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Abstract: An eco-friendly approach was used to fabricate zinc oxide nanoparticles (ZnO NPs) using
thyme, Thymus vulgaris L., leaf extract. The produced ZnO nanoparticles were characterized by XRD
and SEM analysis. The ZnO NPs showed remarkable adsorption efficiency for tetracycline (TC) from
water systems, with a maximum removal rate of 95% under optimal conditions (10 ppm, 0.10 g of
ZnO NPs, pH 8.5, and 30 min at 25 ◦C). The adsorption kinetics followed the pseudo-2nd-order
model, and the adsorption process fitted the Temkin isotherm model. The process was spontaneous,
endothermic, and primarily chemisorptive. Quantum chemistry calculations, utilizing electrostatic
potential maps and HOMO-LUMO gap analysis, have confirmed the stability of the TC clusters.
This study suggests that green synthesis using plant extracts presents an opportunity to generate
nanoparticles with properties suitable for real-world applications.

Keywords: biosynthesis; nanoparticles; ZnO NPs; Thymus vulgaris; adsorption; tetracycline; kinetic;
isotherm; thermodynamic

1. Introduction

Conventional chemical methods for synthesizing beneficial compounds often need
to be improved as they possess limitations such as poor control over particle size, high
cost, hazardous by-products, and low yields. This highlights the need for innovative,
eco-friendly approaches to develop novel materials with desirable properties for diverse
real-world applications. Recently, biosynthesis has emerged as a green strategy for produc-
ing metal oxide nanoparticles (MO NPs) using naturally occurring biological entities, such
as plant extracts, bacteria, and algae [1,2]. For instance, previous studies have shown that
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silver nanoparticles (Ag NPs) synthesized from plant extracts exhibit significantly lower cy-
totoxicity and phytotoxicity, indicating that green Ag NPs are safer and suitable for broader
applications [3,4]. In another study, zinc oxide nanoparticles (ZnO NPs) were synthesized
using mint leaf extract, which endowed the nanoparticles with favorable physical and
chemical properties for medical applications [5]. Additionally, Fe2O3 NPs produced using
cloves extract have shown potential for cancer treatment and water purification [6,7].

MO NPs are highly valued due to their nanoscale size and large surface area, which
grant them unique properties distinct from their bulk forms. These nanoparticles exhibit di-
verse physical, chemical, biological, optical, magnetic, and catalytic characteristics, fueling
significant research interest. They offer promising applications in biomedical, biosensors,
catalysis, drug delivery, and cosmetics. The morphology of these particles dramatically
influences their characteristics [8,9], and as a result, various synthesis methods have been
explored extensively.

ZnO NPs are shared and widely utilized across many applications. Their unique
physical characteristics, such as a large surface area, transparency, and conductivity, make
them appropriate for biosensors, drug delivery, and electrical and optical devices [10].
ZnO NPs also exhibit high chemical and biological activity, enabling their use in medical
applications like catalysts and cancer therapy, and environmental applications like water
purification and air quality improvement. Further, they play a role in the technology
sectors, particularly in semiconductors and solar power. Given their abundance and
cost-effectiveness, ZnO NPs hold great promise for multiple applications, although their
potential environmental and health impacts require careful monitoring.

The synthesis of metal oxide nanoparticles (MNPs) using thyme, Thymus vulgaris L.,
is of interest due to its rich phytochemical composition, which includes a wide range of
bioactive compounds. These compounds play a crucial role in mediating the synthesis,
stabilization, and reduction of metal ions to form metal oxide nanoparticles. A more specific
breakdown of how these bioactive compounds can influence the synthesis of MNPs follows.

In the case of zinc oxide (ZnO) nanoparticles, thyme extract has been shown to
reduce Zn2+ ions to ZnO nanoparticles in a one-step biosynthesis process. The phenolic
and flavonoid compounds in thyme extract are believed to play the role of reducing
agents, while terpenoids and other plant metabolites act as stabilizing and capping agents.
This process results in ZnO nanoparticles with good dispersion, enhanced antibacterial
properties, and potential applications in sensors, medicine, and catalysis.

The phytochemical composition of T. vulgaris directly influences the synthesis and
properties of metal oxide nanoparticles. The polyphenolic compounds, terpenoids, and
essential oils in thyme contribute to the reduction of metal ions, stabilization of the nanopar-
ticles, and control over the size and shape of the particles. This makes T. vulgaris a promising
candidate for the green synthesis of metal oxide nanoparticles with various potential appli-
cations in medicine, agriculture, and environmental remediation.

Adsorption is one of the leading water treatment techniques to remove organic and
inorganic pollutants from drinking and industrial water. This process depends on materials,
such as activated carbon, organic compounds, biochar, and silica gel [11–15], which attract
and capture impurities on their surfaces. Adsorption is cost-effective, environmentally
friendly, and capable of improving water quality without the use of harmful chemicals.
As a critical process in water purification, adsorption contributes significantly to the avail-
ability of clean, drinkable water, enhancing public health and preserving ecosystems. The
growing adoption of adsorption techniques underscores the ongoing global commitment
to improving water quality in response to the needs of an expanding population.

2. Results and Discussion
2.1. Characterization
2.1.1. X-Ray Diffraction

The structural and phase purity of ZnO nanoparticles is illustrated in Figure 1. The
XRD diffractogram aligns well with the hexagonal wurtzite structure, as confirmed by
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comparison with JCPDS card No. 89-1397, showing no evidence of secondary phases
or impurity peaks. The strong, narrow diffraction peaks indicate that the product has
a high-quality crystalline structure. The sharp, intense diffraction peaks observed at
approximately 2θ values of 31.29◦, 33.95◦, 36.04◦, 47.05◦, 56.09◦, 62.38◦, 65.90◦, 67.45◦, and
68.60◦ correspond to the crystal planes (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0), (1 0 3), (2 0 0),
(1 1 2), and (2 0 1), respectively.
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Figure 1. XRD pattern of ZnO NPs.

2.1.2. SEM Analysis

The scanning electron microscopic (SEM) analysis in Figure 2 shows that ZnO nanopar-
ticles have an agglomerated structural morphology. The compact morphology of agglomer-
ated nanoparticles may be attributed to the use of heat in the electric furnace that imparts
the crystalline nature and is responsible for the reorganization of the biomolecules respon-
sible for the capping as well as the stabilization of the ZnO NPs synthesized using thyme,
Thymus vulgaris L., leaf extract.
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Figure 2. SEM image of synthesized ZnO NPs using thyme, Thymus vulgaris L., leaf extract,
(a) ×20,000, (b) ×40,000.

2.2. Quality Assurance

The calibration curve linearity was verified according to the correlation coefficient
(R2), which exceeded 0.9992, as shown in Figure 3. The LOD was identified based on a
signal-to-noise ratio of (3:1) and was 0.1309 ppm, with the SD value expressed as <2%.
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Similarly, the LOQ was identified by a signal-to-noise ratio of (10:1), and it was 0.3963 ppm.
It can be noted that the LOQ was less than the lowest TC concentration obtained during
the analysis (around 0.5321 ppm). Furthermore, an acceptable recovery rate of 97% ± 2
was achieved, which confirms the appropriateness of our laboratory analysis methodology.
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2.3. Optimization of Specific Parameters on TC Adsorption
2.3.1. Nanosorbent Dose Influence

The effect of ZnO NPs dosage on TC adsorption efficiency and capacity was evaluated
using a range of 0.10 to 0.20 g, with a starting TC concentration of 10 ppm, a contact
time of 30 min, and a temperature of 25 ◦C. As shown in Figure 4, the maximum TC
removal efficiency reached 94% at a ZnO NP dosage of 0.10 g. However, at higher ZnO NP
dosages, the removal efficiency remained nearly constant or slightly decreased. This may
be attributed to the nanosorbent’s large surface area, which provides ample adsorption
sites even at lower dosages.
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Figure 4. Impact of ZnO NPs dosage on removal efficiency and adsorption capacity. Experimental
conditions: contact time, 30 min; starting tetracycline (TC) concentration, 10 ppm; temperature, 25 ◦C.

Moreover, the highest adsorption capacity of ZnO NPs was 42.9 mg/g at a dosage
of 0.10 g. Notably, the adsorption capacity decreased significantly as the dosage of the
nanosorbent increased. This trend could be explained by the presence of unsaturated
active sites on the nano-surface at lower dosages. Once maximum adsorption is achieved,
further increases in dosage may result in sorbent accumulation and competition between
substances, leading to a decline in adsorption capacity.
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2.3.2. Starting TC Concentration Influence

The effects of the initial amount of TC on the removal percentage by ZnO NPs were
investigated at 5, 10, 25, and 45 ppm of TC, as shown in Figure 5. The maximum ad-
sorption efficiency during the batch experiment duration was obtained with a starting TC
concentration of 10 ppm. The results indicate that adsorption at low concentrations may be
highly driven by the combination of the high concentration of the adsorbate at the initial
stage and the large number of readily available adsorption sites. As the TC molecules start
competing for the remaining sites and the adsorbed ZnO NPs begin to generate repul-
sive interactions during further adsorption, the number of available sites may gradually
decrease [16], causing low adsorption efficiency. In contrast, the adsorptive capacity of
the prepared nanosorbent was found to increase dramatically as the TC concentration
increased, suggesting the good adsorptive ability of ZnO NPs towards TC, as described in
previous literature [14].
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2.3.3. Contact Durations Influence

To discover the impact of contact duration on the adsorption removal of TC, batch
experiments were performed with contact times ranging from 0 to 60 min. The removal
efficiency of TC onto the prepared nanosorbent as a function of contact time is illustrated in
Figure 6. The adsorption is a multistep process, with quick removal in the first 5 min and
relatively gradual adsorption from 10 to 60 min. At 30 min, the TC removal rate reached
equilibrium with a maximum removal of 95%. The results may be explained by the large
quantity of vacant active sites and the appropriate pore size of the nanosorbent surface,
which facilitate internal mass transfer and the progress of the adsorption process [17].
Nevertheless, due to the accumulation of TC molecules on the nanosorbent surface and
an increase in internal diffusion resistance, the adsorption rate gradually decreased after
30 min. Overall, the findings suggest that the produced nanosorbent has a preference for
adsorbing TC molecules and are in good agreement with previous results [15].

2.3.4. pH Influence

Numerous studies have emphasized the substantial impact of solution pH on TC
adsorption in aqueous media [14,16,18]. Determining the optimal pH is crucial for eval-
uating the interactions between a nanosorbent and TC ions about adsorption efficiency.
Different pH levels may influence the surface charge of the nanosorbent, the distribution
of TC species, and the degree of dissociation of functional groups on the active sites of
TC ions.



Plants 2024, 13, 3386 6 of 17

Plants 2024, 13, x FOR PEER REVIEW 6 of 18 
 

 

and relatively gradual adsorption from 10 to 60 min. At 30 min, the TC removal rate 
reached equilibrium with a maximum removal of 95%. The results may be explained by 
the large quantity of vacant active sites and the appropriate pore size of the nanosorbent 
surface, which facilitate internal mass transfer and the progress of the adsorption process 
[17]. Nevertheless, due to the accumulation of TC molecules on the nanosorbent surface 
and an increase in internal diffusion resistance, the adsorption rate gradually decreased 
after 30 min. Overall, the findings suggest that the produced nanosorbent has a preference 
for adsorbing TC molecules and are in good agreement with previous results [15]. 

 
Figure 6. Impact of contact duration on tetracycline (TC) adsorption by ZnO NPs. Experimental 
conditions: nanosorbent dosage, 0.10 g; pH, 7.6; starting TC concentration, 10 ppm; temperature, 25 
°C. 

2.3.4. pH Influence 
Numerous studies have emphasized the substantial impact of solution pH on TC ad-

sorption in aqueous media [14,16,18]. Determining the optimal pH is crucial for evaluating 
the interactions between a nanosorbent and TC ions about adsorption efficiency. Different 
pH levels may influence the surface charge of the nanosorbent, the distribution of TC spe-
cies, and the degree of dissociation of functional groups on the active sites of TC ions. 

Al-Tawarh et al., 2023 [14] suggested that at the point of zero charge pH (pHPZC), the 
adsorbent surface has no net charge at a specific pH value. In other words, the ZnO NP 
surfaces have an equal balance of negatively and positively charged groups. It is estab-
lished that when the solution’s pH is below pHPZC, the nanosorbent’s surface is positively 
charged. Conversely, when the pH exceeds pHPZC, the surface of the nanosorbent becomes 
negatively charged [19]. Thus, understanding pHPZC provides insight into how pH affects 
adsorption. 

The relation between the percentage of TC adsorbed at various pH levels is repre-
sented in Figure 7. The results show that the optimum adsorption of TC onto ZnO NPs 
occurred at pH 8.5, achieving a removal efficiency of 95%. This suggests that neutral pH 
values (~pHpzc) favor TC adsorption onto ZnO NPs. At pH < pHpzc, the abundance of pro-
tons (H+) competes with TC ions for active adsorption sites, decreasing TC adsorption. 
Conversely, at pH > pHpzc, the deprotonated forms of TC predominate, resulting in nega-
tively charged surfaces that create electrostatic repulsion with the similarly charged TC 
ions, reducing adsorption [20]. Similar findings have been reported in studies on TC re-
moval from aqueous solutions [21]. 

Figure 6. Impact of contact duration on tetracycline (TC) adsorption by ZnO NPs. Experimental
conditions: nanosorbent dosage, 0.10 g; pH, 7.6; starting TC concentration, 10 ppm; temperature,
25 ◦C.

Al-Tawarh et al., 2023 [14] suggested that at the point of zero charge pH (pHPZC),
the adsorbent surface has no net charge at a specific pH value. In other words, the ZnO
NP surfaces have an equal balance of negatively and positively charged groups. It is
established that when the solution’s pH is below pHPZC, the nanosorbent’s surface is
positively charged. Conversely, when the pH exceeds pHPZC, the surface of the nanosorbent
becomes negatively charged [19]. Thus, understanding pHPZC provides insight into how
pH affects adsorption.

The relation between the percentage of TC adsorbed at various pH levels is represented
in Figure 7. The results show that the optimum adsorption of TC onto ZnO NPs occurred
at pH 8.5, achieving a removal efficiency of 95%. This suggests that neutral pH values
(~pHpzc) favor TC adsorption onto ZnO NPs. At pH < pHpzc, the abundance of protons (H+)
competes with TC ions for active adsorption sites, decreasing TC adsorption. Conversely,
at pH > pHpzc, the deprotonated forms of TC predominate, resulting in negatively charged
surfaces that create electrostatic repulsion with the similarly charged TC ions, reducing
adsorption [20]. Similar findings have been reported in studies on TC removal from
aqueous solutions [21].
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nanosorbent dosage, 0.10 g; contact time, 30 min; starting TC concentration, 10 ppm; temperature,
25 ◦C.

2.4. Effect of Temperature

The effects of temperature on adsorption were examined over a range of 25–55 ◦C
to assess the effectiveness of ZnO NPs further. Figure 8 shows that the maximum TC
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adsorption onto ZnO NPs occurred at 25 ◦C, with a removal of 95%. Adsorption efficiency
reduced significantly as the temperature increased. This trend may be attributed to damage
to some active sites due to the temperature rise, reducing the nanosorbent’s ability to bind
with TC molecules. The solubility and mobility of TC may also reduce at high temperatures,
causing reduced adsorption efficiency.
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Figure 8. Impact of temperature on tetracycline (TC) adsorption by ZnO NPs. Experimental condi-
tions: nanosorbent dosage, 0.10 g; pH, 8.5; contact time, 30 min; starting TC concentration, 10 ppm.

Thermodynamic experiments were performed to examine the relationship between
adsorption capacity and temperature. The thermodynamic parameters, including thermo-
dynamic equilibrium constant (Kd, Equation (1)), enthalpy changes (∆H0, Equation (2)),
entropy (∆S0, Equation (2)), and Gibbs free energy (∆G0, Equation (3)), were calculated and
are presented in Table 1. R and T represent the universal gas constant (8.314 J/mol·K) and
temperature (K), respectively.

Kd =
qe

Ce
(1)

ln Kd =
∆S0

R
− ∆H0

RT
(2)

∆G0 = ∆H0 − ∆S0T (3)

Table 1. Thermodynamic parameters for tetracycline adsorption using ZnO NPs.

Nanosorbent ∆G◦ (KJ/mol) △S◦ (1/KJ mol) △H◦ (KJ/mol)

ZnO NPs −6.42 23.79 0.55
−6.74 - -
−6.92 - -
−7.06 - -
−7.16 - -

The values of the ∆G0, ∆S0, and ∆H0 presume that TC adsorption onto ZnO NPs is
spontaneous, endothermic, and more disordered in nature, with the system tending to
reach an equilibrium position.

2.5. Adsorption Kinetic onto ZnO NPs

The kinetics of TC adsorption were evaluated using the pseudo-1st-order (Equation (4))
and pseudo-2nd-order (Equation (5)) kinetic models. The adsorption amount in mg of TC
per g of ZnO NPs at equilibrium (qe) and various contact durations (qt) was calculated
(Table 2). The linearized plots of the kinetic models are represented in Figure 9. The level of
linearity (R2) values indicated that TC adsorption onto each prepared ZnO NP followed a
pseudo-2nd-order model. This model suggests the dominance of chemisorption behavior
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between TC molecules and ZnO NP surfaces. The kinetics results corresponded with
previous literature data [16].

ln(q e − qt) = lnqe − K1t (4)

t
qt

=
1

K2q2
e
+

t
qe

(5)

Table 2. Kinetic parameters for tetracycline adsorption using ZnO NPs.

Kinetic Model Parameter
Nanosorbent

ZnO NPs

qe, exp (mg/g) 41.840
Pseudo-1st order qe, cal (mg/g) 0.748

k1 (1/min) 0.000043
R2 0.121

Pseudo-2nd order qe, cal (mg/g) 9.302
k2 (g/min.mg) 1.628

R2 0.9998Plants 2024, 13, x FOR PEER REVIEW 9 of 18 
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2.6. Isotherm Parameters for the Adsorption onto ZnO NPs

Adsorption isotherms were studied to assess TC distribution between the solid and
aqueous phases as a function of TC concentration, the interaction between nanosorbents
and TC, and the adsorption behavior (whether it involves monolayer or multilayer adsorp-
tion). The Langmuir, Freundlich, and Temkin isotherm models were applied using linear
regression analysis, as represented by (Equation (6)), (Equation (7)), and (Equation (8)),
respectively. All calculated isotherm parameters for TC adsorption are summarized in
Table 3.

Ce

qe
=

1
qmaxKL

+
Ce

qmax
(6)

lnqe = lnKF +

(
1
n

)
lnCe (7)

qe = BTlnKT + BTlnCe (8)
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Table 3. Isotherm parameters for tetracycline adsorption using ZnO NPs.

Isotherm Model Parameter Value

Langmuir qm (mg/g) 294.118
KL (L/mg) 0.037
RL (dimensionless) 0.728
R2 0.514

Freundlich KF (mg1−1/n·g−1·L−1/n) 0.083
1/n 1.1489
R2 0.840

Temkin BT (J/mol) 10.845
KT (L/mg) 2.260
R2 0.918

As shown in Figure 10, the experimental data of TC adsorption onto ZnO NPs best
fit the Temkin isotherm model based on R2 values. The higher BT and KT values indicate
stronger adsorption interactions between ZnO NPs and TC, demonstrating that TC is more
strongly attracted to the surface of ZnO NPs. Additionally, a higher concentration of TC on
the surface of ZnO NPs reflects the level of favorability of TC adsorption [10,22].
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2.7. Atomistic Models of the Adsorbent and Adsorbate
2.7.1. Geometry Optimization

The molecular geometry was optimized to assess its influence on the optoelectronic
properties of TC. Calculations were performed at the DFT/B3LYB and 6–31G (d, p) basis set
levels to optimize the ground state configuration of TC. Figure 11 presents the optimized
geometry of TC with atom numbers.

Plants 2024, 13, x FOR PEER REVIEW 10 of 18 
 

 

 

 
Figure 10. Isotherm plots of (a) Langmuir isotherm, (b) Freundlich isotherm, and (c) Temkin iso-
therm of tetracycline adsorption onto ZnO NPs. 

2.7. Atomistic Models of the Adsorbent and Adsorbate 
2.7.1. Geometry Optimization 

The molecular geometry was optimized to assess its influence on the optoelectronic 
properties of TC. Calculations were performed at the DFT/B3LYB and 6–31G (d, p) basis 
set levels to optimize the ground state configuration of TC. Figure 11 presents the opti-
mized geometry of TC with atom numbers. 

 
Figure 11. Optimized geometry of tetracycline, showing atom positions (red = oxygen, blue = nitro-
gen, grey = carbon). 

  

R² = 0.9184

0

5

10

15

20

25

-1 -0.5 0 0.5 1 1.5

qe
 (m

g/
g)

Ln Ce

c

Figure 11. Optimized geometry of tetracycline, showing atom positions (red = oxygen, blue = nitrogen,
grey = carbon).

2.7.2. Frontier Molecular Orbital Analysis

The Frontier molecular orbitals (FMOs), namely the Highest Occupied Molecular
Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), are crucial in
determining molecular interactions, chemical reactivity, kinetic stability, and electrical and
optical characteristics. So, FMO analysis was conducted to investigate the reactivity and
electron distribution in the designed systems [23]. The calculated HOMO and LUMO
energies of TC and zinc oxide are presented in Figure 12.
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HOMO energy represents a molecule’s capacity to donate electrons, while LUMO
energy corresponds to its ability to accept electrons. The energy gap between HOMO
and LUMO plays a pivotal role in chemical reactivity, with a smaller gap indicating lower
kinetic stability.

Figure 12 illustrates that HOMOs are located on the ring substituted by dimethylamine,
while LUMOs are located on the oxygen side of the other ring atoms present in TC. We
can, therefore, deduce that the dimethylamine molecule acts as an electron donor, while
the ring oxygens present in TC act as electron acceptors. In the case of zinc oxide, both
HOMO and LUMO are distributed across the entire oxide. This indicates that zinc oxide
can act as an electron donor and acceptor. The electronic properties of TC and zinc oxide
are summarized in Table 4.

Table 4. Global reactivity descriptors for tetracycline and zinc oxide.

Parameter Tetracycline Zinc Oxide

LUMO (eV) −2.73 −4.09
HOMO (eV) −5.50 −6.63
Egap = Abs (EHOMO −ELUMO) (Energy gap) (eV) 2.77 2.53
Ionization energy [I = −EHOMO]/eV 2.73 4.09
Electron Affinity [A = −ELUMO]/eV 5.50 6.63
Chemical Hardness η = (I − A)/2]/eV −1.38 −1.26
Chemical Potential [u = −(I + A)/2]/eV −4.11 −5.36
Softness of Molecule (s = I/2 η]/eV −0.98 −1.61
Electronegativity [x = I + A)/2]/eV 4.11 5.36
Electrophilicity Index (ω = u2/2η]/eV −6.11 −11.33

The calculated LUMO and HOMO energies for TC were −2.73 and −5.50 eV, respec-
tively (Table 4), resulting in a gap of 2.77 eV. This narrow gap suggests the presence of
charge transfer interactions and indicates that TC is highly polarizable and reactive.

Similarly, the HOMO and LUMO energies for zinc oxide were calculated as −6.63 eV
and −4.09 eV, respectively, with an energy gap of 2.53 eV. These results indicate that zinc
oxide, like TC, is highly reactive due to its small energy gap.

2.7.3. Molecular Electrostatic Potential Analysis

The Molecular Electrostatic Potential (MEP) map was used to analyze charge distribu-
tion and photophysical properties, helping to identify regions susceptible to nucleophilic
and electrophilic attacks [24]. Figure 13 shows MEP charts for TC and zinc oxide, with
red indicating electron-rich sites (susceptible to electrophilic attack) and blue representing
electron-poor sites (prone to nucleophilic attack) [25,26].

For TC, electron-rich sites are located near the dimethylamine group, making them
susceptible to electrophilic attacks. Conversely, electron-poor sites are found near the
OH group. In zinc oxide, electron-rich sites are located near the oxygen atoms, while
electron-poor sites are adjacent to the Zn atom. This means that the dimethylamine group
preferentially adsorbs onto the Zn atom on the ZnO surface, while the −OH molecule
adsorbs onto the oxygen atoms of this surface.

These results suggest that both molecules can interact with each other due to the
presence of electrophilic and nucleophilic sites.

2.7.4. Non-Covalent Interaction Analysis

We employed non-covalent interaction (NCI) diagrams generated using the Multi-
wfn program to examine the intermolecular interactions. These diagrams highlighted
weak forces such as steric hindrance, van der Waals interactions, and hydrogen bonding,
providing valuable insights into the degree of engagement between the dopant and the
surface [27]. The NCI diagrams offer a detailed view of the interactions within the TC
molecule, often called weak forces, and include steric hindrance, van der Waals forces,
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and hydrogen bonding. Figure 14 shows the NCI and reduced density gradient (RDG)
diagrams for TC.
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Figure 14. Non-covalent interaction (NCI) and reduced density gradient (RDG) diagrams for tetracycline.

The blue regions correspond to hydrogen bonding. The strong attraction of these
bonds leads to a decrease in electron density λ2(ρ), while repulsion results in an increase in
λ2(ρ). RDG analysis, as developed by Johnson et al. [27], was employed to evaluate the type
of NCIs present in TC. This analysis uses the sign of λ2 and a set of colors to indicate the
nature and strength of the NCIs: sign(λ2)ρ < 0 indicates hydrogen bonding (blue), sign(λ2)ρ
close to zero signifies van der Waals interactions (green), and sign(λ2)ρ > 0 suggests steric
effects (red) [28].

Interactions were categorized within a range of −0.035 to 0.02 on a color scale. Red
represents destabilizing interactions, blue denotes stabilizing regions, and green indicates
weak interactions. A blend of colors depicts mixed interactions. Scatterplot colors were
determined based on iso-surface values ranging from −0.05 to 0.05 atomic units, with
distribution along the x-axis determined by the sign of (λ2)ρ.

As depicted in Figure 14, the type and strength of the NCIs can be assessed by
analyzing electron density as a function of sign(λ2)ρ. The RDG analysis reveals that blue
regions correspond to hydrogen bonding, green regions to van der Waals interactions, and
red regions to steric effects. Mixed interactions appear as a blend of colors, showing the
complex interaction landscape within TC.
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3. Materials and Methods
3.1. Materials and Instrumentation

Zinc (II) chloride (ZnCl2) was acquired from Gainland Chemical Company (Flintshire,
UK). Tetracycline (TC, C22H24N2O8) was purchased from Amresco (Solon, OH, USA).
Ethanol (EtOH, C2H6O, 99.5%) was obtained from Merck (Darmstadt, Germany). All
solutions and suspensions were prepared using deionized water (D.H2O, 18.2 µΩ cm−1).
T. vulgaris leaves were collected from the southern Jordan area. The Department of Botany,
Faculty of Science, Mutah University, Al-Karak, Jordan confirmed the taxonomy.

The pH of the solutions was measured using a pH meter (HANNA instruments,
HI5521-02). An orbital shaker (LAUDA, Königshofen, Germany) was employed to shake
solution contents at room temperature. A hot plate (Bibby Scientific HB502, Stone, UK) was
used to heat the solutions. A Perkin-Elmer Model Lambda 25 UV–vis spectrophotometer
was utilized to monitor the residual TC in the content in the solution at λmax = 280 nm.

The structural and phase purity of ZnO nanoparticles was determined by X-ray
powder diffraction (XRD). Using a Cu Kα radiation (λ = 1.5406 Å) source at 40 kV and
30 mA, as well as a scan rate of 2◦/min, the Panalytical X’Pert Pro equipment (Malvern
Panalytical GmbH, Kassel, Germany) via CuK irradiation (λ = 1.5406 Å).

Scanning Electron Microscopy (SEM) was used to study their morphology. Thermo
ScientificTM Quattro ESEM (ThermoFisher Scientific, Paisley, UK) was used for SEM with
an enhanced voltage of 15 kV.

3.2. General Protocol for T. vulgaris Extract

The freshly collected T. vulgaris was washed with tap water followed by D.H2O to
remove impurities. The sample was shade-dried, ground to powder, and stored at ambient
temperature. T. vulgaris extract was prepared in a conical flask by mixing 20 g of the plant
powder with 200 mL of boiled D.H2O for 90 min. The mixtures were allowed to reach
ambient temperature, filtered through Whatman No. 1 filter paper, and centrifuged for
30 min at 4000 rpm. The final extract was stored at 4 ◦C for further studies [9].

3.3. Fabrication of ZnO NPs

ZnO NPs were prepared in a round-bottom flask, by adding 5 mL of ZnCl4 (0.065 M)
dropwise to 5 mL of T. vulgaris leaf extract while stirring (250 rpm) and heating to 90 ◦C.
The pH was adjusted to 12 using NaOH (0.1 M) and HCl (0.1 M). The mixture was allowed
to settle, then washed several times with hot D.H2O while stirring for 3 min. It was then
centrifuged for 20 min at 4000 rpm and washed again with D.H2O and EtOH (1:1). The
resulting ZnO NPs were calcined at 400 ◦C for 3 h, ground to powder, and stored for
subsequent experiments (Figure 15).

3.4. Adsorption Experiments Design

The TC standard solutions were prepared by weighing 0.10 g of TC and dissolving
it in 1 L of D.H2O. The stock solution was appropriately diluted with D.H2O to generate
the desired 1–50 ppm concentrations. Adsorption of TC onto the prepared ZnO NPs was
performed under controlled conditions. Batch adsorption experiments were conducted
by mixing various amounts of ZnO NPs with TC solution in different ratios (w/w%).
The operational parameters affecting TC adsorption, including adsorbent dosage (g), pH,
contact time (min), temperature (◦C), and initial TC concentration (ppm), were investigated.

The treatment process was performed under controlled conditions. The Erlenmeyer
flasks were tightly wrapped with aluminum foil to avoid light effects throughout the TC
adsorption experiments. The adsorbents and TC were added to 50 mL of aqueous media
and shaken at 250 rpm in an orbital shaker until equilibrium was established. Solutions of
0.1 M HCl and 0.1 M NaOH were used to adjust and maintain the initial pH of the solutions.
The NPs containing adsorbed TC were separated via a micro-filter membrane (0.22 µm).
The residual TC was analyzed in the supernatant using a UV-vis spectrophotometer at
λmax = 280 nm.
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The TC adsorption efficiency and adsorption capacity (qe) of all adsorbents were
calculated using Equations (9) and (10). The mass of the ZnO NPs (W), the aqueous media
volume (V), the starting concentration of TC solution (Ci), and the ultimate concentration
of TC (Cf) were used in the calculations.

Removal Efficiency (%) =
(Ci − Ct)

Ci
× 100 (9)

qe(mg/g) =
(Ci − Ct)× V

W
(10)

3.5. Methodology Validation

Quality assurance of the results obtained in TC residue analysis in samples can be
measured in terms of external calibration and linearity limit (R2), detection limit (LOD,
Equation (11)), limit of quantitation (LOQ, Equation (12)), precision of the modified proce-
dure, and verification of the presented results. Additionally, the recovery rates (Recovery
%, Equation (13)) of TC can be considered a validation measure for the quality of our
procedure. Here, σ represents the standard deviation (SD) for the blank sample (without
adsorbent), and S is the slope of the calibration curve for TC.

LOD = 3.3
(σ

S

)
(11)

LOQ = 10
(σ

S

)
(12)

Recovery rate (%) =

(
Amount of TC recovered

Amount of TC initially present

)
× 100% (13)

3.6. Computational Statistics

To investigate the mechanism of action between TC and zinc oxide, we employed
density functional theory (DFT). DFT has become the leading method for exploring the
electronic and chemical spectroscopic characteristics in quantum mechanics [29]. This study,



Plants 2024, 13, 3386 15 of 17

grounded in quantum mechanical principles, presents molecular structures visualized using
Gauss View 6.0.16. All computational models were theoretically evaluated using Gaussian
09 software [30].

The geometric parameters for all configurations were determined using the DFT
method, employing the B3LYB functional and a 6–31 G (d, p) basis set. This basis was
selected for its proven reliability in the literature for molecules of this type [31,32]. This con-
figuration was deemed optimal for comprehensively examining the molecules, especially
for evaluating their optical properties and geometric attributes.

To further explore the relationships between the compounds’ different components,
topological analyses were conducted using Visual Molecular Dynamics (VMD) and Multi-
wfn programs [33,34]. This approach relies on minimizing non-covalent interaction density
(NCI-RDG) calculations to improve the detection of interactions within the crystal structure.

4. Conclusions

This study highlights the green catalytic synthesis of ZnO NPs using T. vulgaris leaf
extract. The produced ZnO nanoparticles were characterized by XRD and SEM analysis.
The synthesized ZnO NPs demonstrated enhanced removal of TC from aqueous systems,
with a maximum removal efficacy of 95%. Experimental investigations were conducted
to optimize various parameters affecting TC adsorption onto ZnO NPs. The adsorption
followed a pseudo-2nd-order kinetic model and was best described by the Temkin isotherm
model. Thermodynamic data indicate that the adsorption process was spontaneous, en-
dothermic, and increased in disorder. Overall, the green synthesis approach using plant
extract-derived ZnO NPs presents a promising avenue for further research into developing
ZnO nanoparticles with tailored properties for water treatment and biomedical applications.
The results from DFT calculations align well with experimental findings.
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