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RESUME
Dans cette publication, il est exploré les algorithmes d’allocation de tâches

pour les robots mobiles appliqués à la logistique industrielle. Nous y examinons les sys-
tèmes de décision centralisés et décentralisés, selon leur flexibilité, robustesse et évo-
lutivité. L’étude se concentre sur l’optimisation de l’allocation des tâches dans un sys-
tème multi-robots en utilisant diverses stratégies telles que la programmation linéaire,
le calcul itératif, la résolution de conflits par consensus, les modèles d’apprentissage
automatique et l’apprentissage par renforcement. Les méthodes proposées sont éval-
uées par des simulations dans un environnement industriel, notamment au sein d’une
entreprise d’assemblage de nacelles de moteurs d’avion. L’objectif est d’améliorer l’effi-
cacité en permettant aux robots d’assigner des tâches de manière autonome en fonc-
tion de leurs capacités et contraintes. La recherche se conclut par une comparaison
des performances des algorithmes, offrant des perspectives pour de futures applica-
tions dans l’automatisation industrielle.

MOTS CLÉS: Allocation de tâches, Robots mobiles, Logistique industrielle.

ABSTRACT
This publication explores task allocation algorithms for mobile robots in

industrial logistics. It examines both centralised and decentralised control methods,
according to their flexibility, robustness, and scalability. The study focuses on opti-
mising task allocation in a multi-robot system using different strategies such as linear
programming, iterative calculation, conflict resolution by consensus, machine learn-
ing models, and reinforcement learning. The proposed methods are evaluated through
simulations in an industrial setting, specifically within an aircraft engine nacelle assem-
bly company. The goal is to enhance efficiency by allowing robots to autonomously as-
sign tasks based on their capabilities and constraints. The research concludes with a
comparison of the algorithms’ performance, providing insights for future applications
in industrial automation.

KEYWORDS: Task Allocation, Mobile Robots, Industrial Logistics.
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1. Introduction

In recent years, industrial enterprises have constantly sought the development of their
products, processes and organisation, with the aim of maintaining a competitive advantage. In
this context, industrial logistics provides essential support which makes it possible to optimise the
supply of tools and raw materials to production lines, Shang (2022). Mobile robots form a large and
important part of the logistics transportation systems in today’s industry are widely used. Mobile
robots offered by global manufacturers almost all operate under some form of centralised control
where a single central controller coordinates the entire fleet of mobile robots. There is a trend
towards decentralised control of these systems where mobile robots make individual decisions that
promote the flexibility, robustness and scalability of transport, De Ryck et al. (2021).

Task allocation can be done in both a centralised or decentralised way. In many situations,
due to the lack of infrastructure, higher possibility of single-point-of-failure, communication
bottlenecks, loss of communication with the central node, etc., centralised task allocation becomes
impractical. Especially the applications like war-field, disastrous scenario, underwater exploration
where any infrastructure is not available, centralised allocation of tasks is not feasible, Mahato
et al. (2023). Multi-agent systems are decentralised control systems where the autonomous agents
in the system coordinate and cooperate with each other in order to achieve a global goal, Teck
et al. (2023). In recent years, there has been a growing association between robotics and artificial
intelligence, aiming to enable robots to make autonomous decisions, Sharma et al. (2023).

In a traditional decentralised task allocation strategy, first, a leader is elected, which
oversees the overall task allocation. Such strategies will also have similar problems as a centralised
solution in hostile scenarios. It may ultimately lead to the frequent election of the leaders, wasting
time and energy. Decentralised task allocation without the intervention of a dedicated leader has
also been considered in methods following various bidding-based schemes. Given a set of tasks,
a robot can derive a bid value indicating its suitability in carrying out each of the tasks. Optimal
distributed allocation of the tasks can be ensured using a simple two-step algorithm. In the first
step, the robots would exchange the bid-values for each task with each of the robots. Next, each
robot can run the task allocation algorithm locally as all of them possess the same input (bid value).
This algorithm involves broadcast data sharing, which is a very costly operation in terms of the
amount of communication needed in the underlying network, Mahato et al. (2023).

Multi-Robot Task Allocation (MRTA) can be solved by various optimisation approaches
such as Integer Linear Program (ILP), heuristics, and meta-heuristics algorithms, Chakraa et al.
(2023). Hungarian algorithm: A decentralised task allocation algorithm based on the Hungarian
approach is proposed in Ismail and Sun (2017). The proposed algorithm guarantees an optimal
solution as long as the agent network is connected, i.e., the second smallest eigenvalue of the
Laplacian matrix of the agent graph is greater than zero. Patel et al. (2020) propose an approach for
decentralised task allocation based on a decentralised Genetic Algorithm (GA). The approach par-
allelizes a genetic algorithm across the team of agents, making efficient use of their computational
resources. Buckman (2018) presents a fully decentralised, dynamic task allocation algorithm that
extends the Consensus-Based Bundle Algorithm (CBBA) to allow for allocating new tasks. Nayak
et al. (2020) compare the performance of five state of the art decentralised task allocation algo-
rithms under imperfect communication conditions. The decentralised algorithms we consider are
CBAA (Consensus Based Bundle Algorithm), ACBBA (Asynchronous Consensus Based Bundle
Algorithm), DHBA (Decentralised Hungarian Based Algorithm), HIPC (Hybrid Information and
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Plan Consensus) and PI (Performance Impact). A decentralised allocation algorithm for distributed
supply chains with critical tasks: Binetti et al. (2013) considers the problem of allocating tasks to a
network of interconnected nodes in a supply chain, considering functional heterogeneity, resource
constraints, and critical tasks whose assignment has to be considered mandatory. The proposed
approach is an auction-based algorithm which uses a consensus algorithm to obtain a conflict-free
solution fulfilling all the constraints. Numerical simulations and a comparison with a centralised
optimisation algorithm are performed to evaluate the effectiveness of the proposed approach. With
recent advances in mobile robotics, autonomous systems, and artificial intelligence, there is a
growing expectation that robots are able to solve complex problems. Many of these problems
require multiple robots working cooperatively in a multi-robot system. Complex tasks may also
include the interconnection of task-level specifications with robot motion-level constraints. Many
recent works in the literature use multiple mobile robots to solve these complex tasks by integrating
task and motion planning, Antonyshyn et al. (2023).

In our work, we propose to compare different families of task allocation algorithms, with
the aim of identifying the most relevant ones which will be applied to an example of an industrial
case.

2. Problem description

We consider a fleet of ' mobile robots, with # tasks to complete. Each robot is endowed
with unique abilities that are relevant to the completion of these tasks. All robots can complete the
tasks. The objective is to develop an embedded algorithm for each robot allowing it to assign itself
to the task for which it is most competent, due to battery level (state of charge) and time (distance,
speed). Then provide a consensus mechanism in the event of a task assignment conflict between
several robots.

2.1 Industrial Application Example

The solution proposed in this paper will be implemented in an aircraft engine nacelle
assembly company, as part of a line-side supply automation project.

Consider the example in figure 1 with 3 robots and 5 workstations. Each operator has
a replenishment request push button for his workstation. The robot fleet is then responsible for
managing the replenishment of component bins at various workstations. The supply of full bins
(using a First In First Out table) is carried out by an operator, as well as the evacuation of empty
bins.

For the purpose of a modelization (figure 2), let us consider the following notations :

• "#" operator workstations (# � 1), with 2 parts:

– 1 : full bins => capacity = ⇠>� (1)
– 2 : empty bins => capacity = ⇠>⇢ (1)

• "'" mobile robots (' � 1)

• (� : full bin station => capacity = ⇠� (25)

• (⇢ : empty bin station => capacity = ⇠⇢ (25)
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Figure 1: Industrial application (example for 3 robots and 5 workstations).

• $)1 , ... $)# : workstation operators

• $� : full bin station operator

• $⇢ : empty bin station operator

• Each workstation and station is equipped with a “level sensor” connected to an IoT network.

• Each mobile robot can transport “⌫'1 , ... ⌫'# ” bins and perform actions:

– ⌧>(� = go to full bin station + bin recovery

– ⌧>$�1 , ... ⌧>$�# = go to the "full" operator workstation 1, ... # + bin deposit

– ⌧>$⇢1 , ... ⌧>$⇢# = go to the "empty" operator workstation 1, ... # + bin recovery

– ⌧>(⇢ = go to empty bin station + bin deposit

– ⌧>⌫0B4 = return to base (battery charge)

• The navigation function of mobile robots is supposed to be perfect.

Figure 2: Workstation modelization (one workstation represented).
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3. Contribution

3.1 Formulation of the Problem

Consider a set of robots ' = {A1, . . .A=} and a set of tasks ) = {C1, . . . C<}. Each robot A8
has attributes including position ?8 , battery level 18 , speed B8 , and payload capacity 28 .

3.2 Algorithms developed

We chose to implement different task allocation algorithms in order to compare them,
both in terms of efficiency, but also in calculation time. Efficiency is measured by calculating the
sum of the task capacities assigned to the different robots. The sum of the greatest capacity then
corresponds to the best overall task allocation efficiency.

The algorithm 1 (Task Allocation with Mixed-Integer Linear Programming - MILP) uses
linear programming to maximise task allocation capacities by assigning each robot exactly one
task and each task to exactly one robot, subject to the constraints of unique allocation and binary
decision variables.

The algorithm 2 (Task Allocation with Iterative Calculation) iteratively assigns tasks to
robots using random permutations to maximize the sum of capacities, updating the best allocation
found whenever a higher sum of capacities is achieved.

The algorithm 3 (Task Allocation with Conflict Resolution) initially assigns tasks to
robots by selecting the task with the maximum capacity for each robot, checks for assignment
conflicts, and if conflicts exist, iteratively solves them by randomly permuting task assignments to
maximise the sum of capacities.

The algorithm 4 (Task Allocation with Conflict Resolution and Consensus) assigns tasks
to robots by selecting the maximum capacity task for each robot, checks for assignment conflicts,
and if conflicts exist, uses a local consensus method to resolve them by selecting the robot with the
lowest capacity in conflicts or randomly if tied, and marking its task allocation for reassignment.

The algorithm 5 (Task Allocation Based on Ranking) ranks robot-task pairs based on a
custom scoring criterion, sorts these pairs by score, and then allocates tasks to robots sequentially
based on this ranking, ensuring each robot and task is assigned only once.

The algorithm 6 (Task Allocation based on a Linear Regression Machine Learning Model)
imports a dataset from an Excel file, splits it into training and testing sets, trains a linear regression
model on the training data, evaluates the model on the test data, and then uses the trained model to
predict outputs based on a given input matrix.

The algorithm 7 (Task Allocation based on Machine Learning with Perceptron Model)
iteratively trains a Perceptron model for each robot using a dataset imported from an Excel file,
evaluates the model’s performance, and uses it to predict task allocations based on given capacity
data, storing the predictions in a task allocation matrix.

The algorithm 8 (Task Allocation based on a Reinforcement Learning Model with a
Q-Learning Method) employs Q-learning with an epsilon-greedy strategy over multiple episodes
to optimise task allocation for robots, updating a Q-matrix based on the total capacity achieved in
each episode and ultimately determining the best task assignment for each robot.
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Algorithm 1 Task Allocation with Mixed-
Integer Linear Programming (MILP)

INITIALISATION:
Import linear programming solver
Create the objective coefficients (f) to maximise the sum of
capacities
Initialise integer variables for task allocation (intcon)
Initialise equality constraints matrix (Aeq) with zeros
Initialise equality constraints bounds (beq) with ones for unique
allocation constraint
CALCULATION:
for each robot i do

Set sum constraints in Aeq for each robot
end for
for each task j do

Set sum constraints in Aeq for each task
end for
Set bounds for each variable representing task allocation to a
robot (0 or 1)
Solve the MILP problem with linprog
OUTPUTS:
Reshape the result to match the number of robots and tasks
for each robot i do

Print the allocated task for the robot
end for

Algorithm 2 Task Allocation with Iterative Cal-
culation

INITIALISATION:
Initialise number of iterations
Initialise TaskAllocation matrix
CALCULATION:
for each iteration do

Randomly permute the tasks and reshape to (numTasks, 1)
for TaskAllocation
Set NewCapaSum to 0
for each robot 8 do

Add the capacity of robot 8 for its allocated task to New-
CapaSum

end for
if NewCapaSum is greater than CapaSum then

Copy TaskAllocation to NewTaskAllocation
Set CapaSum to NewCapaSum

end if
end for
OUTPUTS:
for each robot 8 do

Print the allocated task for the robot (R{8 + 1} ->
T{int(NewTaskAllocation[8]) + 1})

end for

Algorithm 3 Task Allocation with Conflict Res-
olution

INITIALISATION:
Initialise number of iterations
Initialise TaskAllocation matrix
CALCULATION:
for each robot 8 do

Find the maximum value in the capacity of robot 8
Find the positions of the maximum value
if more than one maximum value (conflict) then

Randomly choose one of the maximum positions
else

Directly assign the task
end if

end for
if all tasks are uniquely allocated then

Copy TaskAllocation to NewTaskAllocation
else

for each iteration do
Randomly permute the tasks and reshape to (numTasks,
1) for TaskAllocation
Set NewCapaSum to 0
for each robot 8 do

Add the capacity of robot 8 for its allocated task to
NewCapaSum

end for
if NewCapaSum is greater than CapaSum then

Copy TaskAllocation to NewTaskAllocation
Set CapaSum to NewCapaSum

end if
end for

end if
OUTPUTS:
for each robot 8 do

Print the allocated task for the robot (R{8 + 1} ->
T{int(NewTaskAllocation[8]) + 1})

end for
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Algorithm 4 Task Allocation with Conflict Res-
olution and Consensus

INITIALISATION:
Initialise number of iterations
Initialise TaskAllocation matrix
CALCULATION:
for each robot 8 do

Find the maximum value in the capacity of robot 8
Find the positions of the maximum value
if more than one maximum value (conflict) then

Randomly choose one of the maximum positions
else

Directly assign the task
end if

end for
if all tasks are uniquely allocated then

Directly assign the task
else

for each robot 8 do
communicate capability  8 (C 9 ) for each task C 9 to other
robots for contested tasks
the robot with the highest  8 (C 9 ) is assigned the task.
in case of equal capabilities, the robot that communicated
first is assigned the task

end for
end if
OUTPUTS:
for each robot 8 do

Set NewTaskAllocation[8] to consensus[8, 0]
if NewTaskAllocation[8] == -1 then

Print the robot has no task (R{8 +1} -> )
else

Print the allocated task for the robot (R{8 + 1} ->
T{int(NewTaskAllocation[8]) + 1})

end if
end for

Algorithm 5 Task Allocation Based on Ranking
INITIALISATION:
Initialise TaskAllocationFG matrix with zeros of size (num-
Robots, numTasks)
Initialise an empty list for ranking (classement)
CALCULATION:
for each robot 8 do

for each task 9 do
Calculate score as sum of capacities for robot 8 and task
9, adjusted by capacity of robot 8 for task 9
Append (8, 9 , B2>A4) to ranking list (classement)

end for
end for
Sort ranking list (classement) by score in ascending order
Initialise allocated_tasks with zeros of size (numTasks)
Initialise allocated_robots with zeros of size (numRobots)
for each (A>1>C , C0B:, B2>A4) in ranking list (classement)
do

if allocated_robots[robot] == 0 and allocated_tasks[task] ==
0 then

Allocate task to robot in TaskAllocationFG
Mark robot as allocated in allocated_robots
Mark task as allocated in allocated_tasks
if sum of allocated tasks equals numTasks then

Break
end if

end if
end for
OUTPUTS:
for each robot 8 do

Print the allocated task for the robot (R{8 + 1} -> T{task
number allocated to robot 8 in TaskAllocationFG})

end for

Algorithm 6 Task Allocation based on a Linear
Regression Machine Learning Model

INITIALISATION:
Import train_test_split and LinearRegression from sklearn
Set nbSet
CALCULATION:
Read the first columns from ’DataSet.xlsx’ into X_data with
nbSet rows
Convert X_data to a numpy array
Read from ’DataSet.xlsx’ into y_data with nbSet rows
Convert y_data to a numpy array
Split X_data and y_data into X_train, X_test, y_train, and y_test
with 80% training and 20% testing data
Initialise model as LinearRegression
Fit model with X_train and y_train
Calculate score of model on X_test and y_test
Reshape capacity to (1, 25) and store in capacities
Predict y_pred from capacities using model
Round y_pred to the nearest integers
Convert y_pred to integer type
OUTPUTS:
for each robot 8 from 0 to numRobots - 1 do

Print "R{8 +1} -> T{y_pred[0][i]}"
end for
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Algorithm 7 Task Allocation based on a Ma-
chine Learning Model with Perceptron

INITIALISATION:
Import numpy as np
Import train_test_split and Perceptron from sklearn
Initialise TaskAllocationML2 matrix with zeros of size (num-
Robots, 1)
Set nbSet to 1000
CALCULATION:
for each robot 8 from 1 to numRobots do

Read the first columns from ’DataSet.xlsx’ into X_data with
nbSet rows
Convert X_data to a numpy array
Read columns from ’DataSet.xlsx’ into y_data with nbSet
rows
Convert y_data to a numpy array and flatten it
Split X_data and y_data into X_train, X_test, y_train, and
y_test with 80% training and 20% testing data
Initialise model as Perceptron with max_iter=40, eta0=0.1,
random_state=0
Fit model with X_train and y_train
Calculate score of model on X_test and y_test
Reshape capacity to and store in capacities
Predict y_pred from capacities using model
Round y_pred to the nearest integers
Convert y_pred to integer type
Store y_pred in TaskAllocationML2 at index 8 � 1

end for
OUTPUTS:
for each robot 8 from 0 to numRobots - 1 do

Print "R{8 +1} -> T{int(TaskAllocationML2[8])}"
end for

Algorithm 8 Task Allocation based on a Rein-
forcement Learning Model with a Q-Learning
Method

INITIALISATION:
Set num_episodes
Set learning_rate
Set discount_factor
Set exploration_prob
CALCULATION:
# Function to choose an action (task) with epsilon-greedy
choose_action(robot)
if random number < exploration_prob then

Return a random task from numTasks
else

Return the task with the highest Q value for the given robot
end if
# Simulation of episodes
for each episode from 0 to num_episodes - 1 do

Initialise total_capacity to 0
Assign tasks randomly to task_assignment
for each robot from 0 to numRobots - 1 do

Set action to the assigned task for the robot
Get capacity2 from robot_capacities for the robot and
action
Add capacity2 to total_capacity
Set reward to total_capacity
Update Q value for the robot and action using the for-
mula:
&[A>1>C , 02C8>=] = &[A>1>C , 02C8>=] +

;40A=8=6_A0C4 ⇤ (A4F0A3 �&[A>1>C , 02C8>=] )
end for

end for
# Find the best task assignment for each robot
Set best_task_assignment to the task with the highest Q value
for each robot
OUTPUTS:
for each robot 8 from 0 to numRobots - 1 do

Print "R{8 +1} -> T{int(best_task_assignment[8] + 1)}"
end for

3.3 Comparison and results

In order to compare the different algorithms, we tested them using a set of capacities
determined randomly (for each of the tasks carried out by each robot). We then repeated the test
on a large number of iterations to identify a trend and make a reliable comparison of the different
algorithms.

The algorithm 9 shows how we conducted this comparison. Table 1 summarizes the
average task capacities and processing times for five robots and tasks after 1000 iterations. Figure 3
shows the average capacities (y-axis) for each algorithm (x-axis), while Figure 4 depicts their
average execution times (y-axis). Both highlight performance differences under the 1000-iteration
stopping criterion.

We conclude that Algorithm 8 is the most efficient based on the criterion of the sum of
capacities, while Algorithm 5 excels in processing time efficiency. However, for a decentralised
approach, Algorithm 4 is the most efficient one, in both sum of capacities andvrunning time
performance.
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Algorithm 9 Robot Task Allocation
INITIALISATION:
=D<'>1>CB 5
=D<)0B:B 5
=18C<0G 1000
>DC ?DC zeros(=18C<0G, 8⇥ 7)
CALCULATION:
for =18C 0 to =18C<0G � 1 do
20?028C H random between 0 and 1 for each robot-task pair
Display the capacity table
print “Robot Abilities:”
print )
BC0AC current time
for 0;6> 1 to 8 do

Run algorithm
3DA0C8>= round(current time - start, 3)
Write sum of capacities duration to output matrix

end for
end for
OUTPUTS:
print >DC ?DC

Figure 3: Results of the comparison of algorithms according to calculation of the sum of capacities.

Figure 4: Results of the comparison of algorithms according to execution times.
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Control method
Average of the

sums of the capacities
Average processing time

(s)
Algorithm 1 centralised 3,86 0,026
Algorithm 2 centralised 3,86 0,029

Algorithm 3 decentralised &
centralised 3,86 0,053

Algorithm 4 decentralised 3,13 0,045

Algorithm 5 decentralised &
centralised 3,65 0,024

Algorithm 6 centralised 2,48 0,423
Algorithm 7 centralised 2,79 1,954
Algorithm 8 centralised 4,02 1,995

Table 1: Results of comparing algorithms.

3.4 Experimental results

To evaluate our chosen task allocation algorithm, we employed three ROS-based mobile
robots. We replicated the industrial application scenario in a laboratory setting, constructing a
model within a room equipped with replicas of various workstations. Each robot was loaded with
the same program, enabling decentralised operation. All results can be found in Belhomme and
Guerin (2024) publication.

4. Conclusions and perspectives

By evaluating various strategies—including linear programming, iterative calculation,
conflict resolution, machine learning models, and reinforcement learning—the study identifies the
advantages and challenges of each method. The proposed algorithms were tested in a simulated
industrial environment, specifically within an aircraft engine nacelle assembly company, demon-
strating their potential to enhance operational efficiency. By allowing robots to autonomously
assign tasks based on their capabilities and constraints, the research provides valuable insights
for improving task allocation processes in industrial automation. The comparative analysis of
algorithm performance offers a foundation for future developments in this field, aiming to increase
flexibility, robustness, and scalability in industrial logistics systems. The findings underscore the
importance of adopting advanced control strategies to optimise multi-robot systems in dynamic
and complex industrial settings.

Future research could focus on integrating advanced machine learning techniques, robust
communication protocols, and hybrid control systems to enhance task allocation for mobile robots
in diverse industrial settings, emphasising energy efficiency, human-robot collaboration, and real-
world implementation.
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