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Abstract: The catalytic reduction of organic pollutants in water is a critical environmental challenge
due to the persistent and hazardous nature of compounds like azo dyes and nitrophenols. In this
study, we synthesized nanostructured CuO/TiO2 catalysts via a combustion technique, followed by
calcination at 700 ◦C to achieve a rutile-phase TiO2 structure with varying copper loadings (5–40 wt.%).
The catalysts were characterized using X-ray diffraction (XRD), attenuated total reflectance-Fourier
transform infrared (ATR–FTIR) spectroscopy, thermogravimetric analysis-differential thermal analysis
(TGA–DTA), UV-visible diffuse reflectance spectroscopy (DRS), and scanning electron microscopy
with energy-dispersive X-ray spectroscopy (SEM–EDS). The XRD results confirmed the presence of
the crystalline rutile phase in the CuO/TiO2 catalysts, with additional peaks indicating successful
copper oxide loading onto TiO2. The FTIR spectra confirmed the presence of all the functional groups
in the prepared samples. SEM images revealed irregularly shaped copper oxide and agglomerated
TiO2 particles. The DRS results revealed improved optical properties and a decreased bandgap with
increased Cu content, and 4-Nitrophenol (4-NP) and methyl orange (MO), which were chosen for their
carcinogenic, mutagenic, and nonbiodegradable properties, were used as model organic pollutants.
Catalytic activities were tested by reducing 4-NP and MO with sodium borohydride (NaBH4) in the
presence of a CuO/TiO2 catalyst. Following the in situ reduction of CuO/TiO2, Cu (NPs)/TiO2 was
formed, achieving 98% reduction of 4-NP in 480 s and 98% reduction of MO in 420 s. The effects of the
NaBH4 concentration and catalyst mass were investigated. The catalysts exhibited high stability over
10 reuse cycles, maintaining over 96% efficiency for MO and 94% efficiency for 4-NP. These findings
demonstrate the potential of nanostructured CuO/TiO2 catalysts for environmental remediation
through efficient catalytic reduction of organic pollutants.
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1. Introduction

Across the world, water and energy shortages represent urgent and increasingly
severe global challenges. On a global level, over one billion people face the critical issue
of not having access to clean drinking water, which is a necessity for human existence.
Furthermore, more than two billion individuals lack proper sanitation facilities, resulting
in almost two million annual fatalities due to diseases transmitted through impure water
sources or insufficient sewage systems [1]. Water pollution occurs when the concentration of
harmful chemicals or biological substances in a water body surpasses established standards,
leading to adverse impacts on both human health and the natural environment [2].

Azo dyes and nitroaromatic compounds exhibit high stability and are known for their
carcinogenic, mutagenic, and nonbiodegradable properties, posing a significant threat to
human life, water quality, and the environment. These substances, such as Congo red,
rhodamine B (RhB), and methyl orange (MO), are extensively used in numerous chemical
sectors, including paper, textiles, paint, and plastics. These industrial processes produce
significant quantities of dyes, leading to the emergence of dye-laden particles that are
introduced directly into the environment [3,4]. MO, for example, is a highly toxic and
nonbiodegradable azo. The adverse effects of this toxic dye may disrupt the balance of
water within ecosystems and pose health risks, including symptoms such as vomiting,
diarrhea, breathing difficulties, and nausea [5]. In particular, 4-Nitrophenol (4-NP) is a
highly toxic compound that is challenging to degrade and treat effectively [6].

Compared with alternative methods, nitrophenol and dye reduction in the presence
of a suitable catalyst and sodium borohydride (NaBH4) is a recommended protocol, since
it is relatively more affordable, secure, and environmentally friendly [7–9]. Therefore, the
exploration of techniques such as chemical reduction to efficiently degrade diverse chemical
pollutants is of considerable interest. However, this method commonly faces a challenge
in achieving a fast degradation rate at lower concentrations of reducing agents, such as
sodium borohydride. Consequently, to minimize the quantity of reducing agent required
and increase the reaction rate, the development of an efficient catalyst for this chemical
reduction becomes crucial [10,11]. Owing to their exceptional physicochemical proprieties,
there has been significant interest in the field of catalysis regarding transition and noble
metal nanoparticles in recent years [12–16]. Among these materials, copper nanoparticles
(CuNPs) have gained recognition as excellent materials that exhibit novel physiochemical
characteristics. This has prompted their investigation in various applications, including
catalysis, sensors, photocatalysis, diverse biological activities, energy storage, and organic
synthesis applications [17–21]. The catalytic activity is closely related to the degree of
dispersion of the Cu(NPs), and a superior performance has been noted with smaller-sized
nanoparticles [22,23].

One significant challenge in employing nanoparticles as catalysts involves their ag-
glomeration and accumulation, resulting in a decrease in their catalytic efficiency. A viable
solution to address this concern is the utilization of solid supports to stabilize the nanopar-
ticles [24]. For this purpose, a series of solid supports, such as polymers, metal oxides,
and carbon materials [25–28], have been adopted to avoid sintering, enhance stability,
and facilitate the optimal mobilization/dispersion of nanoparticles, aiming to maximize
catalytic activities across a wide variety of applications. Among these supports, the im-
mobilization of CuNPs on TiO2, which is a representative n-type semiconductor material,
has been extensively used as a photocatalyst, catalyst support, and cocatalyst because of
its high oxidation ability, environmental friendliness, physicochemical stability, and cost
effectiveness [29,30]. Research on the use of Cu/TiO2 for catalytic reduction has gained
significant attention because of its promising applications in environmental remediation.
One study focused on synthesizing Cu-TiO2 nanoparticles from the extract of Phoenix
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dactylifera. These catalysts effectively degraded dyes, such as RhB, in 11 min and MO
in 25 min, achieving reductions of 89.8 and 95.3%, respectively, with 21.3 mg/mL of the
catalyst [31]. Other investigations explored various shapes and sizes of Cu nanostructures
and revealed that smaller particles and specific morphologies enhanced the catalytic ac-
tivity for nitroaromatic reduction [32]. Additionally, Cu/TiO2 catalyst synthesized from
Chimonanthus praecox extract exhibited superior performance in degrading pollutants, such
as 4-nitrophenol and other organic dyes, with 10 mg of catalyst [33]. CuO/TiO2 composite
created using Tilia platyphyllos extract also demonstrated high catalytic activity, reducing
MO in 10 min and methyl blue in 9 min with 3 mg of the catalyst [34]. Recent studies of
CuO/TiO2 nanocomposite have further highlighted their exceptional catalytic performance,
particularly under direct sunlight, where these photocatalysts effectively drive the selective
hydrogenation of 4-NP to 4-AP in the presence of NaBH4 [35]. Moreover, binary CuO/TiO2
composites have demonstrated excellent reactivity in tandem hydrogenation processes for
nitro compounds [36].

In the present study, different wt.% CuO/TiO2 (rutile) were synthesized through the
combustion technique followed by calcination at 700 ◦C to ensure a complete transition from
anatase to rutile. The prepared catalysts were characterized via X-ray diffraction (XRD),
UV–vis diffuse reflectance spectroscopy, attenuated total reflectance–Fourier transform
infrared (ATR–FTIR) spectroscopy, thermogravimetric analysis-differential thermal analysis
(TGA–DTA), and scanning electron microscopy with energy-dispersive X-ray spectroscopy
(SEM–EDS). The catalytic performance of CuO/TiO2 was evaluated afterwards via the
reduction of MO and 4-nitophenol as models of organic contaminants in the presence of
NaBH4. The influence of parameters, including NaBH4 concentration, catalyst mass and
reusability of the catalyst, were examined.

2. Results and Discussion
2.1. X-Ray Diffraction

The XRD patterns of the CuO/TiO2 catalyst series are presented in Figure 1. The
results obtained reveal that the materials are primarily composed of the rutile phase of TiO2
in accordance with ICDD 21-1276. The presence of CuO in its monoclinic form was also
verified in accordance with the ICDD 48-1548 reference pattern, confirming the effective
loading of copper oxide in TiO2. Figure 1 also reveals a correlation between the deposited
quantity of Cu(II) ions and the intensities of the characteristic CuO peaks. These findings
collectively indicate the successful preparation of the CuO/TiO2 catalysts with varying
percentages of CuO deposition. The average crystallite size of CuO was determined to be
26, 27, 32, 35, 36 nm for 40, 30, 20, 10 and 5 wt.% CuO/TiO2 catalysts, respectively. The
crystallite size was determined using the Scherrer equation [37]:

L =
0.9λ

βcos θ

where λ is the X-ray wavelength (0.1540 nm), β is the full width at half maximum (FWHM),
θ is Bragg’s angle, and L represents the average crystallite size.

On the other hand, the absence of the anatase phase of TiO2 is due to its transformation
to rutile upon heating at 700 ◦C, as observed in Figure 2, which shows the XRD curves
for the 40 wt.% CuO/TiO2 catalysts subjected to various calcination temperatures. The
primary difference observed was the phase transition of TiO2 from anatase (ICDD 21-1272)
to rutile (ICDD 21-1276), with complete transformation occurring at 700 ◦C. The same
results were observed in many previous studies [38].

Following the reduction experiment using NaBH4, the rutile structure of TiO2 re-
mained unchanged, indicating its stability under the reaction conditions. However, the
monoclinic structure of CuO significantly decreased, leading to the formation of Cu(NPs),
as depicted in Figure 3. Notably, two additional peaks emerged at 43.28◦ and 50.37◦,
corresponding to the (111) and (200) planes, respectively. These peaks are characteris-
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tic of the face-centered cubic (FCC) crystal structure of metallic copper nanoparticles
(ICDD No. 04-0836). The average Cu(NP) size is about 15 nm.
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2.2. Thermal Analysis Measurement

To examine the thermal behavior of CuO/TiO2, thermal experiments involving ther-
mogravimetric and differential measurements were performed. The results are shown in
Figure 4. The initial step, characterized by a weight loss of 3% within the temperature range
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of 30 to 150 ◦C, can be attributed to the vaporization of water [39]. The notable weight
reduction occurring between 200 and 350 ◦C, as evaluated at 30%, appears to be associated
with the decomposition and combustion of the organic constituents. The latter was con-
firmed by an intense exothermic peak observed in the DTA curve and two intense peaks
in the DTG curve [40]. On the other hand, no weight loss was observed at temperatures
above 450 ◦C, and the anatase to rutile phase transition that should occur above 600 ◦C [38]
was not observed in the DTA curve because of its reduced sensitivity compared with that
of differential scanning calorimetry (DSC).
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2.3. ATR–FTIR Spectroscopy

ATR–FTIR spectroscopy was performed on the catalysts calcined at 700 ◦C. The measure-
ments were conducted across the spectrum ranging from 400 to 4000 cm−1, and the results
are shown in Figure 5. The analysis revealed similar results for the different catalysts with
different percentages of CuO. The absence of water molecules and other contaminants in
the catalyst was confirmed by the observation of strong bands in the infrared spectrum just
below 1000 cm−1. These bands typically correspond to lattice vibrations within metal oxides.
The peak observed at approximately 650 cm−1 is associated with the presence of the Ti-O-O
stretching vibration bond. Additionally, the spectra revealed two other distinct bonds below
500 cm−1 that were attributed to metal–oxygen (M–O) bond vibrations. All the observed
bands suggest the existence of both Ti–O vibrational stretching and Cu–O stretching vibration
bonds [41], which confirms the successful incorporation of CuO into TiO2.
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2.4. UV–Vis Diffuse Reflectance Spectroscopy

Figure 6a presents the diffuse reflectance spectroscopy (DRS) results for TiO2 and the
various wt.% CuO/TiO2 catalysts, revealing their optical properties in the 200–800 nm
range. TiO2 exhibits a pronounced absorption peak below 400 nm, which is attributed to
its intrinsic interbond absorption [42]. In contrast, the spectrum of the wt.% CuO/TiO2
catalysts displays additional absorption bands in the 400–800 nm range. The absorption
band between 400 and 600 nm is attributed to charge transfer from the valence band (VB)
of TiO2 to CuO. Additionally, the lower absorption band within the 500–800 nm range is
associated with the intrinsic exciton band of CuO and the d–d transition of Cu2+ species [43].
The band gap energies (Eg) of TiO2, CuO, and the different wt.% CuO/TiO2 catalysts were
determined by identifying the intersection of the linear portion of the (αhv)2 vs. energy
(eV) curves, as detailed in Figure 6b. The Eg values for TiO2 and wt.% CuO/TiO2 are
summarized in Table 1. These results indicate that increasing the CuO content leads to a
progressive narrowing of the band gap. This trend can be attributed to the incorporation of
Cu, which introduces additional energy states within the band structure, thereby lowering
the bandgap. The reduced bandgap in the CuO/TiO2 catalysts enhances their visible light
absorption, which is beneficial for photocatalytic applications [44].
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Table 1. Bandgaps of different catalysts.

Catalyst TiO2 5 wt.% CuO 10 wt.% CuO 20 wt.% CuO 30 wt.% CuO 40 wt.% CuO

Band gap (eV) 3.02 2.91 2.86 2.73 2.65 2.43

2.5. SEM–EDS Analysis

Morphological studies via SEM–EDS were carried out on the CuO/TiO2 catalyst.
Figure 7 shows representative SEM images of synthesized CuO/TiO2, which reveal a
homogeneous spherical morphology with varying diameters and numerous micrometer-
sized particles. Additionally, the catalyst has a porous structure and some aggregation
of spheres. The analysis of the CuO/TiO2 catalyst via energy dispersive X-ray (EDX)
spectroscopy aimed to examine the presence and distribution of copper, titanium, and
oxygen within the material. The EDX spectrum of CuO/TiO2 is shown in Figure 8, and the
results indicate the successful incorporation of copper into the TiO2 sample. Additionally,
the elemental mapping analysis revealed a uniform distribution of copper (depicted in
yellow), titanium (represented in pink), and oxygen (shown in blue) in the samples, as
illustrated in Figure 9.
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2.6. Catalytic Reduction of 4-NP and MO by a CuO/TiO2 Catalyst

The catalytic performance of the CuO/TiO2 samples with different CuO loadings
(5 to 40 wt.%) was evaluated for the reduction of organic pollutants via NaBH4, as shown
in Figure 10a,b. As shown in Figure 10a, which represents the reduction of 4-nitrophenol
(4-NP), the 40 wt.% CuO/TiO2 catalyst exhibited the fastest catalytic activity, reaching
nearly 100% removal within a shorter reaction time than the other catalysts and pure CuO.
Similarly, in Figure 10b, which shows the reduction of MO, 40 wt.% CuO/TiO2 again
demonstrates the fastest catalytic performance. The pure CuO sample exhibited lower
catalytic activity than the 40 wt.% CuO/TiO2 sample did, likely due to the agglomeration
of copper oxide nanoparticles, which reduced the number of accessible active sites. On
the other hand, at lower CuO loadings (e.g., 5 wt.%), the catalytic activity is the slowest,
which can be attributed to the lower number of active CuO/TiO2 sites available for the
reduction process.
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Figure 11a,b display the absorption spectra of 4-NP and MO in the presence of NaBH4
but without the use of a catalyst. Under these conditions, the peak intensities show
little change even after 180 min, indicating a negligible reduction rate, as no significant
degradation occurred during this time. However, when CuO/TiO2 is introduced alongside
NaBH4 (Figure 11c,d) and forming Cu(NPs)/TiO2, a rapid and noticeable reduction in
the characteristic absorption peaks of both 4-NP and MO is observed. For 4-NP, the peak
at ~400 nm diminished progressively, vanishing completely within 480 s (Figure 11c).
Similarly, the absorption peak of MO at approximately 464 nm disappears within 420 s
(Figure 11d). This demonstrates a much faster and more efficient reduction process in the
presence of the CuO/TiO2 catalyst than in the presence of NaBH4 alone. Simultaneously,
a pair of new peaks emerged at 297 nm and 231 nm for the reduction of 4-NP and at
242 nm during the reduction of MO. These new peaks can be attributed to the characteristic
absorption bands of the colorless 4-aminophenol (4-AP) from 4-NP and sulfanilic acid
along with dimentyl-4-phenylenediamine from OM [45,46].
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2.6.1. Kinetic Study

The pseudo-first-order kinetic model of Langmuir–Hinshelwood was employed to
analyze the kinetics data due to the substantial excess of NaBH4 compared with the organic
dyes, denoted as ([NaBH4]/[Pollutant]) = 40. The rate constants (kapp) governing the
conversion reactions for both 4-NP and MO were determined via the following equation:

ln
Ct

C0
= Ln

At

A0
= −kappt (1)

As depicted in Figure 12a,b, the Ln (At/A0) vs. time of reaction was determined by
analyzing the absorption peak intensities at 400 nm (4-NP) and 464 nm (MO). Remarkably,
the reduction process was initiated promptly, devoid of any induction time requirement.
The graphical representation of Ln (At/A0) against time exhibited a robust linear correlation,
aligning well with the expectations of pseudo-first-order kinetics. Consequently, the
calculated rate constants were determined to be 0.00517 s−1 for 4-NP and 0.00727 s−1 for
MO. To enable a comparative assessment of CuO/TiO2 performance, an activity factor
denoted as k’ was computed via the following equation:

k’ =
kapp

m
(2)
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In this equation, m(g) represents the mass of the copper in the catalyst involved in
the reaction.

In this context, the derived k′ values were 6.46 s−1 g−1 for 4-NP and 8.98 s−1 g−1 for
MO. For a comprehensive comparison, Table 2 illustrates the varying efficacies of Cu(NPs)
catalysts documented in the literature.

Tables 3 and 4 show an increase in the observed rate constants (kapp) with increasing
CuO percentage in the catalyst. The 40 wt.% CuO/TiO2 catalyst exhibits the highest rate
constant (0.005 s−1), indicating that a higher copper loading favors faster reduction kinetics
for 4-NP and MO. However, when considering the mass of active copper in the catalyst,
the normalized values (k′) indicate that the 5 wt.% CuO/TiO2 catalyst exhibits the highest
activity (17.5 s−1g−1). This suggests that, although increasing the CuO loading accelerates
the overall reaction, the efficiency per unit mass of copper is maximized at lower loadings.

After the in situ reductive reaction of CuO/TiO2 to Cu (NPs)/TiO2 with NaBH4, an un-
derlying mechanism enables the catalytic reduction of 4-NP and MO using Cu(NPs)/TiO2
in the presence of NaBH4 (Figure 13). In this process, the BH4− ions adhere to the sur-
face of the catalyst, thereby initiating the creation of BO2− through the self-hydrolysis
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of NaBH4. Moreover, BH4− interacts with the catalyst, facilitating the transfer of active
hydrogen species, leading to the formation of an energetically charged hydrogen layer
on the catalyst surface [47]. The organic pollutants subsequently attach themselves to the
catalyst surface, undergoing reduction into 4-AP for 4-NP and sulfanilic acid along with
dimentyl-4-phenylenediamine for MO during the step that governs the reaction rate. The
produced compounds are then desorbed from the surface of the Cu(NPs)/TiO2 catalyst. As
a result, Cu(NPs)/TiO2 exhibits highly efficient catalytic reduction due to the supply of
electrons to the catalyst by BH4

− ions, a mechanism that enables 4-NP and MO to bond
with the catalyst surface, consequently yielding enhanced catalytic activity [48].

Table 2. Comparison of the catalytic properties of catalysts with those of Cu(NPs) reported in the
literature and this work.

Pollutant Catalyst k′

(s−1 g−1) Time (min)
Conditions

Reference
NaBH4 (M) Pollutant (M) Catalyst Mass (mg)

4-
N

it
ro

ph
en

ol
(4

-N
P)

Cu10/MZ 5.00 10 0.0045 0.0000675 1 [22]

Cu10/ZSM-5 1.17 50 0.0045 0.0000675 1 [22]

CuO/TiO2 6.46 8 0.014 0.00035 2 This work

Cu NPs@Fe3O4-LS 1.87 3 0.125 0.00125 7 [4]

MnO@Cu/C 17.33 1.5 0.0193 0.0008 4 [16]

C@Cu 59.00 1 0.033 0.00014 1 [49]

Cu-Ag/GP 0.40 10 0.0714 0.000857 10 [50]

Cu-Ni/GP 0.60 7 0.0714 0.000857 10 [50]

CuVOS@SiO2-3 1.57 2 0.00528 0.00014377 5 [51]

CuVOS-3 8.20 2 0.00582 0.000138 5 [52]

M
et

hy
lo

ra
ng

e
(M

O
)

C@Cu 62.00 1 0.033 0.000061 1 [49]

CuO/TiO2 8.98 7 0.014 0.00035 2 This work

Cu-Ag/GP 0.77 4 0.0714 0.00004286 10 [50]

Cu-Ni/GP 0.38 5 0.0714 0.00004286 10 [50]

CuVOS@SiO2-3 1.37 4 0.00528 0.0003055 5 [51]

CuVOS-3 6.47 2 0.00582 0.00029 5 [52]

Table 3. Rate constants obtained for 4-NP reduction by wt.% CuO/TiO2.

Catalyst kapp (s−1) k′ (s−1g−1)

5 wt.% CuO/TiO2 0.00175 17.5
10 wt.% CuO/TiO2 0.00175 8.7
20 wt.% CuO/TiO2 0.00328 8.2
30 wt.% CuO/TiO2 0.00308 5.1
40 wt.% CuO/TiO2 0.00512 6.4

Table 4. Rate constants obtained for MO reduction by wt.% CuO/TiO2.

Catalyst kapp (s−1) k′ (s−1g−1)

5 wt.% CuO/TiO2 0.00150 15.0
10 wt.% CuO/TiO2 0.00126 6.3
20 wt.% CuO/TiO2 0.00479 12.0
30 wt.% CuO/TiO2 0.00546 9.1
40 wt.% CuO/TiO2 0.00727 8.9
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included the catalyst dosage and concentration of NaBH4. Figure 14a,b show the impact 
of varying catalyst amounts on the rate of pollutant reduction. By making more active 
sites accessible for the reaction, the large amount of catalyst led to improved efficiency. 
The performance constantly increased as the catalyst amount increased from 0.02 g/L to 
0.06 g/L, which confirms the principle of Sabatier [53]. The variation in NaBH4 
concentration had a pronounced influence on the catalytic reduction of 4-NP and MO 
(Figure 14c,d). Because of the limited quantity of hydrogen emitted, the catalytic reduction 
rate decreased as the NaBH4 concentration decreased [54]. 

Figure 13. Schematic reactions of (a) 4-NP and (b) MO, by NaBH4 in the presence of Cu(NPs)/TiO2.

2.6.2. Effects of Parameters and Reusability

Multiple factors were investigated to understand their influence on the catalyzed
reduction of 4-NP and MO using 40 wt.% CuO/TiO2 catalysts. The parameters examined
included the catalyst dosage and concentration of NaBH4. Figure 14a,b show the impact of
varying catalyst amounts on the rate of pollutant reduction. By making more active sites
accessible for the reaction, the large amount of catalyst led to improved efficiency. The per-
formance constantly increased as the catalyst amount increased from 0.02 g/L to 0.06 g/L,
which confirms the principle of Sabatier [53]. The variation in NaBH4 concentration had a
pronounced influence on the catalytic reduction of 4-NP and MO (Figure 14c,d). Because
of the limited quantity of hydrogen emitted, the catalytic reduction rate decreased as the
NaBH4 concentration decreased [54].
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An essential characteristic of catalysts is their stability and reusability. To assess
this, a fresh solution containing pollutants was introduced after each catalytic reduction
cycle. The initial concentration remained constant at 0.35 mM throughout. As depicted in
Figure 15a,b, the catalyst consistently maintained over 96% MO capacity and 94% 4-NP
capacity for reduction of the dyes across 10 successive reaction cycles. This outcome
highlights the exceptional reusability of the CuO/TiO2 catalyst. This excellent reusability
can be attributed to the even distribution and robust stability of Cu on the TiO2 surface,
which in turn provides a greater number of active sites for catalytic processes.
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3. Materials and Methods
3.1. Synthesis of the CuO/TiO2 Catalysts

The combustion technique was used to prepare different percentages of wt.% CuO/TiO2
(wt = 5, 10, 20, 30, and 40%). Analytical grade Cu(NO3)2·6H2O (Sigma Aldrich, ≥99.9%),
along with TiO2-P25 (Degussa Aeroxide P25) and citric acid as a fuel (Sigma Aldrich, ≥99.5%),
served as the starting materials. Initially, these materials were added to deionized water
with a fixed weight percentage of metal on TiO2 and an excess amount of citric acid. The
resulting mixtures were then stirred to achieve a well-dispersed suspension. The suspension
subsequently underwent evaporation from 80 to 130 ◦C to yield a thick gel. This gel was
subsequently converted into a dry form. Finally, the dry gel was calcined in an air atmosphere
at 700 ◦C for 4 h with a ramp rate of 10 ◦C/min. Figure 16 represents the synthesis method
for the catalysts.

Inorganics 2024, 12, x FOR PEER REVIEW 14 of 18 
 

 

 

 

(a) (b) 

Figure 15. Recycling of CuO/TiO2 in the hydrogenation of (a) 4-NP and (b) MO. 

3. Materials and Methods 
3.1. Synthesis of the CuO/TiO2 Catalysts 

The combustion technique was used to prepare different percentages of wt.% 
CuO/TiO2 (wt = 5, 10, 20, 30, and 40%). Analytical grade Cu(NO3)2·6H2O (Sigma Aldrich, 
≥99.9%), along with TiO2-P25 (Degussa Aeroxide P25) and citric acid as a fuel (Sigma 
Aldrich, ≥99.5%), served as the starting materials. Initially, these materials were added to 
deionized water with a fixed weight percentage of metal on TiO2 and an excess amount of 
citric acid. The resulting mixtures were then stirred to achieve a well-dispersed 
suspension. The suspension subsequently underwent evaporation from 80 to 130 °C to 
yield a thick gel. This gel was subsequently converted into a dry form. Finally, the dry gel 
was calcined in an air atmosphere at 700 °C for 4 h with a ramp rate of 10 °C/min. Figure 
16 represents the synthesis method for the catalysts. 

 
Figure 16. Synthesis procedure for the catalysts. 

3.2. Catalytic Reduction of Organic Pollutants 
The catalytic activity of CuO/TiO2 was evaluated by studying the reduction of MO 

(Sigma Aldrich, ≥98.0%) and 4-nitrophenylphenol (Sigma Aldrich, ≥99.0%) as the target 
pollutants for the experiments. The experimental setup involved a beaker (50 mL) placed 
at room temperature. The catalytic reaction proceeded as follows: 2 mg of CuO/TiO2 was 
uniformly dispersed in 35 mL of deionized water, followed by the addition of 10 mL of 

Figure 16. Synthesis procedure for the catalysts.



Inorganics 2024, 12, 297 13 of 16

3.2. Catalytic Reduction of Organic Pollutants

The catalytic activity of CuO/TiO2 was evaluated by studying the reduction of MO
(Sigma Aldrich, ≥98.0%) and 4-nitrophenylphenol (Sigma Aldrich, ≥99.0%) as the target
pollutants for the experiments. The experimental setup involved a beaker (50 mL) placed
at room temperature. The catalytic reaction proceeded as follows: 2 mg of CuO/TiO2 was
uniformly dispersed in 35 mL of deionized water, followed by the addition of 10 mL of
freshly prepared aqueous NaBH4 (Sigma Aldrich, ≥99.0%) (70 mM). The solution was
sonicated for 10 min, resulting in a color change from a black CuO/TiO2 suspension to a
gray color, indicating the formation of Cu(NPs)/TiO2. Next, 5 mL of MO (3.5 mM) or 4-NP
(3.5 mM) was added to the mixture. The overall concentrations of the organic dyes and
NaBH4 were 0.35 mM and 14 mM, respectively. The progress of the reaction was monitored
by recording the time-dependent UV–vis absorption spectra of the reaction mixture in the
wavelength range between 210 and 600 nm via a spectrophotometer (Techcomp UV 2300).
The catalytic reduction experiment is shown in Figure 17.
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3.3. Characterization Techniques

The identification of the mineral crystalline phase of the catalysts was carried out
via X-ray diffraction, via a Schimadzu 6100 powder diffractometer with a monochromatic
beam (λCukα = 1.541838◦). These measurements were taken at room temperature over
a 2θ range of 10◦ to 70◦, with a scanning rate of 2◦/min. A UV–vis spectrophotometer,
namely, a PerkinElmer Lamda 900 UV/Vis/NIR spectrometer, was used to obtain diffuse
reflectance spectra of the catalysts in the wavelength range of 200–800 nm. To identify the
main functional groups of the catalyst, ATR–FTIR spectroscopy was used with a Nicolet
iS50 instrument with a resolution of 4 cm−1 in the spectral range of 400–4000 cm−1. The
thermal stability and degradation behavior of the catalysts were verified via simultaneous
TGA and DTA under an air flow rate of 30 mL/min via a LabsysTM (1F) Setaram instrument.
An 8 mg sample was placed in an alumina crucible and heated from 30 ◦C to 800 ◦C at a
heating rate of 10 ◦C/min. The surface morphology and chemical analysis of the samples
were performed by SEM-EDX on a Quattros S-FEG-Thermofisher scientific instrument.

4. Conclusions

In this study, CuO/TiO2 catalysts were prepared through a combustion technique.
The catalysts were characterized via XRD, ATR–FTIR spectroscopy, TGA–DTA, UV–vis
DRS, and SEM–EDX techniques. Compared with TiO2 and CuO, the presence of Cu
in the CuO/TiO2 catalysts significantly enhanced the reduction of 4-NP and MO. The
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fastest dye reduction was obtained with 40 wt.% CuO, followed by 40 > 30 > 20 > 10
> 5 wt.% CuO/TiO2 in the presence of NaBH4 and 2 mg of catalyst. The kinetic data
were successfully modeled via the pseudo-first-order Langmuir–Hinshelwood mechanism,
yielding rate constants of 0.000517 s−1 for 4-NP and 0.00727 s−1 for MO. The efficiency
of 4-NP and MO reduction with the CuO/TiO2 catalyst improved as the catalyst dosage
increased from 0.02 g/L to 0.06 g/L, offering more active sites. However, a decrease
in NaBH4 concentration led to a decrease in the catalytic reduction rate due to reduced
hydrogen production. The presence of TiO2 rutile functions as a protective agent to slow
catalyst damage and agglomeration of particles. This material can be reused for several
cycles without significant loss of catalytic activity.
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