 1

)
y = z is equivalent to the modular equation
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ex ≡ z (mod
(
p2 − 1

) (
q2 − 1

)
). Moreover, the exponent e satisfies

e ≡ z

x
(mod

(
p2 − 1

) (
q2 − 1

)
).

Hence, Theorem I.5.1 implies that one can factor N = pq for such exponents
e in the case where xy < 2N − 4

√
2N

3
4 and |z| < (p− q)N 1

4y.

We now consider an application of Theorem I.5.1 to the private exponent
d. We recall that d satisfies ed ≡ 1 (mod

(
p2 − 1

) (
q2 − 1

)
). Instead of this

modular equation, we consider the key equation

ed− k
(
p2 − 1

) (
q2 − 1

)
= 1.

Corollary I.5.2. Let N = pq be an RSA modulus with q < p < 2q. Let
e <

(
p2 − 1

) (
q2 − 1

)
be a public exponent. If the private exponent d satisfies

d <

√
2N − 4

√
2N

3
4 ,

then one can find p and q in polynomial time in log(N).

Proof. Suppose that q < p < 2q and e <
(
p2 − 1

) (
q2 − 1

)
. Since the

private exponent d satisfies ed− k
(
p2 − 1

) (
q2 − 1

)
= 1 for a positive integer

k, then

k =
ed− 1

(p2 − 1) (q2 − 1)
< d · e

(p2 − 1) (q2 − 1)
< d.

Then dk < d2. Now, assume that d2 < 2N − 4
√

2N
3
4 . Then, dk < 2N −

4
√

2N
3
4 and d, k fulfill the conditions of Theorem I.5.1 wich leads to the

factorization of N in polynomial time in log(N). �

I.6 A Numerical Example

In this section we give a detailed numerical example to explain our method
as developed in Theorem I.5.1. Let us consider the small public key

N = 204645825996541,

e = 26384989321053458213237.
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It is obvious that equation ex −
(
p2 − 1

) (
q2 − 1

)
y = z has infinitely many

solutions (x, y, z) with positive integers x, y and non zero integer z. Our aim
is to find the solution that satisfies the conditions of Theorem I.5.1, if any.
Define We want to find y

x among the convergents of the continued fraction
expansion of e

N2+1− 9
4N

. Following the technique of Theorem I.5.1, for each

convergent y
x of e

N2+1− 9
4N

with xy < 2N−4
√

2N
3
4 ≈ 4.089×1014, we compute

an approximation p̃ of p using

p̃ =
1

2

(√∣∣∣∣(N + 1)2 − ex

y

∣∣∣∣+

√∣∣∣∣(N − 1)2 − ex

y

∣∣∣∣
)
,

and apply Coppersmith’s Theorem I.3.2 with p̃. Using the convergent

y

x
=

16052

25478743725
,

we get p̃ ≈ 19126518. Coppersmith’s Theorem outputs the prime factor p =
19126831 from which we deduce the second prime factor q = N

p = 10699411.
This completes the factorization of N .

I.7 Conclusion

In this paper, we considered some variants of the RSA cryptosystem with a
modulus N = pq and an exponent e satisfying gcd

(
e,
(
p2 − 1

) (
q2 − 1

))
= 1.

We studied the general equation ex −
(
p2 − 1

) (
q2 − 1

)
y = z and combined

the continued fraction algorithm with Coppersmith’s technique to find x and
y and then to factor the RSA modulus N . Our new method can considered
as an extension to some RSA type schemes of two former methods that work
for RSA, namely Wiener’s attack and Blömer-May attack.
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Appendix J

Cryptanalysis of NTRU with two
Public Keys

International Journal of Network Security 2014
[118]

Abstract :
NTRU is a fast public key cryptosystem presented in 1996 by Hoffstein,
Pipher and Silverman. It operates in the ring of truncated polynomials. In
NTRU, a public key is a polynomial defined by the combination of two private
polynomials. In this paper, we consider NTRU with two different public
keys defined by different private keys. We present a lattice-based attack to
recover the private keys assuming that the public keys share polynomials with
a suitable number of common coefficients.

J.1 Introduction

The NTRU Public Key Cryptosystem is a ring-based cryptosystem that was
first introduced in the rump session at Crypto’96 [63]. It is one of the fastest

203
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public-key cryptosystems, offering both encryption (NTRUencrypt) and dig-
ital signatures (NTRUSign). It is a relatively new cryptosystem that appears
to be more efficient than the current and more widely used public-key cryp-
tosystems, such as RSA [131] and El Gamal [42]. It is well known that the
security of RSA and El Gamal relies on the difficulty of factoring large com-
posite integers or computing discrete logarithms. However, in 1994, Shor [139]
showed that quantum computers can be used to factor integers and to com-
pute discrete logarithms in polynomial time. Since NTRU does not rely
on the difficulty of factoring or computing discrete logarithms and is still
considered secure even against quantum computer attacks, it is a promising
alternative to the more established public key cryptosystems. In [63], Hoff-
stein, Pipher and Silverman have studied different possible attacks on NTRU.
The brute force and the meet-in-the-middle attacks may be used against the
private key or against a single message but will not succeed in a reasonable
time. The multiple transmission attack also will fail for a suitable choice of
parameters. However, we notice that NTRU suggests that the public key
should be changed very frequently, for each transmission if possible. The
most important attack, presented by Coppersmith and Shamir [35] in 1997
makes use of the LLL algorithm of Lenstra, Lenstra and Lovász [86]. Cop-
persmith and Shamir constructed a lattice generated by the public key and
found a factorization of the public key that could be used to break the system
if the NTRU parameters are poorly set.

The NTRU cryptosystem depends on three integer parameters (N, p, q)
and four sets Lf , Lg, Lr, Lm of polynomials of degree N−1 with small integer
coefficients. Let Zq denote the ring of integers modulo q. The operations
of NTRU took place in the ring of polynomials Zq[X]/

(
XN − 1

)
. In this

ring, the addition of two polynomials is defined as pairwise addition of the
coefficients of the same degree and multiplication, noted “ ∗ ” is defined as
convolution multiplication. In NTRU, to create a public key h, one chooses
a private key (f, g) composed with two polynomials f and g and computes

h = f−1
q ∗ g ∈ Zq[X]/

(
XN − 1

)
,

where f−1
q is the inverse of f in Zq[X]/

(
XN − 1

)
.

In this paper, we consider NTRU with two public keys h, h′ defined by
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the private keys (f, g) and (F ′, G′) with

h′ = F ′−1
q ∗G′ (mod q).

Since f is invertible in Zq[X]/
(
XN − 1

)
, then we can define g′ = f ∗ h′

(mod q) so that
h′ = f−1

q ∗ g′ mod q.

The main objective of this paper is to show how to find the private key (f, g)
when

‖g − g′‖ < min(‖g‖, ‖g′‖).
Using h and h′, we construct a lattice L(h, h′) of dimension 2N , and applying
the lattice basis reduction algorithm LLL, we show that short vectors in
L(h, h′) can be used to find the private polynomials f , g, g′ when ‖g −
g′‖ < min(‖g‖, ‖g′‖). Under this condition, it is important to notice that
our method is more efficient than the method of Coppersmith and Shamir to
recover the private key (f, g) using the public key h.

We note that when the polynomials g, g′ are generated randomly and
independently, then with overwhelming probability the condition ‖g − g′‖ <
min(‖g‖, ‖g′‖) is not satisfied. So in practice one can easily avoid this in-
equality.

Similarly, assume that h′ = F ′−1
q ∗ G′ (mod q) is invertible in the ring

Zq[X]/
(
XN − 1

)
. Then we can define a polynomial f ′ as

f ′ = h′−1
q ∗ g (mod q),

where h′−1
q is the inverse of h′ in Zq[X]/

(
XN − 1

)
. Using lattice reduction

techniques, we show that it is possible to recover the private key (f, g) as-
suming that the condition ‖f − f ′‖ < min(‖f‖, ‖f ′‖) is fulfilled.

The paper is organized as follows. In Section 2, we give motivation
for our work. Section 3 gives a brief mathematical description of NTRU and
introduces the LLL algoritm as well as the attack of Coppersmith and Shamir
on NTRU. In Section 4, we present our new attack on NTRU with two private
keys (f, g) and (f, g′) with ‖g−g′‖ < min(‖g‖, ‖g′‖) and compare it with the
attack of Coppersmith and Shamir. In Section 5, we present our new attack
on NTRU when h and h′ are invertible and ‖f − f ′‖ < min(‖f‖, ‖f ′‖). We
conclude the paper in Section 6.
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J.2 Motivation

RSA, the most commonly used public-key cryptosystem [131] has stood up
remarkably well to years of extensive cryptanalysis and is still considered
secure by the cryptographic community (see [15] for more details). Various
schemes and digtal signatures are based on the same problem behind RSA
(see e.g. [27] and [149] ). Indeed, RSA derives its security from the difficulty
of factoring large numbers of the shape N = pq where p, q are large unknown
primes of the same bit-size. In some cases, the problem can be slightly easier
given two RSA modulus N = pq, N ′ = p′q′. If p = p′, then it is trivial to
factor N and N ′ by computing gcd(N,N ′). However, it is possible to factor
N and N ′ when p and p′ share a certain amount of bits (see [94], [132]).

The first paper on NTRU was written by Coppersmith and Shamir [35]
in 1997. In that paper, they noted that the best way to attack the NTRU
cryptosystem was via the techniques of lattice reduction. Nevertheless, the
security of NTRU is also based on the following factorization problem: Given
a polynomial h ∈ Z[X]/

(
XN − 1

)
, find two short polynomials f and g with

f ∈ Z[X]/
(
XN − 1

)
and g ∈ Z[X]/

(
XN − 1

)
such that h = f−1

q ∗g (mod q),
where f−1

q is the inverse of f in Zq[X]/
(
XN − 1

)
.

Similarly to RSA with two modulus, consider NTRU with two public
keys h and h′ defined by the same parameters (N, p, q). Assume that h =
f−1
q ∗ g (mod q). Then, h′ can be expressed as h′ = f−1

q ∗ g′ (mod q) where
g′ = f ∗ h′ (mod q). The main contribution of this paper is to show how to
find the private keys (f, g) when g and g′ satisfy ‖g − g′‖ < min(‖g‖, ‖g′‖).

We notice that lattice-based cryptography is currently seen as one of the
most promising alternatives to cryptography based on number theory. Given
recent advances in lattice-based cryptography (see [89] and [144]), studying
NTRU and related schemes is both useful and timely. In this direction, our
work shows that using the same f or the same g in generating public keys h,
h′ is likely to reduce the security of NTRU.
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J.3 Mathematical background

In this section, we give a brief description of the NTRU encryption and the
LLL algorithm for lattice reduction and the well known attack of Coppersmith
and Shamir on NTRU. Further details can be found in [63] and [35].

J.3.1 Definitions and notations

We start by introducing the ring

R = Z[X]/(XN − 1),

upon which NTRU operates. We use ∗ to denote a polynomial multiplication
in R, which is the cyclic convolution of two polynomials. If

f = (f0, f1, · · · , fN−1) =
N−1∑
i=0

fiX
i,

g = (g0, g1, · · · , gN−1) =
N−1∑
i=0

giX
i,

are polynomials of R, then h = f ∗g is given by h = (h0, h1, · · · , hN−1), where
hk is defined for 0 ≤ k ≤ N − 1 by

hk =
∑

i+j≡k mod N

figj

=
k∑
i=0

figk−i +
N−1∑
i=k+1

figN+k−i.

The Euclidean norm or the length of a polynomial f = (f0, f1, · · · , fN−1) is
defined as

‖f‖ =

√√√√N−1∑
i=0

f 2
i .
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One more notation is the binary set of polynomials B(d) defined for a positive
integers d by

B(d) = {f(X) =
N−1∑
i=0

fiX
i,

where fi ∈ {0, 1},
N−1∑
i=0

fi = d}.

In other words, B(d) is the set of polynomials of R with d coefficients equal
to 1 and all the other coefficients equal to 0.

Different descriptions of NTRUEncrypt and different proposed parame-
ter sets have been in circulation since 1996. The 2005 instantiation of NTRU
is set up by six public integers N , p, q, df , dg, dr and four public spaces Lf ,
Lg, Lm, Lr such that

• N is prime and sufficiently large to prevent lattice attacks.

• p and q are relatively prime.

• q is much larger than p.

• Lf is a set of small polynomials from which the private keys are selected.

• Lg is a similar set of small polynomials from which other private keys
are selected.

• Lm is the plaintext space. It is a set of polynomials m ∈ Zp[X]/(XN−1)
that represent encryptable messages.

• Lr is a set of polynomials from which the blinding value used during
encryption is selected.

J.3.2 The NTRU Encryption Scheme

Key pair generation.

To create a NTRU key, one randomly chooses a polynomial f ∈ Lf and a
polynomial g ∈ Lg. The polynomial f must satisfy the additional requirement
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that it has an inverse f−1
p modulo p and an inverse f−1

q modulo q, that is

f ∗ f−1
p = 1 (mod p), f ∗ f−1

q = 1 (mod q).

Then the private key is f and the public key is the polynomial

h = f−1
q ∗ g (mod q).

We recall that N , p, q are also public.

Encryption.

To encrypt a message m ∈ Lm, one randomly chooses a polynomial r ∈ Lr.
The ciphertext is the polynomial

e = pr ∗ h+m (mod q).

Decryption.

To decrypt an encrypted message e using the private key f , one computes

a = f ∗ e mod q,

where the coefficients of a lie between −q/2 and q/2. The message m is then
obtained from a by reducing the coefficients of f−1

p ∗ a modulo p.

J.3.3 The LLL algorithm

Since lattice reduction is an essential tool for our attack, let us recall a few
facts about lattices and reduced basis. Let u1, . . . , un ∈ Rm be linearly inde-
pendent vectors with n ≤ m. The lattice L spanned by (u1, . . . , un) consists
of all integral linear combinations of u1, . . . , un, that is

L = Zu1 ⊕ · · · ⊕ Zun =

{
n∑
i=1

biui,
∣∣∣ bi ∈ Z

}
.

The set (u1, . . . , un) is called a lattice basis. A lattice can be conveniently
represented by a matrix B whose rows are the vectors u1, . . . , un. The deter-
minant of the lattice L is defined as

det(L) =
√

det (BBT ).
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Any two bases of the same lattice L are related by some integral matrix of
determinant ±1.

There are several natural computational problems relating to lattices.
An important problem is the shortest vector problem (SVP): given a basis
matrix B for L, compute a non-zero vector v ∈ L such that ‖v‖ is minimal.

In 1982, Lenstra, Lenstra and Lovász [86] introduced the LLL reduc-
tion algorithm which produces an LLL-reduced basis b1, . . . , bn of L with the
following property

‖b1‖ ≤ ‖b2‖ ≤ . . . ≤ ‖bi‖ ≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i ,

for i = 1, . . . , n. With i = 1, this implies that ‖b1‖ satisfies ‖b1‖ ≤ 2
n−1
4 det(L)

1
n .

In comparison, a theorem of Minkowski asserts that any lattice L of dimen-
sion n contains a non-zero vector v with

‖v‖ ≤
√

2n

eπ
det(L)

1
n .

On the other hand, the Gaussian heuristic says that the length of the shortest
non-zero vector is usually approximately σ(L) where

σ(L) =

√
n

2πe
det(L)

1
n .

J.3.4 The attack of Coppersmith and Shamir on NTRU

In [35] Coppersmith and Shamir presented a lattice attack on NTRU. They
defined a lattice determined by the parameters N , q, h of the system and
showed that recovering the secret key (f, g) from the public key h is reduced
to finding a shortest vector of the lattice. Let h = (h0, h1, · · · , hN−1) be the
public key. The NTRU lattice L is the lattice of dimension 2N generated by
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the row vectors of a matrix of the following form

M(L) =

[
λIN H

0 qIN

]

=



λ 0 · · · 0 h0 h1 · · · hN−1

0 λ · · · 0 hN−1 h0 · · · hN−2
...

... . . . ...
...

... . . . ...

0 0 · · · λ h1 h2 · · · h0

0 0 · · · 0 q 0 · · · 0

0 0 · · · 0 0 q · · · 0
...

... . . . ...
...

... . . . ...

0 0 · · · 0 0 0 · · · q


.

Since h = f−1
q ∗ g (mod q), then f ∗ h− qu = g for some u ∈ R and

(f,−u) ∗M(L) = (f,−u) ∗

[
λIN H

0 qIN

]
= (λf, g).

So the vector (λf, g) is a short vector in the NTRU lattice L, which is with
high probability the shortest vector of L. Hence, an attacker uses lattice
reduction algorithms to find (f, g) from L, then he can recover the private
keys. More precisely, the Gaussian heuristic says that the length of the
shortest non-zero vector is usually approximately σ(L) where

σ(L) =

√
dim(L)

2πe
(detL)1/dim(L)

=

√
2N

2πe
(λq)

N
2N

=

√
λqN

πe
.

Hence, in order to maximize the probability of breaking the NTRU system
using lattice reduction, the attacker should choose λ to minimize the ratio

c =
‖(λf, g)‖
σ(L)

=

√
λ2‖f‖2 + ‖g‖2√

λqN
πe

.
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This occurs for λ = ‖g‖/‖f‖ which leads to

c =

√
2πe‖g‖‖f‖

qN
. (J.1)

The ratio c measures how much smaller the key is compared to the expected
smallest vector. If c is very small then we expect a lattice reduction algorithm
as LLL to have an easier time finding it.

J.4 The new attack when ‖g − g′‖ < min(‖g‖, ‖g′‖)

J.4.1 The new lattice

Let

h(X) =
N−1∑
i=0

hiX
i, h′(X) =

N−1∑
i=0

h′iX
i,

be two NTRU public keys created by the private polynomials (f, g) and
(F ′, G′) with the same parameters (N, p, q, df , dg, dr, dm), that is

h = f−1
q ∗ g (mod q),

h′ = F ′−1
q ∗G′ (mod q).

Let g′ = f ∗ h′ (mod q). Then

h′ = f−1
q ∗ g′ (mod q).

For a positive constant λ, define the lattice

L(h, h′)

= {(λv, w) ∈ R2 :

where w = v ∗ (h− h′) (mod q)}.

This is a 2N -dimension lattice spanned by the matrix

M(h, h′) =

[
λIN H −H ′

0 qIN

]
,
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where H −H ′ is the circulant matrix
h0 − h′0 h1 − h′1 · · · hN−1 − h′N−1

hN−1 − h′N−1 h0 − h′0 · · · hN−2 − h′N−2
...

... . . . ...

h1 − h′1 h2 − h′2 · · · h0 − h′0

 .
The matrix M(h, h′) has the following property.

Proposition J.4.1. Let h, h′ be two NTRU public keys. Assume that

f ∗ h = g + qu, f ∗ h′ = g′ + qu′.

Then the vector (λf, g − g′) is in the lattice L(h, h′) and

(f,−u+ u′) ∗M(h, h′) = (λf, g − g′).

Proof. Assume that f ∗h = g+ qu and f ∗h′ = g′+ qu′. Substracting the two
equalities, we get

f ∗ h− f ∗ h′ = f ∗ (h− h′) = g − g′ (mod q).

This implies that the vector (λf, g − g′) is in L(h, h′). Next, we have

(f,−u+ u′) ∗M(h, h′)

= (f,−u+ u′) ∗

[
λIN H −H ′

0 qIN

]
= (λf, g − g′).

This terminates the proof.

J.4.2 The Gaussian heuristics

For a random lattice L, the Gaussian heuristic says that the length of the
shortest non-zero vector is approximately

σ(L) =

√
dim(L)

2πe
detL1/dim(L).
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The dimension and determinant of L(h, h′) are given by

dim(L(h, h′)) = 2N, det(L(h, h′)) = λNqN .

Hence for the lattice L(h, h′), we have

σ(L(h, h′)) =

√
λNq

πe
.

Let us define the ratio

c1 =
‖(λf, g − g′)‖
σ(L(h, h′))

.

So c1 is the ratio of the length of the target vector to the length of the
expected shortest vector. The smaller the value of c1, the easier it will be
to find the target vector. Thus, the idea to increase the chances of LLL to
find (λf, g− g′) is to choose λ such that ‖(λf, g− g′)‖ is as small as possible
compared to σ(L(h, h′)). In L(h, h′), we have

‖(λf, g − g′)‖ =
√
λ2‖f‖2 + ‖g − g′‖2.

It turns out that we should choose

λ =
‖g − g′‖
‖f‖

.

This implies that the ratio c1 satisfies

c1 =

√
2πe‖g − g′‖‖f‖

qN
.

Let us compare the ratio c1 and the ratio c as defined by (J.1) in the the
attack of Coppersmith and Shamir. Our attack will be more efficient when
c1 < c. This leads to the following condition

‖g − g′‖ < min(‖g‖, ‖g′‖).

J.5 The new attack when ‖f − f ′‖ < min (‖f‖, ‖f ′‖)

J.5.1 The new lattice

Let h = f−1
q ∗ g (mod q) and h′ = F ′−1

q ∗ G′ (mod q) be two NTRU public
keys with the same parameters (N, p, q, df , dg, dr, dm). In this section, we



J.5. THE NEW ATTACK WHEN ‖F − F ′‖ < MIN (‖F‖, ‖F ′‖) 215

assume that h, h′ are invertible in Zq[X]/
(
XN − 1

)
. Let hq and h′q be their

inverses. Define f ′ = g ∗ h′q. We have

g ∗ hq = f (mod q), g ∗ h′q = f ′ (mod q).

Let

hq(X) =
N−1∑
i=0

hq,iX
i, h′q(X) =

N−1∑
i=0

h′q,iX
i,

be the representations of hq(X) and h′q(X) in Zq[X]/
(
XN − 1

)
. For a positive

constant λ, define the 2N dimension lattice

Lq(h, h′)
=
{

(λv, w) ∈ R2 : w = v ∗
(
hq − h′q

)
(mod q)

}
.

The lattice is generated by the row vectors of the matrix Mq(h, h
′) given

below

Mq(h, h
′) =

[
λIN Hq −H ′q

0 qIN

]
,

where Hq −H ′q is the circulant matrix
hq,0 − h′q,0 · · · hq,N−1 − h′q,N−1

hq,N−1 − h′q,N−1 · · · hq,N−2 − h′q,N−2
... . . . ...

hq,1 − h′q,1 · · · hq,0 − h′q,0

 .
The matrix Mq(h, h

′) has the following property.

Proposition J.5.1. Let h, h′ be two NTRU public keys and hq, h
′
q their

inverses in Zq[X]/
(
XN − 1

)
. Assume that

g ∗ hq = f + qv, g ∗ h′q = f ′ + qv′.

Then the vector (λg, f − f ′) is in the lattice Lq(h, h′) and

(g,−v + v′) ∗Mq(h, h
′) = (λg, f − f ′).
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Proof. Assume that g ∗ hq = f + qv and g ∗ h′q = f ′ + qv′. Then g ∗ hq = f
(mod q) and g ∗ h′q = f ′ (mod q). This gives g ∗ (hq − h′q) = f − f ′ (mod q)
and it follows that the vector (λg, f − f ′) is in Lq(h, h′). More precisely,

(g,−v + v′) ∗Mq(h, h
′)

= (g,−v + v′) ∗

[
λIN Hq −H ′q

0 qIN

]
= (λg, f − f ′).

This terminates the proof.

J.5.2 The Gaussian heuristics

We can apply the the Gaussian heuristic to the lattice Lq(h, h′). The shortest
non-zero vector is approximately

σ(Lq(h, h′))

=

√
dim(Lq(h, h′))

2πe
detLq(h, h′)1/ dim(Lq(h,h′))

=

√
λNq

πe
.

To compare the length of the target vector (λg, f − f ′) to the length of the
expected shortest vector σ(Lq(h, h′)), we consider the ratio

c2 =
‖(λg, f − f ′)‖
σ(Lq(h, h′))

.

In order to increase the chances of LLL to find the vector (λg, f − f ′), the
attacker chooses the balancing constant λ to make c2 as small as possible.
For the lattice Lq(h, h′), we have

‖(λg, f − f ′)‖ =
√
λ2‖g‖2 + ‖f − f ′‖2.

Hence the optimal choice for λ is

λ =
‖f − f ′‖
‖g‖

.
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which leads to

c2 =

√
2πe‖f − f ′‖‖g‖

qN
.

To increase the chance of this attack to find (λg, f − f ′) comparatively to
the attack of Coppersmith and Shamir, we should have c2 < c where c is the
constant defined by (J.1). This gives the condition

‖f − f ′‖ < min (‖f‖, ‖f ′‖) .

J.6 Conclusion

We have shown that choosing two NTRU public keys h = f−1
q ∗g (mod q) and

h′ = F ′−1
q ∗G′ (mod q) could be insecure in some cases. Rewriting h′ as h′ =

f−1
q ∗g′ (mod q), where g′ = f ∗h′ (mod q), we have shown, that using lattice

reduction techniques, it is possible to find the private key (f, g) when ‖g −
g′‖ < min (‖g‖, ‖g′‖). We have shown that the same techniques apply when
h′ is invertible modulo q and ‖f − f ′‖ < min (‖f‖, ‖f ′‖). Here f ′ is defined
by the equality f ′ ∗ h′ = g (mod q). For implementations of NTRU key pair
generation we recommend to build in a check for ‖g − g′‖ > min (‖g‖, ‖g′‖)
and ‖f−f ′‖ > min (‖f‖, ‖f ′‖). This is very easy to implement, and will only
in extremely rare cases imply that the key pair is to be rejected. The main
reason is that when f , g, F ′ and G′ are generated randomly, the probability
that g and g′ = f ∗ h′ (mod q) share an important amount of monomials is
negligible. Similarly, the probability that f and f ′ = g ∗ h′−1 (mod q) share
an important amount of monomials is also negligible.
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Abstract :
Boolean functions play an important role in many symmetric cryptosystems
and are crucial for their security. It is important to design boolean functions
with reliable cryptographic properties such as balancedness and nonlinear-
ity. Most of these properties are based on specific structures such as Möbius
transform and Algebraic Normal Form. In this paper, we introduce the no-
tion of Dirichlet product and use it to study the arithmetical properties of
boolean functions. We show that, with the Dirichlet product, the set of
boolean functions is an Abelian monoid with interesting algebraic structure.
In addition, we apply the Dirichlet product to the sub-family of coincident
functions and exhibit many properties satisfied by such functions.
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K.1 Introduction

Boolean functions are used in logic and in many cryptographic applications
such as blocks of symmetric key cryptosystems, stream cipher systems, cod-
ing theory and hash functions. Boolean functions are important for the se-
curity of such systems. So, for security reason, one seeks boolean functions
having good properties such as nonlinearity, balancedness and algebraic im-
munity [38,136] (see [37] for more properties). A boolean function is a map-
ping {0, 1}n → {0, 1}, often characterized by its truth table. The number
of boolean functions with n variables is 22n and it is impracticable to ex-
haustively exhibit a boolean function with optimal properties. One way to
tackle this problem is to study the arithmetical structure of boolean functions
and test their cryptographic reliability by the mean of algebraic tools such
as Möbius transform and Algebraic Normal Form. For this reason, a lot of
effort has been given to find ways to construct boolean functions with strong
cryptographic properties.

For n ≥ 1, we set GF (2) = {0, 1} and GF (2)n = {0, 1}n. Any vector
x ∈ GF (2)n is represented by its coordinates as x = (x1, . . . , xn) or simply
x = x1 . . . xn. The Hamming weight wH(x) of x ∈ GF (2)n is the number
of non zero coordinates of x. An n-boolean function f is a mapping from
GF (2)n into GF (2). A boolean function is completely determined by its
truth table

f(0, 0, 0 . . . , 0), f(0, 1, 0, . . . , 0), f(0, 1, 0, . . . , 0), . . . , f(1, 1, 1, . . . , 1),

and can be represented uniquely by the algebraic normal form (ANF)

f(x1, . . . , xn) =
∑

(ε1,...,εn)∈GF (2)n

f̂(ε1, . . . , εn)x
ε1
1 . . . x

εn
n ,

where f̂ is also a boolean function, called the Möbius transform of f . The
transformation of f to its ANF can be performed using the truth table of f
(see [28] and [127]).

Boolean functions have been intensively studied and various arithmetical
properties are known such as Möbius transforms [127], Fourier transforms [28]
and some cryptographic applications [136]. In this paper, we improve much
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further such arithmetic properties by introducing the concept of Dirichlet
product. Usually, Dirichlet product is well defined for arithmetical functions.
An arithmetical function is a real-valued function defined on the positive in-
tegers [5]. The classical Dirichlet product F ∗G for two arithmetical functions
F,G : N→ R is defined by

(F ∗G)(n) =
∑
d|n

F (d)G(
n

d
) =

∑
xy=n

F (x)G(y).

Dirichlet product is commutative F ∗G = G ∗ F , associative F ∗ (G ∗H) =
(F ∗G) ∗H, and it has an identity

I(n) =

{
1 if n = 1

0 if n > 1
(K.1)

where F ∗ I = I ∗ F = F . So the set of all arithmetical functions N → R
together with the Dirichlet product form an Abelian monoid. What more
is that if F (1) 6= 0 then F has an inverse. So the subset of all arithmetical
functions such that F (1) 6= 0 is an Abelian group with respect to the Dirich-
let multiplication. The classical Dirichlet product provides great inside into
some of the classical theorems in number theory. Many identities involving
the Möbius function µ and the Euler totient function φ can be seen more
intuitively in the language of Dirichlet product. For example, we have this
identity ∑

d|n

µ(d) =

{
1 if n = 1

0 if n > 1
(K.2)

where µ is the the Möbius function

µ(n) =


1 if n = 1

(−1)k if n = p1 · p2 · · · pk
0 otherwise.

In the language of Dirichlet product, the identity (K.2) is µ ∗ 1 = I, it means
that the Möbius function µ is the Dirichlet inverse of the constant function
1 where 1(n) = 1. Similarly, Euler’s totient function satisfies the following
result.

φ(n) =
∑
d|n

µ(d)
n

d
, (K.3)
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In the language of Dirichlet product, the identity (K.3) is µ ∗ N = φ where
N is the function N(n) = n. In the language of group theory, it implies that
N = φ ∗ µ−1 = φ ∗ 1, that is ∑

d|n

φ(d) = n. (K.4)

So under the notion of Dirichlet product, two isolated results, (K.3) and
(K.4) are ultimately related: (K.3) means φ = µ ∗ N , whereas (K.4) means
N = φ ∗ 1 = φ ∗ µ−1.

For two boolean functions f and g, we define the concept of Dirichlet
product by setting for all x ∈ GF (2)n

(f ∗ g)(x) =
∑
u�x

f(u)g(x− u)

where, for u = (u1, . . . , un) ∈ GF (2)n and x = (x1, . . . , xn) ∈ GF (2)n, u � x

if and only if for each i ∈ {1, . . . , n}, ui ≤ xi. We show that the Dirichlet
product for boolean functions is commutative, associative and that the set
of all boolean functions is an Abelian monoid and has the identity function
I satisfying

I(x) =

{
1 if x = 0

0 if x 6= 0

Moreover, we link a boolean function f to its Möbius transform f̂ using
the Dirichlet products f = f̂ ∗ 1 and f̂ = f ∗ 1 where 1 is the constant
function 1(x) = 1. We show that the set of all boolean functions f such that
f(0, 0, . . . , 0) = 1 under the Dirichlet product form an Abelian group and the
inverse of any such function f is f itself.

Finally, we will study the set of coincident functions and its algebraic
structure. A coincident function is a boolean function f such that f̂ = f .
Under the Dirichlet product, we show that the set of all coincident functions
is a 2n−1 subspace with cardinality 22n−1.

The rest of this paper is organized as follows. In Section 2, we review
the basic properties of boolean functions. In Section 3, we introduce the new
notion of Dirichlet product for boolean functions and study its arithmetic
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properties. In Section 4, we study the arithmetical and algebraic structure of
the set of all coincident boolean functions. We conclude the paper in Section
5.

K.2 Boolean functions

Let n ≥ 1. A boolean function f on n variables is a mapping from {0, 1}n
into {0, 1}. It can be defined by its truth table, that is by f(x1, . . . , xn) for
each (x1, . . . , xn) ∈ {0, 1}n. For xi, εi ∈ GF (2), we define xεii

xεii =

{
xi if εi = 1,

1 if εi = 0

with the convention that 00 = 1.

The set of all boolean functions on n variables is denoted Bn and any
boolean function f ∈ Bn can be uniquely represented by an n-multivariate
polynomial over GF (2), called algebraic normal form (ANF),

f(x) =
∑

ε∈GF (2)n

fε x
ε,

where fε ∈ GF (2) is the coefficient of the term xε = xε11 x
ε2
2 . . . x

εn
n . In GF (2),

the addition operation is simply the XOR.

The summand xε = xε11 . . . x
εn
n is called a monomial (term) in the ANF

of f . The summand xε is said to appear in f if fε 6= 0. The degree of this
summand xε is the Hamming weight wH(ε) of ε, that is the number of non-
zero elements in it. The (algebraic) degree of f , denoted by deg(f), is the
maximum degree of all summands that appear in f , that is maximum of all
Hamming weights. For a constant zero function, we assume its degree is 0.
The coefficient fε of the summand xε is related the Möbius transformation.

Definition K.2.1. Let f ∈ Bn with a polynomial

f(x) =
∑

ε∈GF (2)n

fε x
ε.
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The Möbius transformation of f is the boolean function f̂ : GF (2)n → GF (2)
defined as

f̂(ε) = fε.

Using this definition, the polynomial f(x) becomes

f(x) =
∑

ε∈GF (2)n

f̂(ε) xε.

We now define a partial ordering � in GF (2)n in the following definition.

Definition K.2.2. Let u = (u1, u2, . . . , un) ∈ GF (2)n and x = (x1, x2, . . . , xn) ∈
GF (2)n. We define the ordering

u � x⇔ ui ≤ xi for all i with 1 ≤ i ≤ n.

The following simple result gives an expression of a boolean function f
in terms of its Möbius transform f̂ .

Theorem K.2.3. For x = (x1, . . . , xn) ∈ GF (2)n and u = (u1, . . . , un) ∈
GF (2)n,

f(x) =
∑
u�x

f̂(u), (K.5)

Take an example, let n = 3,

f(x1, x2, x3) = f̂(0, 0, 0) + f̂(1, 0, 0)x1 + f̂(0, 1, 0)x2 + f̂(0, 0, 1)x3+

f̂(1, 1, 0)x1x2 + f̂(0, 1, 1)x2x3 + f̂(1, 0, 1)x1x3 + f̂(1, 1, 1)x1x2x3.

So

f(0, 0, 0) = f̂(0, 0, 0)

f(1, 0, 0) = f̂(0, 0, 0) + f̂(1, 0, 0)

f(0, 1, 0) = f̂(0, 0, 0) + f̂(0, 1, 0)

f(0, 0, 1) = f̂(0, 0, 0) + f̂(0, 0, 1)

f(1, 1, 0) = f̂(0, 0, 0) + f̂(1, 0, 0) + f̂(0, 1, 0) + f̂(1, 1, 0)

. . .
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Solving these equations, we have the dual equations

f̂(0, 0, 0) = f(0, 0, 0)

f̂(1, 0, 0) = f(0, 0, 0) + f(1, 0, 0)

f̂(0, 1, 0) = f(0, 0, 0) + f(0, 1, 0)

f̂(0, 0, 1) = f(0, 0, 0) + f(0, 0, 1)

f̂(1, 1, 0) = f(0, 0, 0) + f(1, 0, 0) + f(0, 1, 0) + f(1, 1, 0)

. . .

In matrix form, these equations become

f(0, 0, 0)

f(1, 0, 0)

f(0, 1, 0)

f(0, 0, 1)

f(1, 1, 0)

f(1, 0, 1)

f(0, 1, 1)

f(1, 1, 1)


=



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

1 1 1 1 1 1 1 1





f̂(0, 0, 0)

f̂(1, 0, 0)

f̂(0, 1, 0)

f̂(0, 0, 1)

f̂(1, 1, 0)

f̂(1, 0, 1)

f̂(0, 1, 1)

f̂(1, 1, 1)


, (K.6)

and 

f̂(0, 0, 0)

f̂(1, 0, 0)

f̂(0, 1, 0)

f̂(0, 0, 1)

f̂(1, 1, 0)

f̂(1, 0, 1)

f̂(0, 1, 1)

f̂(1, 1, 1)


=



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

1 1 1 1 1 1 1 1





f(0, 0, 0)

f(1, 0, 0)

f(0, 1, 0)

f(0, 0, 1)

f(1, 1, 0)

f(1, 0, 1)

f(0, 1, 1)

f(1, 1, 1)


. (K.7)

In the above example, we can see the duality between f and f̂

f̂(x) =
∑
u�x

f(u). (K.8)
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This is not accidental. The duality between (K.5) and (K.8) is explained
by the fact that f̂ = f ∗ 1 and f = f̂ ∗ 1 as in Theorem K.3.9.

K.3 Dirichlet product for boolean functions

In this section, we define the Dirichlet product f ∗g for two boolean functions
f and g and study several properties of the monoid (Bn, ∗). In the rest of
this paper, the term (0, 0, . . . , 0) ∈ GF (2)n is often denoted as 0.

Lemma K.3.1. Let x = (x1, x2, . . . , xn) ∈ GF (2)n. Then there are 2wH(x)

terms u = (u1, u2, . . . , un) ∈ GF (2)n such that u � x where wH(x) is the
Hamming weight of x.

Proof. Let x = (x1, x2, . . . , xn). For each i with 1 ≤ i ≤ n, we have

ui ≤ xi for

{
ui = 0 if xi = 0

ui ∈ {0, 1} if xi = 1

It follows that the number of terms u ∈ GF (2)n satisfying u � x is

n∏
i=1

2xi = 2wH(x),

wH(x) is the Hamming weight of x.

Example K.3.2. Let n = 3 and x = (1, 0, 1) ∈ GF (2)3. Then the set of all
u ∈ GF (2)3 such that u � x is

{(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)} .

Now, we define the notion of Dirichlet product of two boolean functions.

Definition K.3.3. The Dirichlet product of two boolean functions f, g ∈ Bn
is defined as

(f ∗ g)(x) =
∑
u�x

f(u)g(x− u)
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Example K.3.4. Let n = 3 and x = (0, 1, 1) ∈ GF (2)3. Let f, g ∈ B3. Then
the Dirichlet product of f and g is

(f ∗ g)(0, 1, 1) =f(0, 0, 0)g(0, 1, 1) + f(0, 1, 0)g(0, 0, 1)

+ f(0, 0, 1)g(0, 1, 0) + f(0, 1, 1)g(0, 0, 0).

The following result shows that the set Bn is an abelian monoid with
respect to the Dirichlet product.

Theorem K.3.5. (Bn, ∗) is an Abelian monoid with the identity

I(x) =

{
1 if x = 0

0 if x 6= 0
(K.9)

Proof. We have

(f ∗ g)(x) =
∑
u�x

f(u)g(x− u)

=
∑

u,v�x,u+v=x

f(u)g(v)

=
∑
v�x

g(v)f(x− v) = (g ∗ f)(x),

so the Dirichlet product is commutative: f ∗ g = g ∗ f .
We also have

((f ∗ g) ∗ h)(x) =
∑

u,v,w�x,u+v+w=x

f(u)g(v)h(w) = (f ∗ (g ∗ h))(x)

so the Dirichlet product is associative.
Finally,

(f ∗ I)(x) =
∑

u,v�x,u+v=x

f(u)I(v) = f(x)I(0) = f(x),

and I is the identity.

The following result shows that the Dirichlet product is distributive over
the addition operation in Bn.
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Lemma K.3.6. For f, g ∈ Bn, define addition operation f + g ∈ Bn as

(f + g)(x) = f(x) + g(x).

Then the Dirichlet product is distributive over this addition operation.

Proof. We have

(f ∗ (g + h))(x) =
∑
u�x

f(u)(g + h)(x− u) =
∑
u�x

f(u)(g(x− u) + h(x− u))

=
∑
u�x

f(u)g(x− u) +
∑
u�x

f(u)h(x− u) = (f ∗ g)(x) + (f ∗ h)(x)

so f ∗ (g + h) = f ∗ g + f ∗ h.

The next result gives one of the basic properties of the Dirichlet product.

Lemma K.3.7. For any functions f, g ∈ Bn,

(f ∗ g)(0) = f(0)g(0)

Proof. Since u � 0 happens only for u = 0, we have

(f ∗ g)(0) =
∑
u�0

f(u)g(0− u) = f(0)g(0).

The next result defines the constant boolean function 1 and links it to
the identity function I.

Lemma K.3.8. Let 1 ∈ Bn denote the constant function

1(x) = 1, ∀x ∈ GF (2)n (K.10)

then

1 ∗ 1 = I.

It means that 1 is its own inverse under Dirichlet multiplication.
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Proof. By Theorem K.3.7, we have (1 ∗ 1)(0) = 1(0)1(0) = 1. For x 6= 0, we
have

(1 ∗ 1)(x) =
∑
u�x

1(u)1(x− u) =
∑
u�x

1.

Since, by Lemma K.3.1, there are 2wH(x) terms u with u � x, we have (1 ∗
1)(x) = 0 for x 6= 0. In conclusion, 1 ∗ 1 = I.

The following result shows that the ANF of a boolean function is related
to the Dirichlet product.

Theorem K.3.9. For any function f ∈ Bn, we have

f = f̂ ∗ 1, f̂ = f ∗ 1,
ˆ̂
f = f.

Proof. First, we have

(f̂ ∗ 1)(x) =
∑
u�x

f̂(u)1(x− u) =
∑
u�x

f̂(u).

Therefore, by Theorem K.2.3, f = f̂ ∗ 1.
Combining this with Lemma K.3.8, we get

f ∗ 1 = (f̂ ∗ 1) ∗ 1 = f̂ ∗ (1 ∗ 1) = f̂ ∗ I = f̂ .

Applying the former results, we get

ˆ̂
f = f̂ ∗ 1 = (f ∗ 1) ∗ 1 = f ∗ (1 ∗ 1) = f ∗ I = f.

This terminates the proof.

The mysterious duality between a boolean function and its Möbius trans-
formation is actually a manifestation of a simple fact in Dirichlet product,
that is 1 ∗ 1 = I. The relationship between the results of Theorem K.3.9 is
liken to that of (K.3) and (K.4).

Theorem K.3.10. For any function f ∈ Bn,

f̂(0) = f(0).

Proof. The proof follows from Lemma K.3.7 and Theorem K.3.9.
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The following result shows that f ∗ f is either the identity I or the
constant function 0.

Theorem K.3.11. For any function f ∈ Bn,

f ∗ f = f(0)I =

{
I if f(0) = 1

0 if f(0) = 0
(K.11)

Proof. Applying Lemma K.3.7, we get (f ∗ f)(0) = f(0)f(0) = f(0). When
x 6= 0,

(f ∗ f)(x) =
∑
u�x

f(u)f(x− u).

Since u � x and x − u � x, everything in the sum appear twice. Hence,
(f ∗ f)(x) = 0. So f ∗ f = f(0)I.

Theorem K.3.12. For any function f ∈ Bn,

f ∗ f̂ = f̂ ∗ f = f(0), (K.12)

where f(0) is the constant function defined by f(0)(x) = f(0).

Proof. By Theorem K.3.9 and Theorem K.3.11, we have

f ∗ f̂ = f ∗ (f ∗ 1) = (f ∗ f) ∗ 1 = f(0)I ∗ 1 = f(0)1 = f(0),

In the following result, we give a characterization of a reversible boolean
function with respect to the Dirichlet product.

Theorem K.3.13. For any function f ∈ Bn, f has a Dirichlet inverse if and
only if f(0) = 1, and in this case, f is the Dirichlet inverse of itself.

Proof. Suppose that f is invertible with an inverse g. Then f ∗ g = I and
(f ∗g)(0) = f(0)g(0) = 1. Then f(0) = 1. Conversely, suppose that f(0) = 1,
then f ∗ f = f(0)I = I. Hence f is invertible and f is the Dirichlet inverse
of itself.

Next, we show that the set of Dirichlet invertible boolean functions is
an Abelian group.
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Theorem K.3.14. Let B+
n denote the set

B+
n = {f ∈ Bn : f(0) = 1}.

Then (B+
n , ∗) is an Abelian group.

Proof. Let f ∈ B+
n and g ∈ B+

n be two invertible boolean functions. By
Theorem K.3.13, we know that f(0) = g(0) = 1. Then (f∗g)(0) = f(0)g(0) =
1, which implies that f ∗ g ∈ B+

n . Moreover, the inverse of f ∈ B+
n is itself

and B+
n contains the identity function I. These properties show that (B+

n , ∗)
is an Abelian subgroup of (Bn, ∗).

The following result is related to the degree of boolean functions. Recall
the degree of a boolean function f is defined as the maximum number of
variables of the terms xε = xε11 x

ε2
2 . . . x

εn
n in the ANF of f .

Theorem K.3.15. For any f, g ∈ Bn, we have

deg(f) + deg(g) ≥ deg(f ∗ g ∗ 1) and deg(f) + deg(f̂) ≥ n.

Proof. To prove the first assertion, first, if deg(f) + deg(g) ≥ n then this
assertion is obviously true. We only need to prove it for the case deg(f) +
deg(g) < n. If wH(x) > deg(f)+deg(g), then for any u � x, wH(u)+wH(x−
u) = w(x) > deg(f) + deg(g), so wH(u) > deg(f) or wH(x− u) > deg(g). If
wH(u) > deg(f) then f̂(u) = 0, and if wH(x−u) > deg(g) then ĝ(x−u) = 0,
so in either case, we have f̂(u)ĝ(x− u) = 0. It follows that

(f̂ ∗ ĝ)(x) =
∑
u�x

f̂(u)ĝ(x− u) = 0

holds for any x ∈ GF (2)n such that wH(x) > deg(f) + deg(g). Therefore,

deg((f̂ ∗ ĝ) ∗ 1) ≤ deg(f) + deg(g).

Finally, (f̂ ∗ ĝ) ∗ 1 = f ∗ 1 ∗ g ∗ 1 ∗ 1 = f ∗ g ∗ 1. This gives deg(f) + deg(g) ≥
deg(f ∗ g ∗ 1).
Next, we have

deg(f) + deg(f̂) ≥ deg(f ∗ f̂ ∗ 1).

But f∗f̂∗1 = f∗f∗1∗1 = f(0)I∗I = f(0)I = I, so deg(f∗f̂∗1) = deg(I) = n

and we obtain the inequality deg(f) + deg(f̂) ≥ n.
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K.3.1 Basis for (Bn,+)

For f, g ∈ Bn, the function f + g ∈ Bn is defined as (f + g)(x) = f(x) + g(x).
With this addition operation, Bn is a free Abelian group. There are two nat-
ural ways to choose a basis for Bn. We will describe them in Theorem K.3.16
and Theorem K.3.17.

Theorem K.3.16. For each a ∈ GF (2)n, define the function δa ∈ Bn as
follows

δa(x) = (x1 + a1 + 1)(x2 + a2 + 1) . . . (xn + an + 1) =

{
1 if x = a

0 if x 6= a
(K.13)

Then {δa}a∈GF (2)n forms a basis for the vector space (Bn,+). Each function
f ∈ Bn can be written as a linear combination of basis functions δa as

f =
∑

a∈GF (2)n

f(a) δa. (K.14)

Proof. If x = a, then for each i = 1, 2, . . . , n, xi + ai + 1 = 1 and δa(x) = 1.
If x 6= a, then xi 6= ai for some i. Hence xi + ai + 1 = 0 and δa(x) = 0.

We have∑
a∈GF (2)n

f(a) δa(x) = f(x) δx(x) +
∑
a6=x

f(a) δa(x) = f(x),

so f =
∑

a∈GF (2)n f(a) δa.

Note that, δ0 is the Dirichlet identity function I:

I(x) = δ0(x) = (x1 + 1)(x2 + 1) . . . (xn + 1) =

{
1 if x = 0

0 if x 6= 0
(K.15)

Theorem K.3.17. For each a ∈ GF (2)n, define the function ρa ∈ Bn as
follows

ρa(x) = xa = xa11 x
a2
2 . . . xann =

{
1 if a � x

0 if a 6� x
(K.16)
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Then {ρa}a∈GF (2)n forms a basis for the vector space (Bn,+). Each function
f ∈ Bn can be written as a linear combination of basis functions ρa as

f =
∑

a∈GF (2)n

f̂(a) ρa. (K.17)

Proof. If a � x then ai ≤ xi for each i = 1, 2, . . . , n. If xi = 0, then ai = 0
and xaii = 00 = 1. If xi = 1, then xaii = 1. In all cases, xaii = 1 and ρa(x) = 1.
Next, suppose that a 6� x. Then there exists i with 1 ≤ i ≤ n such that
ai > xi. This implies that xi = 0 and ai = 1. Hence xaii = xi = 0 and
ρa(x) = 0.
Now, we have for x ∈ GF (2)n,∑

a∈GF (2)n

f̂(a) ρa(x) =
∑
a�x

f̂(a) ρa(x) +
∑
a6�x

f̂(a) ρa(x) =
∑
a�x

f̂(a) = f(x),

by Theorem K.2.3.

Theorem K.3.18. For any a ∈ GF (2)n, the basis functions δa and ρa satisfy
the following relations:

• δa ∗ 1 = ρa and ρa ∗ 1 = δa,

• δa ∗ δb = ρa ∗ ρb = ρa ρb δa+b.

Proof. First, observe that since ρa(x) = xa, the function ρa in ANF has
only one monomial term xa, so its ANF coefficient function is δa. That is
ρa ∗ 1 = δa, and so δa ∗ 1 = ρa ∗ 1 ∗ 1 = δa ∗ I = δa.
Next, for any a and b, we have

(δa ∗ δb)(x) =
∑

u,v�x,u+v=x

δa(u)δb(v)

=

{
1 if a � x, b � x, a+ b = x.

0 otherwise

= ρa(x)ρb(x)δa+b(x)

Therefore,

δa ∗ δb = ρa ρb δa+b.
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Finally,
ρa ∗ ρb = δa ∗ 1 ∗ δb ∗ 1 = δa ∗ δb.

K.4 Coincident functions

In this section, we study a special family of boolean functions, called coinci-
dent functions which was first introduced in [127].

Definition K.4.1. A coincident function is a function f : GF (2)n → GF (2)
such that f̂ = f .

Example K.4.2. For n = 3, let f be the function

f(x1, x2, x3)

= f̂(0, 0, 0) + f̂(1, 0, 0)x1 + f̂(0, 1, 0)x2 + f̂(0, 0, 1)x3 +

f̂(1, 1, 0)x1x2 + f̂(0, 1, 1)x2x3 + f̂(1, 0, 1)x1x3 + f̂(1, 1, 1)x1x2x3

= 0 + x1 + x2 + x3 + x1x2 + x2x3 + x1x3 + x1x2x3.

Then

f(0, 0, 0) = f̂(0, 0, 0) = 0,

f(1, 0, 0) = f̂(1, 0, 0) = 1,

. . . ,

f(1, 1, 1) = f̂(1, 1, 1) = 1,

that is f = f̂ and f is coincident.

Theorem K.4.3. For any coincident function f ,

f(0) = 0.

Proof. Suppose that f is a coincident function, that is f = f̂ . Then, using
Theorem K.2.3, we get

f(0, 0, . . . , 0, 1) = f̂(0) + f̂(0, 0, . . . , 0, 1).

Since f(0, 0, . . . , 0, 1) = f̂(0, 0, . . . , 0, 1), then f̂(0) = f(0) = 0.
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Let Cn denote the set of all such coincident functions.

Theorem K.4.4. A function f ∈ Bn is a coincident function if and only if

(1 + I) ∗ f = 0.

Thus, Cn is the annihilator of 1 + I in Bn.

Proof. Suppose that f is a coincident function, that is f = f̂ . Then

0 = f̂ + f = f ∗ 1 + f ∗ I = f ∗ (1 + I).

Conversely, suppose that f ∗ (1 + I) = 0. Then, using Theorem K.3.9, we get
f ∗1+f ∗I = f̂+f = 0. This implies that f̂ = f and then f is coincident.

Observe that for any x ∈ GF (2)n, we have

(1 + I)(x) = (x1 + 1)(x2 + 1) . . . (xn + 1) + 1,

δ1...1(x) = x1x2 . . . xn,

ρ1...1(x) = x1x2 . . . xn.

Theorem K.4.5. The boolean functions 1 + I, δ1...1 and ρ1...1 are coincident
functions.

Proof. Combining Theorem K.4.4 and Theorem K.3.8, we get

(1 + I) ∗ (1 + I) = 1 ∗ 1 + I ∗ I = I + I = 0.

Hence 1+I is coincident. Next, combining Theorem K.4.4 and Lemma K.3.18,
we get for any x ∈ GF (2)n,

(1 + I) ∗ δ1...1(x) = (1 ∗ δ1...1)(x) + (I ∗ δ1...1)(x) = ρ1...1(x) + δ1...1(x).

Then, using Theorem K.3.16 and Theorem K.3.17, we get

ρ1...1(x) + δ1...1(x) =

{
1 + 1 = 0 if x = 1 . . . 1,

0 + 0 = 0 if x 6= 1 . . . 1.

It follows that (1 + I) ∗ δ1...1 = 0 and δ1...1 is coincident.

Theorem K.4.6. For any u ∈ GF (2)n, δu + ρu is a coincident function.
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Proof. Combining Theorem K.4.4 and Theorem K.3.18, we get

(1 + I) ∗ (δu + ρu) = 1 ∗ δu + 1 ∗ ρu + δu + ρu = 2δu + 2ρu = 0

Hence δu + ρu is a coincident function.

Theorem K.4.7. A function f ∈ Bn is a coincident function if and only if
for any (x2, . . . , xn) ∈ GF (2)n−1,

f(0, x2, . . . , xn) =
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un), (K.18)

where u ≺ x means u � x and u 6= x.

Proof. Since

(1 + I)(x) =

{
0 if x = 0

1 if x 6= 0
(K.19)

we have

((1 + I) ∗ f)(x) =
∑
u�x

f(u)(1 + I)(x− u) =
∑
u≺x

f(u).

Therefore, (1 + I) ∗ f = 0 if and only if for any x ∈ GF (2)n,∑
u≺x

f(u) = 0.

Consider two cases, x1 = 0 and x1 = 1.
When x1 = 0, the condition becomes∑

(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un) = 0.

When x1 = 1, the condition becomes

f(0, x2, . . . , xn) +
∑

(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un)

+
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un) = 0.
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Therefore, if f is a coincident function then for any (x2, . . . , xn) ∈ GF (2)n−1,
we must have

f(0, x2, . . . , xn) =
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un).

Conversely, suppose that for any (x2, . . . , xn) ∈ GF (2)n−1,

f(0, x2, . . . , xn) =
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un).

Then ∑
(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un)

=
∑

(u2,...,un)≺(x2,...,xn)

∑
(v2,...,vn)≺(u2,...,un)

f(1, v2, . . . , vn).

The above sum is equal to 0 because for any term f(1, v2, . . . , vn), the number
of its occurrences in the sum is equal to the number of (u2, . . . , un) such that
(v2, . . . , vn) ≺ (u2, . . . , un) ≺ (x2, . . . , xn), and this is always an even number
for any (v2, . . . , vn) ≺ (x2, . . . , xn). Hence for any (x2, . . . , xn) ∈ GF (2)n−1,
we have ∑

(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un) = 0. (K.20)

Therefore,

f(0, x2, . . . , xn) +
∑

(u2,...,un)≺(x2,...,xn)

f(0, u2, . . . , un)

+
∑

(u2,...,un)≺(x2,...,xn)

f(1, u2, . . . , un) = 0.
(K.21)

Combining (K.20) and (K.21), we see that∑
u≺x

f(u) = 0,

that is (1 + I) ∗ f = 0 and f is a coincident function.
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The following theorem reveals a relationship between the set of coinci-
dent functions Cn and the set of all boolean functions Bn.

Theorem K.4.8. It holds that

1. A coincident function f ∈ Cn is specified freely and uniquely by its values
on 2n−1 points (1, u2, . . . , un) ∈ GF (2)n.

2. There are exactly 22n−1 coincident functions in total.

3. (Cn,+) is a 2n−1-dimensional linear subspace of (Bn,+).

Proof. To prove the first assertion, observe that by Theorem K.4.7, a co-
incident function f ∈ Cn is specified freely by its values on 2n−1 points
(1, u2, . . . , un) ∈ GF (2)n, and its values on 2n−1 other points (0, u2, . . . , un) ∈
GF (2)n are uniquely determined by (K.18). The second assertion follows
since there are exactly 2 choices for choosing f(1, u2, . . . , un) ∈ {0, 1}, then
there are exactly 22n−1 coincident functions in total.
To prove the third assertion, observe that if f ∈ Cn and g ∈ Cn, then
f + g ∈ Cn. On the other hand, the relation (K.18) defines any coincident
function f ∈ Cn. It follows that (Cn,+) is a 2n−1-dimensional linear subspace
of (Bn,+).

K.4.1 Basis for (Cn,+)

By Theorem K.4.8, we know that (Cn,+) is a 2n−1-dimensional linear subspace
of (Bn,+). The following result gives an explicit basis for (Cn,+).

Theorem K.4.9. For each (u2, . . . , un) ∈ GF (2)n−1, define the function
γ(u2,...,un) ∈ Bn as follows

γ(u2,...,un) = δ(0,u2,...,un) + δ(1,u2,...,un) + ρ(0,u2,...,un) + ρ(1,u2,...,un)

Then {γ(u2,...,un)}(u2,...,un)∈GF (2)n−1 forms a basis for the subspace (Cn,+), and
each coincident function f ∈ Cn can be written as a linear combination of
basis functions as

f =
∑

(u2,...,un)∈GF (2)n−1

f(1, u2, . . . , un) γ(u2,...,un).



K.4. COINCIDENT FUNCTIONS 239

Proof. A coincident function f ∈ Bn is specified freely and uniquely by its
values on 2n−1 points (1, u2, . . . , un) ∈ GF (2)n. For each (u2, . . . , un) ∈
GF (2)n−1, define the coincident function c(u2,...,un) : GF (2)n → GF (2) as
follows

c(u2,...,un)(x) =

{
1 if (x2, . . . , xn) = (u2, . . . , un)

0 otherwise

then the collection of these functions c(u2,...,un) will form a basis for the vector
space Cn and

f =
∑

(u2,...,un)∈GF (2)n−1

f(1, u2, . . . , un) c(u2,...,un).

We need to show that

c(u2,...,un) = γ(u2,...,un).

Indeed, by Theorem K.4.6, γ(u2,...,un) is a coincident function, so it suffices to
show that γ(u2,...,un) and c(u2,...,un) agree on 2n−1 points (1, x2, . . . , xn). We have

δ(0,u2,...,un)(1, x2, . . . , xn) = 0

δ(1,u2,...,un)(1, x2, . . . , xn) =

{
1 if (x2, . . . , xn) = (u2, . . . , un)

0 otherwise

ρ(0,u2,...,un)(1, x2, . . . , xn) = ρ(1,u2,...,un)(1, x2, . . . , xn)

Therefore,

γ(u2,...,un)(1, x2, . . . , xn) =

{
1 if (x2, . . . , xn) = (u2, . . . , un)

0 otherwise

and thus, γ(u2,...,un) = c(u2,...,un).

Example K.4.10. When n = 3, the following 4 coincident functions form a
basis for the subspace of all coincident functions:

γ(0,0) = δ(0,0,0) + δ(1,0,0) + ρ(0,0,0) + ρ(1,0,0)

= (x1 + 1)(x2 + 1)(x3 + 1) + x1(x2 + 1)(x3 + 1) + 1 + x1

= x1 + x2 + x3 + x2x3
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γ(1,0) = δ(0,1,0) + δ(1,1,0) + ρ(0,1,0) + ρ(1,1,0)

= (x1 + 1)x2(x3 + 1) + x1x2(x3 + 1) + x2 + x1x2

= x1x2 + x2x3

γ(0,1) = δ(0,0,1) + δ(1,0,1) + ρ(0,0,1) + ρ(1,0,1)

= (x1 + 1)(x2 + 1)x3 + x1(x2 + 1)x3 + x3 + x1x3

= x1x3 + x2x3

γ(1,1) = δ(0,1,1) + δ(1,1,1) + ρ(0,1,1) + ρ(1,1,1)

= (x1 + 1)x2x3 + x1x2x3 + x2x3 + x1x2x3

= x1x2x3.

These 4 functions can be seen to be coincident in the following table

γ(0,0) γ(1,0) γ(0,1) γ(1,1)

(0, 0, 0) 0 0 0 0

(0, 1, 0) 1 0 0 0

(0, 0, 1) 1 0 0 0

(0, 1, 1) 1 1 1 0

(1, 0, 0) 1 0 0 0

(1, 1, 0) 0 1 0 0

(1, 0, 1) 0 0 1 0

(1, 1, 1) 0 0 0 1

Theorem K.4.11. For each f ∈ Cn define

fδ =
∑

(u2,...,un)∈GF (2)n−1

f(1, u2, . . . , un) (δ(0,u2,...,un) + δ(1,u2,...,un)).

and

fρ =
∑

(u2,...,un)∈GF (2)n−1

f(1, u2, . . . , un) (ρ(0,u2,...,un) + ρ(1,u2,...,un)).

then

f = fδ + fρ = (1 + I) ∗ fδ = (1 + I) ∗ fρ.
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Proof. By Theorem K.4.9,
f = fδ + fρ

and by Theorem K.3.18,

fδ ∗ 1 = fρ, fρ ∗ 1 = fδ,

therefore,
f = (1 + I) ∗ fδ = (1 + I) ∗ fρ.

Theorem K.4.12. A function f ∈ Bn is a coincident function if and only if
f = (1 + I) ∗ g for some function g ∈ Bn.

Proof. Suppose that f = (1 + I) ∗ g. Then, using Theorem K.4.5, we get

(1 + I) ∗ f = (1 + I) ∗ (1 + I) ∗ g = 0 ∗ g = 0,

so f is a coincident function.
Conversely, suppose that f is a a coincident function. Then by Theorem K.4.11,
we have f = (1 + I) ∗ g with g = fδ.

K.5 Conclusion and Future Work

In this paper, we have introduced a new notion, called Dirichlet product for
boolean functions. We have intensively studied the arithmetical and the al-
gebraic structures of the set of all boolean functions under this Dirichlet
product. We have presented the affects of the Dirichlet product on a boolean
function and its Möbius transform. We have applied the Dirichlet product
to coincident boolean functions and exhibited new properties and character-
izations of such functions.
The results presented in this paper on the new notion of Dirichlet product for
boolean functions are not exhaustive. They are only the first steps toward
further applications of the Dirichlet product, especially in cryptography. We
leave it as future work to investigate possible applications of the Dirichlet
product to find useful results to compute the algebraic degree of a boolean
function and to characterize cryptographic properties such as nonlinearity,
balancedness, correlation immunity and algebraic immunity.
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Appendix L

New Attack on RSA and Demytko’s
Elliptic Curve Cryptosystem

Mathematics in Computer Science, 2016
[121] with Emmanuel Fouotsa

Abstract :
Let N = pq be an RSA modulus and e a public exponent. We show how
to factor the RSA modulus if e satisfies an equation of the form eu − (p −
s)(q − r)v = w with suitably small unknown integers u, v, w, r and s under
the condition that p − s is factorable using the Elliptic Curve Method for
factorization ECM. As an application, we propose an attack on Demytko’s
elliptic curve cryptosystem. Our method is based on Coppersmith’s technique
for solving multivariate polynomial modular equations.

L.1 Introduction

In 1976, Diffie and Hellman [40] invented the concept of the public-key cryp-
tosystem. Since then, various schemes have been proposed as public-key

243
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cryptosystems.

In 1978, Rivest, Shamir, and Adleman [131] proposed RSA, the most
widely used public-key cryptosystem. The public parameters in RSA are the
modulus N = pq and the public exponent e satisfying gcd(e, (p−1)(q−1)) = 1
where p, q are large prime numbers of the same bit-size. The decryption
exponent is the integer d such that ed ≡ 1 (mod (p− 1)(q − 1)).

In 1985, Koblitz [75] and Miller [95] independently suggested the use
of elliptic curves in cryptography, mainly for the Diffie-Hellman [40] key ex-
change protocol and the El Gamal cryptosystem [42]. Let p > 3 be a prime
number and a, b be two integers such that gcd(4a3 + 27b2, p) = 1. The ellip-
tic curve Ep(a, b) over the field Fp is the set of points P = (x, y) such that
y2 ≡ x3 + ax + b (mod p) together with the point at infinity. The number
of points in Ep(a, b) is #Ep(a, b) = p + 1 − tp where tp is an integer satisfy-
ing the Hasse bound |tp| ≤ 2

√
p. Elliptic curves can be extended over the

ring Z/nZ where n is a composite integer. Such elliptic curves can serve
to find small prime factors of n as in the Elliptic Curve Method (ECM) for
factorization [84].

In 1994, Demytko [39] developed a cryptosystem using an elliptic curve
EN(a, b) over the ring Z/NZ where N = pq is an RSA modulus. In the
Demytko system, the public parameters are N , a, b together with a public
exponent e satisfying gcd

(
e,
(
p2 − t2p

) (
q2 − t2q

))
= 1. The decryption expo-

nent is an integer d satisfying ed ≡ 1 (mod lcm(p+ 1± tp, q+ 1± tq)) where
tp = p+ 1−#Ep(a, b) and tq = q + 1−#Eq(a, b).

The RSA cryptosystem is deployed in many commercial systems for pro-
viding privacy and authenticity. If RSA is deployed in a device with small
computing power, it is desirable to use a small public exponent e or a small
private exponent d. Unfortunately, in 1990, Wiener [147] showed that RSA
is insecure if d < 1

3N
1
4 . In 1999, Boneh and Durfee [17] improved this bound

up to d < N 0.292. Their method is based on Coppersmith’s method [34]
for solving modular polynomial equations and uses the RSA key equation
ed − k(p − 1)(q − 1) = 1. Afterwards, many attacks on RSA or variants of
RSA have been presented using Coppersmith’s method or other techniques
(see [61], [93], [13]).
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In this paper, using a variant RSA equation, we present a new attack
on RSA by combining Coppersmith’s method and the Elliptic Curve Method
for factorization ECM. Let B be a positive integer. An integer n is said to be
B-smooth if all prime factors are less than B. We say that B is an efficiency
bound for ECM if every prime factor less than B of an integer n can be found
by ECM.

Suppose that the public exponent e = Nβ satisfies a variant equation
of the form eu − (p − s)(q − r)v = w with suitably small unknown integers
u < N δ, |w| < Nγ, |r| < Nα and |s| < Nα with α < 1

4 . We show that
the RSA modulus N = pq can be factored under two conditions. The first
condition is that p− s is B-smooth for some efficiency bound B of ECM and
the second condition is that δ satisfies the following inequality

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α + 1)(2α + 6β − 6γ + 1)− ε,

where ε is a small positive constant. Our method is based on combining
Coppersmith’s method and ECM. We use Coppersmith’s method to find the
small solutions (u, v, w, (p−s)(q−r)) of the equation eu−(p−s)(q−r)v = w

and ECM to factor (p− s)(q − r) and to extract the value of p− s from the
B-smooth part of (p− s)(q − r). Finally reusing Coppersmith’s method, we
can find p from the value of p− s.

We apply the new method to present a new attack on Demytko’s scheme.
In this scheme, the public exponent e and the private exponent d satisfy one
of the four modular equations ed ≡ 1 (mod lcm(p+ 1± tp, q + 1± tq)). This
gives rise to an equation of the form eu− (p+ 1± tp)(q + 1± tq)v = w. Let
e = Nβ. Suppose that |u| < N δ, |w| < Nγ, |tp| < Nα and |tq| < Nα with
α < 1

4 and that p+ 1± tp or q + 1± tq is B-smooth. Then applying the new
method as for RSA, one can factor the RSA modulus N = pq.

The rest of this paper is organized as follows. In Section 2, we review
Coppersmith’s method, the theory of elliptic curves, Demytko’s elliptic curve
cryptosystem and the Elliptic Curve Method ECM for factorization. In Sec-
tion 3, we present the new attack on RSA, and in Section 4, we present the
new attack on Demytko’s scheme. We conclude in Section 5.
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L.2 Preliminaries

The following classical result is useful for the proof of our new attack (see [104]).

Lemma L.2.1. Let N = pq be an RSA modulus with q < p < 2q. Then
√

2

2

√
N < q <

√
N < p <

√
2
√
N.

L.2.1 Coppersmith’s method

In 1996, Coppersmith [34] describes a technique to find small modular roots
of univariate polynomials and small integer roots of bivariate polynomials.
This method has been extended to more variables and has many surprising
results in cryptanalysis. A typical example is the following result [91].

Theorem L.2.2 (Coppersmith). Let N = pq be an RSA modulus with
q < p < 2q. Let S̃ be an approximation of an unknown multiple pr of p with
r 6= q and |pr − S̃| < N

1
4 . Then one can factor N in polynomial time.

Let h(x, y, z) ∈ Z[x, y, z] be a polynomial with ω monomials of the form

h(x, y, z) =
∑
i,j,k

ai,j,kx
iyjzk.

The Euclidean norm of h(x, y, z) is defined as

‖h(x, y, z)‖ =

√∑
i,j,k

a2
i,j,k.

Under some conditions, a modular polynomial equation can be solved over
the integers as presented in the following result [65].

Theorem L.2.3 (Howgrave-Graham). Let e be a positive integer and h(x, y, z) ∈
Z[x, y, z] be a polynomial with at most ω monomials. Suppose that

h (x0, y0, z0) ≡ 0 (mod em) and ‖h(xX, yY, zZ)‖ < em√
ω
,

where |x0| < X, |y0| < Y , |z0| < Z. Then h (x0, y0, z0) = 0 holds over the
integers.
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To find polynomials with small coefficients that can be used in Howgrave-
Graham’s Theorem L.2.3, Coppersmith’s method uses a lattice and a lattice
reduction algorithm such as the LLL algorithm [86]. This reduction algorithm
can be applied to find a basis of lattice vectors with relatively small norms
(see [91]).

Theorem L.2.4 (LLL). Let L be a lattice spanned by a basis (u1, . . . , uω),
then the LLL algorithm produces a new basis (b1, . . . , bω) satisfying

‖b1‖ ≤ . . . ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , i = 1, . . . , ω − 1.

Under the condition of Howgrave-Graham’s Theorem, some modular
polynomial equations derived from the reduced basis can be transformed to
polynomial equations over the integers. For multivariate modular equations,
solving the system of these polynomials is heuristic and depends on some
extra assumptions such as the following one.

Assumption L.2.5. Let h1, h2, h3 ∈ Z[x, y, z] be the polynomials that are
found by Coppersmith’s method. Then the ideal generated by the polynomial
equations h1(x, y, z) = 0, h2(x, y, z) = 0, h3(x, y, z) = 0 has dimension zero.

Under this assumption, a system of polynomials sharing the root can be
solved by using Gröbner basis computation or resultant techniques (see [8]
for more details).

L.2.2 Elliptic curves

Let N = pq be an RSA modulus and let a and b be two integers such that
gcd(4a3 + 27b2, N) = 1. An elliptic curve EN(a, b) is the set of points (x, y)
such that

y2 ≡ x3 + ax+ b (mod N),

together with the point at infinity O. It is well known that chord-and-tangent
method in the case of elliptic curves Ep(a, b) defined over the finite filed Fp
still hold for En(a, b) unless the inversion of a non-zero number Q does not
exist modulo N . This case would lead to find a factor of N by computing
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gcd(Q,N). When the prime factors p, q in N = pq are large, then with over-
whelming probability the inversion of a non-zero number will exist modulo
N .

Let p be a prime number. Under modulo p, the cardinality of Ep(a, b) is
denoted #Ep(a, b) and satisfies the following result (see [140], p. 131).

Theorem L.2.6 (Hasse). The order of an elliptic curve Ep(a, b) over Fp is
given by

#Ep(a, b) = p+ 1− tp, where |tp| ≤ 2
√
p.

When the prime number p and the elliptic curve Ep(a, b) are given, one
can find the value of tp using computational methods such the Schoof-Elkies-
Atkin algorithm (SEA) (see [137]). Conversely, let p be a prime number and
t an integer with |t| < 2

√
p. Let H(d) denote the Kronecker class number

(see Section 1.6 of [84]). Deuring’s theory of CM-elliptic curves implies that
there are H(t2−4p) elliptic curves on Z/pZ having p+1−t points. Note that
when |t| < √p, H(t2−4p) satisfies the following inequalities (see Proposition
1.9 of [84])

c1

√
p

log p
< H(t2 − 4p) < c2

√
p(log p)(log log p)2,

where c1 and c2 are effectively computable positive constants. This shows
that the number of elliptic curves with known cardinality is non negligible.

Let p be a prime number and Ep(a, b) be an elliptic curve with equation
y2 ≡ x3 + ax + b (mod p) and cardinality #Ep(a, b) = p + 1 − tp. The
twist of Ep(a, b) is the elliptic curve E ′p(a, b) defined by the equation cy2 ≡
x3 +ax+ b (mod p) where c is a fixed quadratic non-residue modulo p. Then
the cardinality of E ′p(a, b) is #E ′p(a, b) = p+ 1 + tp.

L.2.3 Demytko’s elliptic curve cryptosystem

In 1994, Demytko [39] proposed a new cryptosystem defined over the field
Z/NZ where N = pq is an RSA modulus such that p ≡ q ≡ 2 (mod 3).
Demytko’s scheme uses fixed integers a and b and a fixed modulus N . De-
mytko’s scheme uses only the x-coordinate of a point P = (x, y) ∈ EN(a, b) to
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compute a multiple eP ∈ EN(a, b) (see Lemma 2 in [82]). Demytko’s scheme
can be summarized as follows.

1. Key Generation:

• Choose two distinct prime numbers p and q of similar bit-length.

• Compute N = pq.

• Select two integers a, b < p such that gcd
(
n, 4a3 + 27b2

)
= 1.

• Choose e such that gcd
(
e,
(
p2 − t2p

) (
q2 − t2q

))
= 1.

• Keep p, q secret and publish N, e, a, b.

2. Encryption:

• Transform the messagem as the x-coordinate of a point P = (mx,my)
on the elliptic curve EN(a, b).

• Compute the ciphertext point C = eP = (cx, cy) = e(mx,my) on the
elliptic curve y2 = x3 + ax+ b (mod N).

3. Decryption:

• Compute u = c3
x + acx + b (mod N).

• Compute the Legendre symbols up =
(
u
p

)
and uq =

(
u
q

)
.

• If (up, uq) = (1, 1), then compute d ≡ e−1 (mod lcm(p + 1 − tp, q +
1− tq)).
• If (up, uq) = (1,−1), then compute d ≡ e−1 (mod lcm(p+ 1− tp, q+

1 + tq)).

• If (up, uq) = (−1, 1), then compute d ≡ e−1 (mod lcm(p+ 1 + tp, q+
1− tq)).
• If (up, uq) = (−1,−1), then compute d ≡ e−1 (mod lcm(p+1+tp, q+

1 + tq)).

• Compute m as the x-coordinate of dC = deP = P = (mx,my) on
the elliptic curve y2 = x3 + ax+ b (mod N).

A variant of Demytko’s scheme is to consider d ≡ e−1 (mod (p + 1 ± tp, q +
1± tq)) instead of modulo lcm(p+ 1± tp, q+ 1± tq). Then e and d satisfy an
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equation of the form

ed− k (p− s) (q − r) = 1, s = ∓tp − 1, r = ∓tq − 1.

This equation matches the RSA variant key equation that will be studied in
this paper.

L.2.4 The Elliptic Curve Method

An integer m is said to be B-smooth if all the prime factors of m are less than
or equal to B. Smooth numbers are used in cryptography by many factoring
and discrete logarithm algorithms (see [84] and [85]). The counting function
of B-smooth numbers in an interval [1, x] is defined as

ψ(x,B) = # {m : 1 ≤ m ≤ x,m is B-smooth} .

In the particular case x = Bu, Hildebrand [60] gave the asymptotic formula
ψ(x,B) = xρ(u) where ρ(u) is the Dikman rho-function defined as the solu-
tion of the differential equation uρ′(u) = −ρ(u− 1) for u ≥ 1 with the initial
condition ρ(u) = 1 for 0 ≤ u ≤ 1. For 1 ≤ u ≤ 2, the Dikman function
satisfies ρ(u) = 1− log u so that ψ(x,B) = x(1− log u). The Elliptic Curve
method (ECM) is a probabilistic method for integer factorization and was
discovered by H.W. Lenstra [84] in 1987. It is a fast partially factoring al-
gorithm, especially for finding small prime factors p, in a heuristic running
time O

(
exp

(
c(log p)1/2

) (
log log p)1/2

))
, for some constant c > 0. The ECM

algorithm is based on the property of the Chinese Remainder Theorem, that
is, for any elliptic curve E(a, b), if n = pe11 p

e2
2 · · · p

ek
k , then

E (Z/nZ) = E (Z/pe11 Z)× E (Z/pe22 Z)× · · · × E (Z/pekk Z) .

Suppose that the order of E (Z/pe11 Z) is B-smooth and let m be a multiple of
|E (Z/pe11 Z)|, typically m = lcm(2, . . . , B). Then, for every P ∈ E (Z/nZ),
we have mP = (0 : 1 : 0) (mod p1). Consequently, computing mP where
P ∈ E (Z/nZ), using the addition formulas on E (Z/nZ), we must get mP =
(x : y : z) = (0 : 1 : 0) (mod p1). This implies that z ≡ 0 (mod p1) and that
gcd(z, n) = pr1 for some positive integer r which will reveal p1.
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L.3 The Attack on RSA

In this section, we present an attack on RSA when the public key (N, e)
satisfies an equation eu− (p− s)(q− r)v = w with suitably small parameters
u, v, w, r, s under the condition that one of the factors (p− s) or (q − r) is
B-smooth for some ECM-efficiency bound B.

L.3.1 The attack

Theorem L.3.1. Let N = pq be an RSA modulus and e = Nβ be a public
exponent. Suppose that e satisfies the equation eu− (p− s)(q− r)v = w with
|r|, |s| < Nα, u < N δ and |w| < Nγ. If

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α + 1)(2α + 6β − 6γ + 1)− ε,

then one can find the product (p− s)(q − r) in polynomial time.

Proof. Suppose that N = pq is an RSA modulus and e is a public exponent
satisfying eu− (p− s)(q− r)v = w. Since (p− s)(q− r) = N − pr− qs+ rs,
then −v(N − pr − qs + rs) − w ≡ 0 (mod e), which can be rewritten as
v(pr+ qs− rs)−Nv−w ≡ 0 (mod e). Consider the polynomial f(x, y, z) =
xy − Nx + z, Then (x, y, z) = (v, pr + qs − rs,−w) is a solution of the
modular polynomial equation f(x, y, z) ≡ 0 (mod e). The small solutions of
this modular equation can be found by applying Coppersmith’s method [34].
Let m and t be two positive integers. Consider the polynomials

Gk,i1,i2,i3(x, y, z) = xi1−kzi3f(x, y, z)kem−k,

for k = 0, . . .m, i1 = k, . . . ,m, i2 = k, i3 = m− i1,
Hk,i1,i2,i3(x, y, z) = yi2−kzi3f(x, y, z)kem−k,

for k = 0, . . .m, i1 = k, i2 = k + 1, . . . , i1 + t, i3 = m− i1.

Let L denote the lattice spanned by the coefficient vectors of the polynomials
Gk,i1,i2,i3(Xx, Y y, Zz) and Hk,i1,i2,i3(Xx, Y y, Zz). We can get a left triangular
matrix if the ordering of the rows follows the ordering of the k’s and the
ordering of the the monomials of a polynomial follows the natural ordering
following the i1’s, then the i2’s, then the i3’s. Hence, using the triangular form
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of the matrix, the determinant of L is in the form det(L) = eneXnXY nYZnZ .
For m = 2 and t = 1, the coefficient matrix for L is presented in Table L.1.
The non-zero elements are marked with an ‘~’.
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To find the values of the exponents, define S(x) to be

S(x) =
m∑
k=0

m∑
i1=k

k∑
i2=k

m−i1∑
i3=m−i1

x+
m∑
k=0

k∑
i1=k

i1+t∑
i2=k+1

m−i1∑
i3=m−i1

x.

Using the construction of the polynomials G and H, we get

ne = S(m− k) =
1

6
m(m+ 1)(2m+ 3t+ 4),

nX = S(i1) =
1

6
m(m+ 1)(2m+ 3t+ 4),

nY = S(i2) =
1

6
(m+ 1)

(
m2 + 3mt+ 3t2 + 2m+ 3t

)
,

nZ = S(i3) =
1

6
m(m+ 1)(m+ 3t+ 2),

ω = S(1) =
1

2
(m+ 1)(m+ 2t+ 2).

(L.1)

Let t = τm for some positive τ to be optimized later. The dominant terms
of the exponents in (L.1) are

ne ≈
1

6
(3τ + 2)m3 + o(m3),

nX ≈
1

6
(3τ + 2)m3 + o(m3),

nY ≈
1

6

(
3τ 2 + 3τ + 1

)
m3 + o(m3),

nZ ≈
1

6
(3τ + 1)m3 + o(m3),

w ≈ 1

6
(6τ + 3)m2 + o(m2).

(L.2)

Applying the LLL algorithm L.2.4 to the lattice L, we get a reduced basis
where the three first vectors hi, i = 1, 2, 3 satisfy

‖h1‖ ≤ ‖h2‖ ≤ ‖h3‖ ≤ 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

To apply Howgrave-Graham’s Theorem L.2.3 to h1, h2 and h3, we set

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em√
ω
.
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This can be transformed to

det(L) < 2−
ω(ω−1)

4
1

(
√
ω)

ω−2e
m(ω−2) < emω,

or equivalently eneXnXY nYZnZ < emω. Suppose that e = Nβ, u < N δ, |w| <
Nγ and max(|r|, |s|) < Nα < N

1
4 . Since q < p <

√
2
√
N by Lemma L.2.1,

then

|pr + qs− rs| < 2 max(p|r|, q|s|) < 2
√

2
√
N ·Nα = 2

√
2N

1
2+α.

On the other hand, since (p− s)(q − r) ≈ N and |w| < eu, we get

v =
eu− w

(p− s)(q − r)
<

eu+ |w|
(p− s)(q − r)

<
2eu

N
< 2Nβ+δ−1, (L.3)

Let X = 2Nβ+δ−1, Y = 2
√

2N
1
2+α and Z = Nγ. Then the target solution

(x, y, z) satisfies |x| < X, |y| < Y and |z| < Z. Using the approximations
of ne, nX , nY , nZ and ω given in (L.2), the inequality eneXnXY nYZnZ < emω

can be transformed to

(3τ+2)β+(3τ+2)(β+δ−1)+
(
3τ 2 + 3τ + 1

)(1

2
+ α

)
+(3τ+1)γ < (6τ+3)β.

The optimal value for τ is

τ0 =
1− 2δ − 2α− 2γ

2(1 + 2α)
,

and, plugging this value in the former inequality, we obtain

4α2 + 16αβ + 8αδ − 8αγ − 12δ2 − 24δγ − 12γ2 − 4α+ 8β + 28δ + 20γ < 15,

and consequently

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α + 1)(2α + 6β − 6γ + 1).

Under this condition, the LLL algorithm applied to the lattice L outputs
three vectors vi, i = 1, 2, 3. These vectors represent the coefficients of
three polynomials hi(Xx, Y y, Zz), i = 1, 2, 3 sharing the root (x, y, z) =
(v, pr + qs + rs,−w). Then, applying Gröbner basis computations, we get
the expected solution, from which we deduce (p−s)(q−r) = N−(pr+qs+rs).
This terminates the proof.
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Remark L.3.2. If r = s = w = 1, then the equation eu− (p−s)(q−r)v = w
is the classical RSA key equation ed−(p−1)(q−1)k = 1 with d < N δ. Using

α = 0, β = 1 and γ = 0, the bound of Theorem L.3.1 gives δ < 7
6 −

√
7

3 . This
retrieves the classical bound on the private exponent d (see [17]).

Theorem L.3.3. Let N = pq be an RSA modulus and e = Nβ be a public
exponent. Suppose that e satisfies the equation eu− (p− s)(q− r)v = w with
|r|, |s| < Nα < N

1
4 , u < N δ and |w| < Nγ. Let B be an ECM-efficiency

bound for the Elliptic Curve Method. If (p− s) or (q − r) is B-smooth and

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α + 1)(2α + 6β − 6γ + 1),

then one can find p and q in polynomial time.

Proof. Suppose that, in the equation eu−(p−s)(q−r)v = w, the parameters
satisfy |r|, |s| < Nα < N

1
4 , e = Nβ, u < N δ, |w| < Nγ and that the exponent

parameters satisfy δ < 7
6 + 1

3α−γ−
1
3

√
(2α + 1)(2α + 6β − 6γ + 1). Then, by

applying Theorem L.3.1, we can find the exact value of (p− s)(q− r). Next,
suppose that (p− s) is B-smooth where B is a bound for the efficiency of the
Elliptic Curve Method (ECM). Hence, ECM will reveal a partial factorization
of (p− s)(q − r) as

(p− s)(q − r) = M ·
ω((p−s)(q−r))∏

i=1

peii ,

were ω(p− s) is the number of distinct prime factors of p− s and M is such
that M = 1 or all prime factors of M are greater than B. The average order
of the number of prime factors of an integer n is ω(n) ≈ log n

log log n (see [57], pp.

355). Since |r|, |s| < Nα and
√
N < p <

√
2N , then

√
N −Nα < p− s <

√
2N +Nα. (L.4)

Hence, the average number of the prime factors of p− s satisfies

ω(p− s) ≈ log(p− s)
log log(p− s)

≈ logN

2 log logN
.
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On the other hand, according to the factorization

(p− s) =

ω((p−s))∏
i=1

peii ,

the number of distinct divisors of p− s is exactly
∏ω(p−s)

i=1 (ei + 1). However,
the average number of divisors of an integer n is log n (see Theorem 319
of [57]). Hence, the average number of divisors of p − s is approximately
log(p− s) ≈ 1

2 logN . Let d be a divisor of (p− s)(q− r) such that d = p− s.
Then

d =

ω(p−s)∏
i=1

pxii , 0 ≤ xi ≤ ei.

Using (L.4), we get

log
(√

N −Nα
)
<

ω(p−s)∑
i=1

xi log pi < log
(√

2N +Nα
)
.

The former inequalities can be solved by applying linear programming algo-
rithms such as PSLQ [47] and LLL [86], and using a solution (x1, . . . , xω(p−s)),

we compute d =
∏ω(p−s)

i=1 pxii which is then a candidate for p − s. Since
|s| < Nα < N

1
4 , then d is an approximation of the prime factor p of N with

an error term less than N
1
4 . Hence, using Theorem L.2.2, this leads to the ex-

act value of p if d is the good candidate. Repeating this process sequentially
for the factors d of (p−s)(q−r) in the range

√
N−Nα < d <

√
2N+Nα, we

will find p and then get q = N
p . This achieves the factorization of the RSA

modulus.

L.3.2 A numerical example

Consider the following RSA 265 bit-size modulus N with the public exponent
e,

N =431152655066872264361967287569597072664021583942612947594581

39340520129183826747,

e =442910968337832163537316435435954401939549665933793683113289

7706681971178351139.
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Suppose that N = pq with unknown factorization and e satisfies an equation
eu− (p−s)(q−r)v = w with the suitably small unknown parameters u, v, w,
r and s. Then applying the method of Theorem L.3.1 to solve the equation
eu− (p− s)(q − r)v = w, with the bounds

u < N δ = N 0.15, |w| < Nγ = N 0.15, |r|, |s| < Nα = N 0.15, e = Nβ = N 0.987,

we get

v =8330878683394

w =2516643,

ps+ qr − rs =45624103499453346715225639044829688941453657147,

Since (p− s)(q − r) = N − (pr + qs− rs), we get

(p− s)(q − r) =4311526550668722643619672875695966164229865894091457953

3819094510831187730169600.

Then, using the Elliptic Curve Method with the bound B = N
1
10 ≈ 91931238,

we get the factorization

(p− s)(q − r) = 28 · 3 · 52 · 13 · 23 · 53 · 89 · 181 · 1663 · 2833 · 2969 · 5197 · 5233·
6481 · 12007 · 18439 · 36973 · 435876180528100336114933071348569.

Using the factorization of (p− s)(q − r), we can find the set of the factors d
such that

√
N −Nα < d <

√
2N +Nα. Such divisors are candidate for p− s,

that is we p−s = d for one of these factors. Then by applying Coppersmith’s
Theorem L.2.2, we can find p using the correct candidate. For the divisor
d = 6672224014662340178579721474326728185600, we apply Coppersmith’s
Theorem L.2.2 and find

p = 6672224014662340178579721474326734152749.

Then q = N
p = 6461903169309154483833797011785886506503.

L.4 Application to Demytko’s Scheme

In this section, we show how to apply the technique of Theorem L.3.1 to break
the Demytko scheme in some situations and provide a numerical example.
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L.4.1 The attack on Demytko’s Scheme

In Demytko’s scheme, the RSA modulus is N = pq and the elliptic curve
EN(a, b) is such that #Ep(a, b) = p+ 1− tp and #Eq(a, b) = q+ 1− tq where,
according to Hasse Theorem, |tp| < 2

√
p and |tq| < 2

√
q. Also, the public

exponent e and the private exponent d satisfy one of the four equations

eu− (p+ 1± tp)(q + 1± tq)v = w.

These equations can be transformed into one of the form eu−(p−s)(q−r)v =
w where s = ∓tp−1 and t = ∓tq−1, which can be studied using the technique
of Theorem L.3.1.

Corollary L.4.1. Let (N, e, a, b) the public parameters of a Demytko’s in-
stance where N = pq. Suppose that e = Nβ satisfies an equation of the form
eu − (p + 1 ± tp)(q + 1 ± tq)v = w with | ± tp − 1|, | ± tq − 1| < Nα < N

1
4 ,

u < N δ and |w| < Nγ. Let B be an ECM-efficiency bound for the Elliptic
Curve Method. If p+ 1± tp or q + 1± tq is B-smooth and

δ <
7

6
+

1

3
α− γ − 1

3

√
(2α + 1)(2α + 6β − 6γ + 1),

then one can find p and q in polynomial time.

Proof. Since the equation eu−(p+1±tp)(q+1±tq)v = w can be transformed
into eu − (p − s)(q − r)v = w with s = ∓tp − 1 and t = ∓tq − 1, then
this equation can be solved under the conditions of Theorem L.3.1 when
|tp − 1| < Nα and |tq − 1| < Nα.
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L.4.2 A numerical example

Example L.4.2. Let us consider the Demytko public parameters (N, e, a, b)
where N is an 510-bit RSA modulus

N =24456415204971883728939103295386758243314549215201639004265623

93634418526897575682249916293416221269674459540700624274860236

238684609738360751815410091617,

e =207753540686843587408555602893982678168821441852165899252123932

416370824148707563812033872059010473801740084336709522813588017

197501164099322578137710783,

a =0,

b =9,

with the elliptic curve EN(a, b) with equation y2 ≡ x3 + 9 (mod N). We
suppose that e satisfies the equation eu− (p+ 1± tp)(q + 1± tq)v = w with
tp, tq < Nα = N 0.1. Then applying the method of Theorem L.3.1 to solve the
equation eu − (p − s)(q − r)v = w where s = ∓tp − 1 and r = ∓tp − 1, we
get for e = Nβ ≈ N , u < N δ = N 0.1, |w| < Nγ = N 0.1

v =6889077569105,

w =2916646,

pr + qs− rs =7843579993396182200943116363500139031658267071337633,

244222164466922717093026565590439040792,

Then

N − (pr + qs− rs) = (p− s)(q − r)
= 244564152049718837289391032953867582433145492152016

3900426562385790838533501393481306799929916082238016

192469362991030638071771761892645334186224971050825.

Applying the Elliptic Curve Method for factorization with the bound
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B = 280 ≈ N 0.16, we get the factorization

(p− s)(q − r) =36 · 52 · 72 · 133 · 432 · 1032 · 277 · 6742 · 1021 · 4177 · 15061

· 217372 · 271092 · 522912 · 84991 · 90841 · 132661 · 3473292

· 3834631 · 29327821 · 69689551 · 30404961633073956301

· 305196537135675591605491.

Any divisor d of (p − s)(q − r) is a candidate for p − s or q − r. Using the
divisor

d =33 · 132 · 277 · 1021 · 15061 · 217372 · 271092 · 522912 · 90841

· 305196537135675591605491,

as a candidate for p− s in Coppersmith’s Theorem L.2.2, we get p and then
q = N

p as follows

p =6859204255983061432517785834149052664712382794585028575

9827931818992553395171,

q =3565488691146548938655947873912559573169857298248409258

0287175860557076482027,

which completes the factorization of N .

L.5 Conclusion

In this paper, we consider an instance of RSA where the public exponent
satisfies a generalized key equation with many unknown parameters. Under
suitable conditions, we combine Coppersmith’s method and the Elliptic Curve
Method for factorization ECM, we solve the equation and find the prime
factors of the RSA modulus. We apply the same technique to launch an attack
on Demytko’s Elliptic Curve Cryptosystem when the secret parameters are
suitably small.
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Lattice Attacks on the DGHV
Homomorphic Encryption Scheme

Mathematics in Computer Science, 2016
[122] with Tajjeeddine Rachidi

Abstract :
In 2010, van Dijk, Gentry, Halevi, and Vaikuntanathan described the first
fully homomorphic encryption over the integers, called DGHV. The scheme
is based on a set of m public integers ci = pqi + ri, i = 1, · · · ,m, where the
integers p, qi and ri are secret. In this paper, we describe two lattice-based
attacks on DGHV. The first attack is applicable when r1 = 0 and the public
integers ci satisfy a linear equation a2c2 + . . .+amcm = a1q1 for suitably small
integers ai, i = 2, . . . ,m. The second attack works when the positive integers
qi satisfy a linear equation a1q1 + . . . + amqm = 0 for suitably small integers
ai, i = 1, . . . ,m. We further apply our methods for the DGHV recommended
parameters as specified in the original work of van Dijk, Gentry, Halevi, and
Vaikuntanathan.
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M.1 Introduction

In the last ten years, cloud computing has gained major importance and
widespread. Yet, a very important concern of cloud computing remains the
security and privacy of data. A useful solution to this concern is the use of
fully homomorphic encryption (FHE) to encrypt data stored remotely. In-
deed, a fully homomorphic encryption scheme supports the computation of
arbitrary functions on encrypted data, possibly distributed across the cloud,
without the need to resort to decryption. Unfortunately, not all encryption
schemes are fully homomorphic. For example, RSA [131] is only multiplica-
tively homomorphic: given two ciphertexts c1 ≡ me

1 (mod N) and c2 ≡ me
2

(mod N), one can compute the encrypted form of m1m2, that is (m1m2)
e

(mod N), without having to recover the plaintexts m1 and m2, simply by
applying c1c2 ≡ me

1m
e
2 ≡ (m1m2)

e (mod N). Similarly, ElGamal [42] is
multiplicatively homomorphic. By contrast, Paillier [124] is additively ho-
momorphic: given two ciphertexts c1 = gm1rN1 (mod N 2) and c2 = gm2rN2
(mod N 2), one can perform c1c2 = gm1+m2(r1r2)

N (mod N 2), which gives
m1 +m2 without having to resort to the decryption of the ciphertexts c1 and
c2. Another example of an additively homomorphic scheme is the Goldwasser-
Micali scheme [52].

In 2009, Gentry [49], presented the first construction of a FHE scheme.
Gentry’s scheme supports both addition and multiplication on ciphertexts
and consists of three main steps. The first step constructs a somewhat ho-
momorphic scheme, which is limited to evaluating low-degree polynomials
over encrypted data. The second step slightly modifies the somewhat homo-
morphic scheme to make it bootstrappable, i.e., capable of evaluating its own
decryption circuit (operations). The third step transforms the bootstrappable
somewhat homomorphic encryption scheme into a fully homomorphic encryp-
tion through a recursive self-embedding. The security of Gentry’s scheme has
been determined to be based on the worst-case hardness of solving specific
problems in an ideal lattice, namely the shortest independent vector problem
(SIVP) over ideal lattices in the worst-case (see [50]).

A key disadvantage of Gentry’s scheme, however, is its computational
inefficiency. Therefore, much effort has been made by the research community
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to find alternative efficient FHE schemes. In 2010, van Dijk, Gentry, Halevi
and Vaikuntanathan [41] presented DGHV, a computationally efficient FHE
scheme over the integers. This scheme is based on a set of public integers,
ci = pqi + ri, i = 1, . . . ,m, where the parameters p, qi and ri are secrets with
the following size constraints:

• p is a prime number.

• η is the bit-length of the secret key p.

• ρ is the bit-length of the secret noises ri.

• γ is the bit-length of the public integers ci.

In [36, 41, 87], the security of DGHV has been studied against several
attacks, which served the purpose of improving its security by defining opti-
mal bounds for its parameter bit size (η, ρ, and γ). As reported in [87], these
attacks can be categorized according to their underling techniques:

• Brute force search [30, 41]: When c1 = pq1, this technique consists
in removing the noise, say r2 from c2 by trying all possibilities for r2 ∈
(−2ρ, 2ρ) and computing gcd(c1, c2−r2) which gives p with overwhelming
probability.

• Continued fractions [41, 87]: This consists on recovering qi/qj from
ci/cj using continued fractions, which yields immediate calculation of
p = bci/qie.

• Attacks on the Approximate-GCD assumption [41, 87]: The re-
covery of p through the recovery of ri or qi, i = 1, . . . ,m, using a combi-
nation of lattice reduction and other techniques. These attacks include
Coppersmith’s technique [34], the method for solving simultaneous dio-
phantine equations [86] and the orthogonal lattice attacks [41, 87] (See
Section M.3 for more on these attacks).

Yet, a more direct way to break the DGHV scheme when r1 = 0 consists
in finding p and q1 by factoring c1 = pq1. To date, the most efficient known
methods to factor c1 are the Number Field Sieve (NFS) [85] and the Elliptic
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Curve Method (ECM) [84]. As shown in [87] (p. 82, Table 7.1), the DGHV
factorization problem of c1 is considered as untractable if p > 2261 and c1 >
22911.

M.1.1 Our Contribution

In this paper, we propose two new attacks on the DGHV scheme. The start-
ing point of both attacks are the existance of two linear equations involving
the public integers ci for i = 2, . . . ,m and the secret parameter q1 on the one
hand, and the secret parameters qi, i = 1, . . . ,m on the other.

In the first attack, we suppose that c1 = pq1 and that ci = pqi + ri
with ri 6= 0 for i = 2, . . . ,m. To avoid factoring attacks on c1, we also
suppose that q1 is prime. If q1 is not coprime with one of the integers ci
for 2 ≤ i ≤ m, then gcd(c1, ci) = q1 which will reveal p = c1

q1
. Hence, q1

is coprime ci for i = 2, . . . ,m. Therefore for any integers a2, . . . , am−1, the
integer am ≡ −(a2c2 + . . . + am−1cm−1)(cm)−1 (mod q1)) exists and satisfies
the linear integer relation a2c2 + . . .+ amcm = a1q1 for an integer a1. We will
leverage this relationship and show that one can find the DGHV parameters
p, qi and ri in polynomial time if the coefficients ai, i = 1, · · · ,m are suitably
small. The attack uses Coppersmith’s method for solving multivariate linear
modular equations, as presented by Herrmann and May in [59].

In the second attack, we suppose that ci = pqi + ri for i = 1, . . . ,m. Let
G = gcd(q1, . . . , qm). Then qm−1

G is coprime with one qi
G , i 6= m − 1. Assume

that qm−1
G is coprime with qm

G . Let a1, . . . , am−2 be arbitrary integers. Define

am−1 ≡ −
(
a1
q1

G
+ . . .+ am−2

qm−2

G

)(qm−1

G

)−1

(mod
qm
G

).

Then there exists an integer am such that

a1
q1

G
+ . . .+ am−2

qm−2

G
+ am−1

qm−1

G
+ am

qm
G

= 0,

or equivalently a1q1 + . . .+amqm = 0. This shows that the integers q1, . . . , qm
are linked by infinitely many linear integer relations. We exploit this relation,
and show that if the coefficients ai, i = 1, . . . ,m are sufficiently small, then
one can efficiently find all the DGHV parameters. Unlike the first attack,
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this attack is based solely on lattice reduction techniques, namely the LLL
algorithm [86].

For both attacks, we carry out experiments to verify the validity and
the effectiveness of our methods. We also define the new bounds for DGVH
secret parameters that resist our attacks, effectively improving on previously
proposed optimal bounds [41], [87].

M.1.2 Organization

The rest of this paper is organized as follows: In Section 2, we briefly review
the preliminaries necessary for both our attacks. Section 3 is dedicated to
leading attacks on the DGHV scheme. In Section 4, we present our first
lattice-based attack on DGHV, that is when r1 = 0 and the numbers ci
satisfy a linear equation a2c2+. . .+amcm = a1q1 for suitably small integers ai,
i = 2, . . . ,m. In section 5, we present our second lattice-based attack, which
is applicable when the integers qi satisfy a linear equation a1q1+. . .+amqm = 0
for suitably small integers ai. We then conclude the paper in Section 6.

M.2 Preliminaries

In this section, we review the DGHV scheme parameters and the Approximate-
GCD assumption upon which its security is based. We also recall Copper-
smith’s method for solving linear diophantine equations, and review the lat-
tice reduction technique used in our new attacks on the DGHV scheme.

M.2.1 The DGHV Scheme over the Integers

In 2010, van Dijk, Gentry, Halevi and Vaikuntanathan [41] proposed a fully
homomorphic encryption scheme based on m public integers ci = pqi + ri
where the secret parameters p, qi, ri are such that:

• For i = 1, . . . ,m, ci is a public integer of bit-length γ.

• p is a private prime number of bit-length η.
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• For i = 1, . . . ,m, qi is a private integer of bit-length γ − η.

• For i = 1, . . . ,m, ri is a private random integer with |ri| < 2ρ.

In [41], it is shown that the scheme is semantically secure under the Approximate-
GCD assumption which states the following:

Definition M.2.1 (Approximate-GCD assumption). Let γ, η, ρ be positive
integers. For any η-bit prime number p, given m many positive integers
ci = pqi + ri with m many (γ − η)-bit integers qi and m many integers ri
satisfying |ri| < 2ρ, it is hard to find p.

The hardness of the Approximate-GCD assumption has been studied by
Howgrave-Graham [65], and used in the study of the security of the DHGV
scheme in [41] and [87], leading to the establishment of typical integer sizes
that guarantee high security levels of DHGV. Therein, the values ρ ≈ √η,
γ = η3 + η are considered secure (see [41]).

M.2.2 Lattice reduction

Here we present some basics on lattice reduction techniques. Let b1 . . . , bd
be d linearly independent vectors of Rn with d ≤ n. The lattice L spanned
by b1 . . . , bd is the set of all integer linear combination x1b1 + . . . + xdbd of
b1 . . . , bd with x1, . . . , xd ∈ Z. The set of vectors (b1 . . . , bd) is called a basis
of L and d is its dimension. If B is the matrix of b1 . . . , bd in the canonical
basis of Rn, then the determinant of L is det(L) =

√
BtB, and the Euclidean

norm of a vector v ∈ L is defined using the scalar product ‖v‖ =
√
v · v.

Of interest to many applications and algorithms is the shortest non-zero
vector in a lattice. Finding the shortest non-zero vector is a computationally
hard problem known as the Shortest Vector Problem (SVP) that guarantees
the security of many cryptographic schemes. However, Minkowski’s theorem,
which dates back to 1889, guarantees the existence of short vectors, i.e.,
non-zero vectors whose length is not too large as in the following theorem.

Theorem M.2.2 (Minkowski). Let L be a lattice. Then there exists a non-
zero vector v ∈ L such that

‖v‖ ≤
√

dim(L) det(L)
1

dim(L) .
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Given a lattice L and its original basis b1 . . . , bd, lattice reduction consists
in finding another basis, where a short non-zero vector is easily determined.
This can be achieved through different algorithms, whose running time is
usually at least exponential in the dimension of the lattice d. However, the
LLL algorithm of Lenstra, Lenstra, and Lovász [86] can find, in polynomial
time, short non-zero vectors in a lattice with reasonable dimension.

Theorem M.2.3 (LLL). Let L be a lattice spanned by a basis (u1, . . . , ud),
then the LLL algorithm produces a new basis (b1, . . . , bd) of L satisfying

‖b1‖ ≤ 2
d−1
4 det(L)

1
d ,

in polynomial time.

Thus, finding a reduced basis using LLL leads to finding reasonably short
vectors in polynomial time.

M.2.3 Coppersmith’s method for solving linear diophantine equations

The LLL algorithm has many applications in cryptography, including solving
diophantine equations. Using the LLL algorithm, Coppersmith [34] derived
a method for finding small roots of univariate modular equations and bivari-
ate equations. This strategy is know as Coppersmith’s technique and has
been heuristically generalized for finding small roots of multivariate linear
equations. The following result by Herrmann and May [59] gives a sufficient
condition under which small roots of a modular linear equation can be found
in polynomial time.

Theorem M.2.4 (Herrmann-May). Let N be a composite integer of un-
known factorization with a divisor p ≥ Nβ. Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn]
be a linear polynomial in n variables. One can find in polynomial time

all solutions
(
x

(0)
1 , . . . , x

(0)
n

)
of the equation f(x1, . . . , xn) ≡ 0 (mod p) with∣∣∣x(0)

1

∣∣∣ < Nλ1, . . . ,
∣∣∣x(0)
n

∣∣∣ < Nλn if

n∑
i=1

λi < 1− (1− β)
n+1
n − (n+ 1)

(
1− n

√
1− β

)
(1− β).
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M.3 Former attacks on the DGHV Scheme

We recall here the main existing attacks on the DGHV scheme. For more
details, we refer to [41] and [87]. Assume that we have an instance of DGHV
with c1 = pq1 and ci = pqi + ri, i = 2, . . . ,m where the parameters p, qi and
ri are secret. The task is to recover p. We recall that p is a η-bit prime and
0 < ri < 2ρ.

M.3.1 Brute force on the remainder

A simple way to recover p is to remove the noise, say from c2, by finding r2,
and then compute p = gcd(c1, c2 − r2). This can be achieved by trying all
integers r2 with 0 < |r2| < 2ρ. The complexity of this attack is obviously
O (2ρ). However, applying the method of Chen and Nguyen [30], one can find
p with complexity O

(
2ρ/2
)
. As a consequence, removing the noise to recover

p does not work in practice when ρ is sufficiently large.

M.3.2 Continued fractions

Using c1 = pq1 and c2 = pq2 +r2, and given that q1 and q2 are prime numbers,
one gets ∣∣∣∣c2

c1
− q2

q1

∣∣∣∣ =
|r2|
c1
.

To recover q2
q1

as a convergent of the continued fraction expansion of c2
c1

, we

need |r2|
c1
< 1

2q21
, that is 2q1|r2| < p. This is not possible if q1 is much larger

than p as for the recommended values for the DGHV parameters where q1 is
η3-bit size while p is η-bit size.

M.3.3 Simultaneous Diophantine approximation

In [86], it is shown that the LLL algorithm can find a solution for the si-
multaneous diophantine approximations. That is, given n rational numbers
α1, · · · , αn and ε with 0 < ε < 1, one can efficiently find integers p1, . . . , pn,
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and q such that, for i = 1, . . . , n,

|qαi − pi| ≤ ε, and 1 ≤ q ≤ 2
n(n+1)

4 ε−n.

This can be applied to the DHGV scheme. Using c1 = pq1 and ci = pqi + ri,
we get for i = 2, . . . ,m ∣∣∣∣q1

ci
c1
− qi

∣∣∣∣ =
|ri|
p
< 2ρ−η.

This gives m − 1 simultaneous diophantine approximations which can be
solved by applying the LLL algorithm [86] to reduce a basis of a lattice of
dimension m. The LLL algorithm will succeed under the condition:

q1 ≤ 2
(m−1)m

4 · 2−(ρ−η)(m−1) = 2
(m−1)m

4 +(η−ρ)(m−1).

Since q1 ≈ 2γ−η, then γ−η ≤ m(m−1)
4 + (η−ρ)(m−1), which can be achieved

if

m > −2η + 2ρ+
1

2
+

1

2

√
16η2 − 32ηρ+ 16ρ2 + 16γ − 8η − 8ρ+ 1.

For secure DHGV parameters, such as γ = η3 + η, ρ ≈ √η with a sufficiently
large η, this gives a large lower bound for m, and in this case lattice reduction
will not recover the shortest vector. For example, for η = 200 we get m >

5297, which makes the lattice reduction totally inefficient according to the
optimal complexity bound O

(
m4 logBM(m log(B))

)
where B is an upper

bound of the Euclidean norms of the basis vectors and M(k) denotes the
time required to multiply k-bit integers (see [102]).

M.3.4 Orthogonal lattice attack

Another attack on DGHV is the orthogonal lattice attack [41, 87]. Let
c1 = pq1 and ci = pqi + ri, for i = 2, . . . ,m. Then there exist m− 1 integers
ai, i = 2, . . . ,m such that a2c2 + . . . + amcm ≡ 0 (mod c1). This can be
rewritten as

p(a2q2 + . . .+ amqm) + a2r2 + . . .+ amrm ≡ 0 (mod pq1).
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Hence a2r2 + . . .+amrm ≡ 0 (mod p), and when the integers ai, i = 2, . . . ,m,
satisfy |ai| ≤ 2η−1−ρ

m−1 , then

|a2r2 + . . .+ amrm| ≤ |a2||r2|+ . . .+ |am||rm|
≤ (m− 1) ·max

i
|ai| ·max

i
|ri|

≤ (m− 1) · 2
η−1−ρ

m− 1
· 2ρ

≤ 2η−1.

Since p > 2η−1, then |a2r2 + . . . + amrm| < p, that is a2r2 + . . . + amrm = 0.
Finding many such ai’s, leads to recovering p using gcd(c1, a2c2+. . .+amcm) =
p.

M.4 Our First Lattice-based Attack on DGHV

In this section, we present our first attack on the DGHV scheme. We exploit
the existence of a linear relation between the c2, . . . , cm and the factor q1 of
c1 in the form

a2c2 + . . .+ amcm = a1q1,

where a1, . . . , am are integers (see section M.1.1). We derive a condition on
the size of each |ai| under which the above equation can be solved leading
to the cryptanalysis of the scheme. After presenting the attack, we will
present a comparison with the orthogonal lattice attack [41], and show that
our attack significantly increases the bound of the parameters ai leading to
more successful attacks.

M.4.1 The attack

Theorem M.4.1. Let c1 = pq1 and ci = pqi + ri, i = 2, . . . ,m, be m positive
integers with 2η−1 < p < 2η, 2γ−1 < ci < 2γ and |ri| < p for i = 2, . . . ,m.
Let a1, . . . , am be m integers satisfying |ai| < 2αi for i = 2, . . . ,m and a2c2 +
. . .+ amcm = a1q1. Define β = γ−η−1

γ . If

m∑
i=2

αi <
(

1− (1− β)
m
m−1 −m

(
1− m−1

√
1− β

)
(1− β)

)
(γ − 1),
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then, one can find p, q1, . . . , qm, r2, . . . , rm in polynomial time.

Proof. Suppose that c1 = pq1 and ci = pqi+ri for i = 2, . . . ,m. Let a1, . . . , am
be m integers satisfying a2c2 + . . .+ amcm = a1q1. Then

a2c2 + . . .+ amcm ≡ 0 (mod q1), (M.1)

where q1 is an unknown divisor of c1. Suppose that 2η−1 < p < 2η and
2γ−1 < c1 < 2γ. Then, since q1 = c1

p , we get

2γ−η−1 < q1 < 2γ−η+1.

Define β = γ−η−1
γ . Then

q1 > 2γ−η−1 = 2γβ > cβ1 .

Using Herrman-May’s Theorem M.2.4, we can solve the equation (M.1) if the
unknown parameters ai satisfy |ai| < cλi1 for i = 2, . . . ,m where

m∑
i=2

λi < 1− (1− β)
m
m−1 −m

(
1− m−1

√
1− β

)
(1− β). (M.2)

For i = 2, . . . ,m, define αi = (γ − 1)λi. Then

cλi1 > 2(γ−1)λi = 2αi.

Now, suppose that |ai| < 2αi for i = 2, . . . ,m. Then |ai| < cλi1 and plugging
αi = (γ−1)λi in equation (M.2), one can find the parameters ai, i = 2, . . . ,m
if

m∑
i=2

αi <
(

1− (1− β)
m
m−1 −m

(
1− m−1

√
1− β

)
(1− β)

)
(γ − 1).

Using the recovered values of the parameters ai for i = 2, . . . ,m, we compute

q1 = gcd(c1, a2c2 + . . .+ amcm), p =
c1

q1
.

Next, for i = 2, . . . ,m, we find ri ≡ ci (mod p) and qi = ci−ri
p .

Let us summarize the whole method in Algorithm 7.
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Algorithm 7 : The first attack

Require: A set of public values c1 = pq1, ci = pqi + ri, i = 2, . . . ,m.
Ensure: The set of private parameters p, qi, i = 1, . . . ,m if the conditions of Theorem M.4.1 are

fulfilled.
1: Set f(x2, . . . , xm) = c2x2 + . . .+ cmxm.
2: Apply Coppersmith’s technique and Herrman-May’s Theorem M.2.4 to solve the polynomial

equation f(x2, . . . , xm) ≡ 0 (mod q1).
3: for each solution (x2, . . . , xm) do
4: Compute g = gcd(c1, x2c2 + . . .+ xmcm).
5: if g > 1 then
6: Set q1 = g and p = c1

q1
.

7: for i = 2, . . . ,m do
8: Compute ri ≡ ci (mod p).
9: Compute qi = ci−ri

p .
10: end for
11: Output p, qi, i = 1, . . . ,m, ri, i = 2, . . . ,m.
12: Halt
13: end if
14: end for

M.4.2 Comparison with the orthogonal lattice attack

Let us now compare our method with the orthogonal lattice attack of [41].
Suppose that c1 = pq1 and ci = pqi + ri for i = 2, . . . ,m. Let a2, . . . , am be
m − 1 integers satisfying a2c2 + . . . + amcm ≡ 0 (mod c1) and |ai| < 2α as
required in the orthogonal attack. Then, since c1 = pq1, we get a2c2 + . . . +
amcm ≡ 0 (mod q1) which means that the equation can be exploited in our
attack. Using Theorem M.4.1, our attack can recover all the parameters p,
q1, qi, ri for i = 2, . . . ,m if

α <
1

m− 1

(
1− (1− β)

m
m−1 −m

(
1− m−1

√
1− β

)
(1− β)

)
(γ − 1), (M.3)

where β = γ−η−1
γ . Recall that the orthogonal attack of [41], as explained in

Section M.3.4, will find p if

|ai| ≤
2η−1−ρ

m− 1
= 2η−1−ρ−log2(m−1),

for i = 2, . . . ,m. So, define the bound for the orthogonal lattice attack of [41]

α0 = η − 1− ρ− log2(m− 1),
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and the bound for our attack

αnew =
1

m− 1

(
1− (1− β)

m
m−1 −m

(
1− m−1

√
1− β

)
(1− β)

)
(γ − 1).

Let us compare α0 and αnew in the optimal situation where η ≥ 200, γ = η3+η
and ρ ≈ √η as recommended by [41]. These parameter sizes are believed
to resist currently known attacks including factorization, diophantine and
lattice-based attacks. In Table M.1, we show the maximal values of α0 for
which the orthogonal attack of [41] works, and the maximal values of αnew

for which our attack works. Clearly, our method significantly increases the
bounds of the size of the unknown integers ai, i = 2, . . . , am for which DGHV
is vulnerable.

m = 2 m = 3 m = 5 m = 10 m = 15

η α0 αnew α0 αnew α0 αnew α0 αnew α0 αnew

200 184.8 7.9× 106 183.8 3.9× 106 182.8 1.9× 106 181.6 8.8× 105 181 5.7× 105

300 284.8 2.6× 107 283.8 1.3× 107 282.8 6.7× 106 281.6 2.9× 106 281 1.9× 106

400 384.8 6.3× 107 383.8 3.1× 107 382.8 1.5× 107 381.6 7.1× 106 381 4.5× 106

500 484.8 1.2× 108 483.8 6.2× 107 482.8 3.1× 107 481.6 1.3× 107 481 8.9× 106

Table M.1: Comparison of α0 and αnew for certain values of η and m.

M.4.3 Deriving new parameter sizes

To avoid the new attack, it is sufficient to make the inequality (M.3) impos-
sible or hard to occur. Since γ is large, this could be possible if

1− (1− β)
m
m−1 −m

(
1− m−1

√
1− β

)
(1− β) ≈ 0,

where β = γ−η−1
γ . Therefore, for m > 1, our attack will fail if β ≈ 0, or

equivalently γ ≈ η. However, our attack is likely to be successful when β ≈ 1
and the number m of public integers ci, i = 1, . . . ,m is not very large. In this
situation, the inequality (M.3) reduces to α < γ−1

m−1 . Note that β ≈ 1 implies
that γ is much larger than η which is the case for the currently recommended
parameters. Therefore, for the recommended parameters γ = η3 + η with
large η, our attack will be successful as long as α < γ−1

m−1 .
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M.4.4 Experimental Results

We implemented our attack and experimented it with 100 instances of DGHV.
All the 100 attacks were successful. For efficiency reasons, we considered only
instances of DGHV where the sizes of the parameters are small, typically
η ≤ 60 and γ ≤ 200. The recommended DHGV parameters η ≥ 200 and
γ = η3 + η i.e., γ ≥ 8000200 are not suitable for experimentation using an
off-the-shelf computer.
The following example is presented as a concrete illustration of our attack.

Consider the following situation with m = 4 public integers:

c1 = pq1 = 115681713396549343702207914242260837695350516124613657,

c2 = pq2 + r2 = 108225557677193859451749518166560930564055519997881978,

c3 = pq3 + r3 = 87008627993581418190653163120734875926757081732242410,

c4 = pq4 + r4 = 63900735072220368383452304843047856476842423469473333,

where, for i = 2, 3, 4, ci < 2γ with γ = 177. According to Theorem M.4.1, we
can solve the linear equation a2c2 +a3c3 +a4c4 = a1q1 if the unknown param-
eters a2, a3 and a3 are suitably small. Combining the method of Herrmann
and May [59] for solving the equation a2c2 + a3c3 + a4c4 ≡ 0 (mod q1), and
the LLL algorithm [86], we get at least two polynomials sharing the solutions
a2, a3, a4. Then applying Gröbner Basis computation for solving systems of
polynomial equations, we get the solution

a2 = 130722418993, a3 = 16613347, a4 = 27131339.

Using these values, we get

q1 = gcd(c1, a2c2 + a3c3 + a4c4)

= 2939299645410290951093220439666796843647265081,

p =
c1

q1
= 39356897.

Using the value of p, we get

r2 ≡ c2 ≡ 13835383 (mod p),

r3 ≡ c3 ≡ 37261850 (mod p),

r4 ≡ c4 ≡ 1283090 (mod p).
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Finally, we get

q2 =
c2 − r2

p
= 2749849859281179089188599349348118845956161635,

q3 =
c3 − r3

p
= 2210759349081341910431941906414392270985110481,

q4 =
c4 − r4

p
= 1623622285878390473300075075609945989310143619.

The whole process, including Gröbner Basis computation, took less than one
minute. Note that since a2c2+a3c3+a4c4 6≡ 0 (mod p), the orthogonal attack
of [41] and [87] is not applicable to this DGHV instance.

M.5 Our Second Lattice Attack on DGHV

In this section, we consider the situation where the DGHV public values are
of the general form ci = pqi + ri, i = 1, . . . ,m, and there exists a linear
relation between the qi’s of the form a1q1 + . . .+ amqm = 0. We show that it
is possible to solve the equation and recover all the private parameters, when
specific conditions on the size of the unknown coefficients ai, i = 1, . . . ,m are
fulfilled.

M.5.1 The attack

Theorem M.5.1. Let ci = pqi + ri, i = 1, . . . ,m, be m positive integers with
c1 < . . . < cm and |ri| < 2ρ for i = 1, . . . ,m. Let a1, . . . , am be m integers
satisfying |ai| < 2α for i = 1, . . . ,m and a1q1 + . . .+ amqm = 0. If

α <
1

m
log2(cm) + log2

( √
m

m+ 1

)
− ρ,

then, one can find p, q1, . . . , qm, r1, . . . , rm in polynomial time.

Proof. Let ci = pqi + ri for i = 1, . . . ,m with ri 6= 0. Then, there exist m
integers ai, i = 1, . . .m such that a1q1 + . . . + amqm = 0. Combining the
values of ci for i = 1, . . . ,m, we get:

a1c1 + . . .+ amcm = a1r1 + . . .+ amrm. (M.4)
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Consider the m×m lattice L ⊂ Zm defined by the rows of the matrix

M =



1 0 0 . . . 0 c1

0 1 0 . . . 0 c2

0 0 1 . . . 0 c3
...

...
... . . . ...

...

0 0 0 . . . 1 cm−1

0 0 0 . . . 0 cm


.

The dimension of L is dim(L) = m and the determinant is det(L) = cm. Let
v ∈ L be a target vector generated from the vector u = (a1, . . . , am) ∈ Zm,
that is,

v = uM = (a1, . . . , am−1, c1a1 + . . .+ cmam). (M.5)

Minkowski’s Theorem M.2.2 for L asserts that there exists short non-zero
vectors of size at most σ(L) where

σ(L) =
√

dim(L) det(L)
1

dim(L) =
√
mc

1
m
m . (M.6)

For our target vector v to be among the shortest non-zero vectors of the
lattice L, the inequality σ(L) > ‖v‖ must hold. Assume further that for
i = 1, . . . ,m, we have |ai| ≤ 2α and |ri| ≤ 2ρ. Using (M.5) with a1q1 + . . . +
amqm = 0, we get

‖v‖ =

(
m−1∑
i=1

a2
i + (c1a1 + . . .+ cmam)2

)1/2

=

m−1∑
i=1

a2
i +

(
m∑
i=1

airi

)2
1/2

<
(

22α(m− 1) +
(
2α+ρm

)2
)1/2

<
(

22(α+ρ) (m+ 1)2
)1/2

= (m+ 1)2α+ρ.
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Therefore, the inequality σ(L) > ‖v‖ is fullfiled if
√
mc

1
m
m > (m+1)2α+ρ, from

which we deduce the following condition on α.

α <
1

m
log2(cm) + log2

( √
m

m+ 1

)
− ρ. (M.7)

If the condition (M.7) holds, then applying lattice reduction to L yields the
vector v = (a1, . . . , am−1, c1a1 + . . .+ cmam) with c1a1 + . . .+ cmam = a1r1 +
. . .+ amrm, as in (M.4). Combining the obtained values from the reduction,
that is a1, . . . , am−1 and c1a1 + . . . + cmam, and the known public values ci,
i = 1, · · · ,m, one can calculate am as follows:

am =
(c1a1 + . . .+ cmam)− (c1a1 + . . .+ cm−1am−1)

cm
.

The next step in the attack is to solve the equation

a1r1 + . . .+ amrm = c1a1 + . . .+ cmam, (M.8)

with the unknown parameters r1, . . . , rm with |ri| < 2ρ for i = 1, . . . ,m. To
do so, we consider the (m + 1) × (m + 1) lattice L′ ⊂ Zm+1 defined by the
rows of the matrix

M ′ =



1 0 0 . . . 0 Ca1

0 1 0 . . . 0 Ca2

0 0 1 . . . 0 Ca3
...

...
... . . . ...

...

0 0 0 . . . 1 Cam

0 0 0 . . . 0 C(c1a1 + . . .+ cmam)


,

where C is a given parameter to be optimized later. The determinant of L′
is det(L′) = C|c1a1 + . . .+ cmam| and its dimension is dim(L′) = m+ 1.
Let v′ ∈ L′ be a vector. Then there exists a vector u′ = (y1, . . . , ym+1) ∈ Zm+1

such that

v′ = u′M ′ = (y1, . . . , ym, C(a1y1 + . . .+ amym) + C(c1a1 + . . .+ cmam)ym+1).

We set our target vector to be v′ = (r1, . . . , rm, 0), therefore

y1 = r1, . . . , ym = rm,

(a1y1 + . . .+ amym) + (c1a1 + . . .+ cmam)ym+1 = 0.
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In addition, we need ym+1 = −1 so that a1r1 + . . .+amrm = c1a1 + . . .+ cmam
which provides a solution to equation (M.8). Now recall that Minkowski’s
Theorem M.2.2 asserts that there exist short non-zero vectors in the lattice
L′ of size at most σ(L′) where

σ(L′) =
√

dim(L′) det(L′)
1

dim(L′) =
√
m+ 1 · C

1
m+1 · |c1a1 + . . .+ cmam|

1
m+1 .

Since c1a1 + . . .+ cmam = a1r1 + . . .+amrm with |ai| < 2α and |ri| < 2ρ, then,

σ(L′) <
√
m+ 1 · C

1
m+1 ·

(
2α+ρm

) 1
m+1 . (M.9)

The norm of our target vector v′ = (r1, . . . , rm, 0) with |ri| < 2ρ for i =
1, . . . ,m, satisfies

‖v′‖ =

(
m∑
i=1

r2
i

)1/2

< 2ρ
√
m.

Therefore, for our target vector v′ to be among the short vectors, the inequal-
ity σ(L′) > ‖v′‖ must be satisfied. For this, it is sufficient that ρ satisfies

√
m+ 1 · C

1
m+1 ·

(
2α+ρm

) 1
m+1 > 2ρ

√
m

which leads to the following condition on C

C > m
m−1
2 · (m+ 1)−

m+1
2 · 2mρ−α. (M.10)

So, under condition M.10, applying lattice reduction to L′ recovers a short
non zero vector v′ = (r1, . . . , rm, 0) which yields the ri’s. Next, using r1 and
r2, we get p = gcd(c1 − r1, c2 − r2) and for i = 1, . . . ,m, we get qi = ci−ri

p .
This terminates the proof.

We can summarize the whole method in Algorithm 8.

M.5.2 Application with the DGHV recommended parameters

Let us consider the recommended optimal parameters for a secure DGHV, as
stated in [41], that is γ = η3 + η, ρ ≈ √η and η ≥ 200. Then, the condition
of Theorem M.5.1 becomes

α <
η3 + η

m
+ log2

( √
m

m+ 1

)
−√η.
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Algorithm 8 : The second attack

Require: A set of ciphertexts ci = pqi + ri, i = 1, . . . ,m.
Ensure: The set of private parameters p, qi, i = 1, . . . ,m if the conditions of Theorem M.5.1 are

fulfilled.
1: Define the lattice L with the basis matrix

M =



1 0 0 . . . 0 c1

0 1 0 . . . 0 c2

0 0 1 . . . 0 c3
...

...
...

. . .
...

...

0 0 0 . . . 1 cm−1

0 0 0 . . . 0 cm


.

2: Apply the LLL algorithm to reduce the basis matrix.
3: for each row (a1, . . . , am−1, R) of the reduced matrix do

4: Compute am = R−(c1a1+...+cm−1am−1)
cm

.
5: Compute α = maxi (log2(|ai|)).
6: Compute ρ = 1

m log2(cm) + log2

( √
m

m+1

)
− α.

7: Let C be the integral part of m
m−1

2 · (m+ 1)−
m+1

2 · 2mρ−α + 1.
8: Define the lattice L′ with the basis matrix

M ′ =



1 0 0 . . . 0 Ca1

0 1 0 . . . 0 Ca2

0 0 1 . . . 0 Ca3
...

...
...

. . .
...

...

0 0 0 . . . 1 Cam

0 0 0 . . . 0 C(c1a1 + . . .+ cmam)


9: Apply the LLL algorithm to reduce the basis matrix.

10: for each row (r1, . . . , rm+1) of the reduced matrix do
11: if rm+1 = 0 then
12: Compute p = gcd(c1 − r1, c2 − r2).
13: if p > 1 then
14: for i = 1, . . . ,m do
15: Compute qi = ci−ri

p .
16: end for
17: end if
18: end if
19: Output p, qi, i = 1, . . . ,m, ri, i = 1, . . . ,m.
20: Halt
21: end for
22: end for
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On the other hand, the condition on the constant C in (M.10) becomes

C > m
m−1
2 · (m+ 1)−

m+1
2 · 2m

√
η−α.

In Table M.2, we present the upper bounds for α in terms of η and m under
which our second method will solve the equation a1q1 + . . . + amqm = 0 and
then find all the DGHV parameters. For all cases, we use C = 1, wich fullfils
condition (M.10).

η m = 2 m = 3 m = 5 m = 10 m = 15

200 4× 106 2.6× 106 1.6× 106 8× 105 5.3× 105

300 1.3× 107 9× 106 5.4× 106 2.7× 106 1.8× 106

400 3.2× 107 2.1× 107 1.2× 107 6.4× 106 4.2× 106

500 6.2× 107 4.1× 107 2.5× 107 1.5× 107 8.3× 106

Table M.2: Optimal values for α for different values of η and m.

M.5.3 Experimental Results

For our second attack, we also experimented with 100 DHGV instances with
various practical sizes of the parameters η, ρ, γ and m. When the conditions
of Theorem M.5.1 are satisfied, we always succeeded in finding the solutions
of our equations and recovered the secret parameters. We illustrate the steps
of our attack through the following detailed example.
Consider the following DHGV instance:

c1 = pq1 + r1 = 56405845507494530020941008480572940286181689237258854,

c2 = pq2 + r2 = 39904821464460948494700284192336525523357407545067668,

c3 = pq3 + r3 = 56294991345433284900612805613249060787237279328022519,

with the bounds ci < 2γ, i = 1, 2, 3, with γ = 176. According to Theo-
rem M.5.1, one can solve the equation a1q1 + a2q2 + a3q3 = 0 if the unknown
coefficients ai, i = 1, 2, 3 satisfy |ai| < 2α with

α + ρ <
1

3
log2(c3) + log2

(√
3

4

)
≈ 57.459,
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where ρ is the bit size of the noise ri, i = 1, 2, 3. Let L be the lattice spanned
by the rows of the matrix 1 0 c1

0 1 c2

0 0 c3

 .

Applying the LLL algorithm [86] for reduction, yields a reduced basis, where
the first vector is (3991298341123, 3713241313153, 18196712614595893). From
this, we deduce

a1 = 3991298341123,

a2 = 3713241313153,

a3 =
18196712614595893− (a1c1 + a2c2)

c3
= −6631296680887.

In this example, we have |ai| < 2α for i = 1, 2, 3 with α = 43. Next, the aim
is to solve the equation

a1r1 + a2r2 + a3r3 = a1c1 + a2c2 + a3c3 = 18196712614595893,

with the unknown coefficients r1, r2, and r3. Let C be a constant, and
consider the lattice L′ spanned by the rows of the matrix

1 0 0 Ca1

0 1 0 Ca2

0 0 1 Ca3

0 0 0 C(a1c1 + a2c2 + a3c3)

 .

Then, using C = 1 and applying the LLL algorithm, we get the following
short vector (−23593,−18617,−21881, 0). This leads to the values of

r1 = 23593, r2 = 18617, r3 = 21881.
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Hence, in this example, we have |ri| < 2ρ for i = 1, 2, 3 with ρ = 15. We then
deduce

p = gcd(c1 − r1, c2 − r2) = 706549229,

q1 =
c1 − r1

p
= 79832859753208406686890615063671579331921809,

q2 =
c2 − r2

p
= 56478472874338029310481752988136833029305319,

q3 =
c3 − r3

p
= 79675964582268739409540570899482307392394422.

In this example, we have p < 2η with η = 30. We notice that the dimensions
of the underlying lattices are small and that the computation took less than
30 seconds using an off-the-shelf computer. Also, we notice that the condition
of Theorem M.5.1 is satisfied since

α + ρ ≈ 1

m
log2(cm) + log2

( √
m

m+ 1

)
≈ 58.

More importantly, this example shows that while our second attack was suc-
cessful, the existing attacks of [41], as described in Section M.3, fail to re-
cover the parameter p: the continued fraction attack fails because we need
|r2|
c1
< 1

2q21
, which is not the case in this example, the simultaneous diophantine

approximation attack fails too, because the condition on m should be

m > −2η + 2ρ+
1

2
+

1

2

√
16η2 − 32ηρ+ 16ρ2 + 16γ − 8η − 8ρ+ 1 > 9,

while m = 3 in this example. Finally, the orthogonal attack can not work
since none of the ri = 0.

M.6 Conclusion

In this paper, we presented two new lattice-based attacks on the DHGV
encryption scheme using Coppersmith’s technique and the LLL algorithm for
the first attack, and only the LLL algorithm for the second attack. The first
attack is applicable when c1 = pq1 and the m − 1 public integers ci, i =
2, . . . ,m satisfy a linear equation a2c2 + . . .+ amcm = a1q1 for suitably small
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integers ai, i = 2, . . . ,m. The second attack works even with c1 = pq1 + r1

when the integers qi satisfy a linear equation a1q1+. . .+amqm = 0 for suitably
small integers ai, i = 1, . . . ,m. We illustrated our attacks by providing
experimental results and examples, and further computed the bounds for
DGHV recommended parameters for which our attacks are applicable, thus
effectively extending on previously proposed optimal parameter bounds for
p, ci and ri, i = 1, . . . ,m.
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