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Samy Vilhes

September 2024

Abstract

The Neural Tangent Kernel (NTK) has become a powerful framework
for analyzing the behavior of deep neural networks in the infinite-width
limit. This paper presents a concise overview of the key theoretical foun-
dations of NTK, covering its origins, the proof of deterministic behavior
at initialization, and its role in bounding the training loss for regression
tasks. Additionally, we extend this analysis by establishing a bound for
the training loss in classification problems. Each theoretical property of
the NTK is validated through experiments on various datasets.
The code can be found here: https://github.com/vilhess/NTK.

1 Introduction

Figure 1: One hidden layer ANN with
width H

Artificial Neural Networks (ANNs)
are employed in a wide range of tasks,
including market prediction, image
classification, image generation, and
anomaly detection. Understanding
the training dynamics of ANNs is cru-
cial for improving their performance
and interpretability. The Neural Tan-
gent Kernel (NTK) appeared in 2018
in [2]. The NTK provides a power-
ful framework for studying these dy-
namics. Notably, in the case of an
infinitely wide ANN (when H → ∞
in Fig. 1), the NTK becomes deter-
ministic at initialization, remains constant during training, and the network’s
behavior converges to kernel regression, with the NTK serving as the kernel.
The theoretical foundation of NTK relies on the understanding that an infinitely
wide ANN behaves like a Gaussian process.
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2 Training an Artificial Neural Network

Designing the architecture of an ANN f is only one aspect of achieving optimal
performance. The network must also be trained on a well-structured dataset,
denoted as (Xtrain,Ytrain), using an appropriate loss function L and optimized
over several iterations t via gradient descent. This process iteratively updates
the parameters θt of the ANN.
Let us define the following:

• (x, yi): a data point consisting of input vector x and its corresponding
label yi (either a scalar or a class) from the training set (Xtrain,Ytrain)

• fθt(x): the prediction made by the ANN f , parameterized by θt, for input
x

• l(fθt(x), yi): the prediction error for sample i, where l is the individual
loss function

• L = 1
N

∑N
i=1 l(fθt(x), yi): the overall loss function averaged over N train-

ing samples

• η: the learning rate, controlling the step size of each update

• ∇fG: the gradient of a function G with respect to f

Using gradient descent, the parameters update rule is expressed as:

θt+1 = θt − η∇θL

This process allows the model to converge to a local minimum of the loss func-
tion.

Algorithm 1 Gradient Descent for Neural Network Training

1: Input: Dataset (Xtrain,Ytrain), initial parameters θ0, learning rate η, iter-
ations T

2: Output: Parameters θT
3: for t = 0 to T − 1 do
4: Compute predictions fθt(x)

5: Calculate loss: L =
∑N

i=1 l(fθt(x), yi)
6: Update: θt+1 = θt − η∇θL
7: end for
8: Return θT

3 Introduction to the Neural Tangent Kernel

3.1 Apparition of the Neural Tangent Kernel

We recall that the parameter update step is given by:

θt+1 = θt − η∇θL
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Rearranging the terms, we obtain:

θt+1 − θt
η

= −∇θL

In general, we use a small learning rate η to ensure stable convergence. Conse-
quently, the update step can be viewed as gradient flow, which represents the
time-continuous analog of gradient descent.

θt+1 − θt
η

→ ∂θt
∂t

Thus:
∂θt
∂t

= −∇θL

We are interested in the training dynamic of the ANN so the quantity
∂fθt
∂t .

Considering the chain-rule:

∂fθt
∂t

=
∂fθt
∂θt

∂θt
∂t

Where
∂fθt
∂θt

represents a vector of derivatives. Assuming we have P parameters
:

∂fθt
∂θt

= (
∂fθt
∂θ1t

,
∂fθt
∂θ2t

, . . .
∂fθt
∂θPt

)

With the definition of L we have:

∇θL =

N∑
i=1

∂fθt(xi)

∂θt

∂l(fθt(xi), yi)

∂f

Thus we have:

∂fθt(xj)

∂t
= −

N∑
i=1

(
∂fθt(xj)

∂θt

)T
∂fθt(xi)

∂θt

∂l(fθt(xi), yi)

∂f

Where the quantity in red represents the value of the NTK between (x, x′).
The NTK is a squared matrix N ×N , symmetric positive semidefinite (because

the NTK can be seen as
(
∇θtfθt(Xtrain)

)T∇θtfθt(Xtrain)). Thus we write:

Θt
i,j =

(
∂fθt(xi)

∂θt

)T
∂fθt(xj)

∂θt

The NTK depends on the parameters at timestep t. Initializing the same ar-
chitecture twice will yield two models with different parameters, resulting in
distinct NTK values at initialization, denoted as Θ0. Furthermore, as training
progresses, the parameters are updated, causing the NTK to evolve over time,
such that Θt ̸= Θt′ for t ̸= t′.
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3.2 Properties of the Neural Tangent Kernel

In the case of an infinitely wide ANN, the NTK exhibits the following properties:

• It is deterministic at initialization.

• It remains constant during training.

In this discussion, we will focus on proving the NTK’s determinism at initializa-
tion. To understand this proof, a solid grasp of the theory linking infinitely-wide
neural networks to Gaussian processes is essential.

4 Neural Networks and Gaussian Processes

An equivalence between infinitely wide single-hidden-layer ANN and Gaussian
processes was established by [4] in 1994. This foundational work demonstrated
how the behavior of such neural networks can be understood in the context of
Gaussian processes. Later, in 2017, [3] extended this result, showing that the
same equivalence holds for each scalar output of an infinitely wide deep ANN.
This extension highlights the broader implications of the relationship between
neural networks and Gaussian processes, particularly in the context of deep
learning architectures.

4.1 Introduction to Gaussian Processes

A Gaussian process (GP) is defined as a collection of random variables, any
finite number of which have a joint Gaussian distribution. A GP is specified by
a mean function m(x) and a covariance function (or kernel) k(x, x′):

f(x) ∼ GP(m(x), k(x, x′))

where
m(x) = E[f(x)]

and
k(x, x′) = Cov(f(x), f(x′))

The mean function m(x) captures the average behavior of the process, while the
covariance function k(x, x′) encodes assumptions about the function’s smooth-
ness and variability.

4.2 Infinitely wide single-hidden-layer ANN as GP

In this section, we will provide a mathematical demonstration of the connec-
tion between wide single-hidden-layer ANN. We will derive how, in the limit
of infinite width, the distribution of the outputs of ANN can be described by
Gaussian processes.
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We consider a single-hidden-layer ANN fθ0 at initialization of width H. For
simplicity, we will denote this network as f . The function f maps inputs from
RI to outputs in RK :

f : RI → RK

where:

• I represents the dimension of the input space

• K denotes the dimension of the output space.

To simplify the calculations, we will consider the ANN f without bias terms.
However, it is important to note that the proof can be extended to include bias
terms.
In fact :

f(x) =

√
cσ
H

W 1σ(

√
1

I
W 0x)

where:

• W 1 ∈ RK×H with W 1
i,j ∼ N (0, 1)

• W 0 ∈ RH×I with W 0
i,j ∼ N (0, 1)

• σ the activation function

• cσ = (E[σ(z)2])−1 a scaling factor preserving norms

We can represent the kth output by:

fk(x) =

√
cσ
H

H∑
j=1

W 1
k,jhj(x)

with:

hj(x) = σ

(√
1

I

I∑
i=1

W 0
j,lxl

)
Firstly we have:

E[W 1
k,jhj(x)] = E[W 1

k,j ]·E[hj(x)] = 0 (because E[W 1
k,j ] = 0) ∀ (i, j) ∈ [I]×[H]

Secondly:

Var(W 1
k,jhj(x)) = E

[(
W 1

k,jhj(x)
)2]− E[W 1

k,j ] · E[hj(x)]

= E
[(
W 1

k,jhj(x)
)2]

= E
[(
W 1

k,j

)2] · E
[(
hj(x)

)2]
= E

[(
hj(x)

)2]

5



Using the Central Limit Theorem we have:

1
H

∑H
j=1 W

1
k,jhj(x)− E[W 1

k,jhj(x)]√
Var(W 1

k,jhj(x))√
H

−→
H→∞

N (0, 1)

1
H

∑H
j=1 W

1
k,jhj(x)√

E
[
(hj(x))2

]
√
H

−→
H→∞

N (0, 1)

1√
H

H∑
j=1

W 1
k,jhj(x) −→

H→∞
N (0,E

[
(hj(x))

2
]
)

√
cσ
H

H∑
j=1

W 1
k,jhj(x) −→

H→∞
N (0, cσE

[
(hj(x))

2
]
)

Thus we have in the infinite-width context:

fk(x) ∼ N (0, cσE
[
(hj(x))

2
]
)

Thus:
{fk(x)}ti=1 ∼ GP(0,Σ1)

We have m(x) = 0 because E[fk(x)] = 0.
Furthermore:

Σ1(x, x′) = Cov(fk(x), fk(x
′))

= E[fk(x)fk(x′)]− E[fk(x)]E[fk(x′)]

= E[fk(x)fk(x′)]

= E[
(√cσ

H

H∑
j=1

W 1
k,jhj(x)

)(√cσ
H

H∑
m=1

W 1
k,mhm(x′)

)
]

=
cσ
H

H∑
j=1

H∑
m=1

E[W 1
k,jW

1
k,m]E[hj(x)hm(x′)]

=
cσ
H

H∑
j=1

E[
(
W 1

k,j

)2
]E[hj(x)hj(x

′)]

=
cσ
H

H∑
j=1

E[hj(x)hj(x
′)]

−→
H→∞

cσE[h1(x)h1(x
′)]

Because:

E[W 1
k,jW

1
k,m] =

{
0 if j ̸= m,

Var(W 1
k,j) = 1 if j = m.
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And:
E[hj(x)hj(x

′)] = E[hm(x)hm(x′)] ∀(j,m) ∈ [H]× [H]

Thus we have:
{fk(x)}ti=1 ∼ GP(0,Σ1)

Where:
Σ1(x, x′) = cσE[h1(x)h1(x

′)]

We saw that:

h1(x) = σ

(
1√
I

I∑
l=1

W 0
1,lxl

)
Since {W 0

1,l}Il=1 are iid and follows a Gaussian distribution, g(x) = 1√
I

∑I
l=1 W

0
1,lxl

is Gaussian distributed with :

E[g(x)] = 0

and:

Var(g(x)) = E[
( 1√

I

I∑
l=1

W 0
1,lxl

)( 1√
I

I∑
m=1

W 0
1,mxm

)
]

=
1

I
E[

I∑
l=1

I∑
m=1

W 0
1,lW

0
1,mxlxm]

=
1

I

I∑
l=1

I∑
m=1

E[W 0
1,lW

0
1,m]xlxm

=
1

I

I∑
l=1

E[(W 0
1,l)

2]xlxl

=
1

I

I∑
l=1

xlxl =
xTx

I

Because:

E[W 0
k,jW

0
k,m] =

{
0 if j ̸= m,

Var(W 0
k,j) = 1 if j = m.
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Then {g(x)}ti=1 ∼ GP(0,Σ0) with :

Σ0(x, x′) = Cov(g(x), g(x′))

= E[
( 1√

I

I∑
l=1

W 0
1,lxl

)( 1√
I

I∑
m=1

W 0
1,mx′

m

)
]

=
1

I
E[

I∑
l=1

I∑
m=1

W 0
1,lW

0
1,mxlx

′
m]

=
1

I

I∑
l=1

I∑
m=1

E[W 0
1,lW

0
1,m]xlx

′
m

=
1

I

I∑
l=1

E[(W 0
1,l)

2]xlx
′
l

=
1

I

I∑
l=1

xlx
′
l =

xTx′

I

In final we have:

Σ1(x, x′) = cσE(u,v)∼N (0,Λ1(x,x′))[σ(u)σ(v)]

With:

Λ1(x, x′) =

(
Σ0(x, x) Σ0(x, x′)
Σ0(x′, x) Σ0(x′, x′)

)

4.3 Infinitely wide L-layer ANN as GP

In the previous section we saw how an infinitely wide single-hidden-layer ANN
acts as a GP. We will extend this property for an infinitely wide L-hidden-layers
ANN.
Let’s denote:

fk(x) = fL+1
k (x)

Where:f l
k(x) =

√
cσ

Nl−1

∑Nl−1

j=1 W l
i,jh

l−1
j (x), f0

k (x) =
√

1
I

∑I
j=1 W

0
i,jxj

hl
j(x) = σ(f l

j(x))

With:

• Nl is the width of the lth layer

• W l ∈ RNl×Nl−1 the weigth matrix of the lth layer

• W l
i,j ∼ N (0, 1)
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Given the demonstration from the previous section, we easily see that:

f l
j(x) ∼ N (0, cσE[(hl−1

j (x))2]

Then: (
f l
j(x), f

l
j(x

′)
)
∼ N (0,Λl(x, x′))

Where:

Λl(x, x′) =

(
Σl−1(x, x) Σl−1(x, x′)
Σl−1(x′, x) Σl−1(x′, x′)

)
And:

{f l
k(x)}ti=1 ∼ GP(0,Σl−1)

Where:

Σl−1
i,j = cσE[hl−1

1 (x)hl−1
1 (x′)]

= cσE[σ(f l−1
1 (x)σ(f l−1

1 (x′)]

= cσE(u,v)∼N (0,Λl−1(x,x′)[σ(u)σ(v)]

To conclude we have:

{f l
k(x)}ti=1 ∼ GP(0,Σl−1)

Where:
Σl−1

i,j = cσE(u,v)∼N (0,Λl−1(x,x′))[σ(u)σ(v)]

and:

Σ0(x, x′) =
xTx′

I

We have demonstrated that each node k in layer l, denoted as f l
k(·), follows a

Gaussian process. In the next section, we will explore how the theory behind
NNGP is connected to the theory of the NTK.

5 Infinitely wide L-layer ANN and NTK

5.1 The deterministic fashion of the NTK

To prove the deterministic nature of the NTK at initialization for an infinitely
wide L-layer ANN, we must first rely on the theory behind NNGP. This is
essential because both frameworks apply to infinitely wide L-layer ANN. We
will consider the model to output a scalar (a regression problem for example).
Changing a little bit the notations from previously, we recall that:

fθ0(x) = W (L+1)

√
cσ
NL

σ(W (L)

√
cσ

NL−1
σ(...

√
cσ
N1

σ(W (1)

√
1

I
x)))

Which can be seen as :
fθ0(x) = f (L+1)(x) ∈ R
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Where:
f l(x) = W (l)h(l−1)(x) ∈ RNl

f l
i (x) =

Nl−1∑
j=1

W
(l)
ij h

(l−1)
j (x), E[f l

i (x)] = 0

and:

h(l)(x) =

√
cσ
Nl

σ(f (l)(x)) ∈ RNl , h(0)(x) =

√
1

I
x

The NTK at initialization between 2 samples (x, x′) is the following quantity:

Θ0(x, x′) =
(∂fθ0(x)

∂θ0

)T ∂fθ0(x
′)

∂θ0

= ⟨∂fθ0(x)
∂θ0

,
∂fθ0(x

′)

∂θ0
⟩

Since we have:

Θ0 =

(
W (1),W (2), . . . ,W (L+1)

)
The NTK can be computed this way:

Θ0(x, x′) =

L+1∑
l=1

⟨∂fθ0(x)
∂W l

,
∂fθ0(x

′)

∂W l
⟩ (1)

Let b(l)(x) ∈ RNl :

b(l)(x) =

{
1 if l ̸= L+ 1,√

cσ
Nl

diag(σ̇(f (l)(x)))W (l+1)T b(l+1)(x) else.

This way we have:

∂fθ0(x)

∂W l
= b(l)(x)h(l−1)(x)T ∈ RNl×Nl−1 (2)

[
b(l)(x)h(l−1)(x)T ]m,n =

[
b(l)(x)

]
m
·
[
h(l−1)(x)

]
n

We have:

⟨b(l)(x)h(l−1)(x)T , b(l)(x′)h(l−1)(x′)T ⟩ =
Nl∑

m=1

Nl−1∑
n=1

[
b(l)(x)h(l−1)(x)T ]m,n

[
b(l)(x′)h(l−1)(x′)T ]m,n

=

Nl∑
m=1

Nl−1∑
n=1

[
b(l)(x)

]
m
·
[
h(l−1)(x)

]
n
·
[
b(l)(x′)

]
m
·
[
h(l−1)(x′)

]
n

=

Nl∑
m=1

[
b(l)(x)

]
m
·
[
b(l)(x′)

]
m
·
Nl−1∑
n=1

[
h(l−1)(x)

]
n
·
[
h(l−1)(x′)

]
n

= ⟨b(l)(x), b(l)(x′)⟩ · ⟨h(l−1)(x), h(l−1)(x′)⟩
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Then using equality 1 and 2:

Θ0(x, x′) =

L+1∑
l=1

⟨b(l)(x)∥b(l)(x′)⟩⟨h(l−1)(x)∥h(l−1)(x′)⟩ (3)

In a first part, we will focus on ⟨h(l−1)(x)∥h(l−1)(x′)⟩:

E[f (l)
i (x).f

(l)
i (x′)] = E[

(Nl−1∑
j=1

W
(l)
ij h

(l−1)
j (x)

)(Nl−1∑
k=1

W
(l)
ik h

(l−1)
k (x′)

)
]

= E[

Nl−1∑
j=1

Nl−1∑
k=1

W
(l)
ij W

(l)
ik h

(l−1)
j (x)h

(l−1)
k (x′)]

=

Nl−1∑
j=1

Nl−1∑
k=1

E[W
(l)
ij W

(l)
ik ]h

(l−1)
j (x)h

(l−1)
k (x′)

=

Nl−1∑
j=1

h
(l−1)
j (x)h

(l−1)
j (x′)

= ⟨h(l−1)(x)∥h(l−1)(x′)⟩

Furthermore we know from Section 4.3:

E[f (l)
i (x).f

(l)
i (x′)] −→

Nl−1→∞
Σl−1(x, x′)

Then:
⟨h(l−1)(x)∥h(l−1)(x′)⟩ −→

Nl−1→∞
Σ(l−1)(x, x′) (4)

From now, let’s focus on:

⟨b(l)(x), b(l)(x′)⟩

For simplicity, we denote D(l)(x) = diag(σ̇(f l(x)) ∈ RNl×Nl

b(l)(x) =

√
cσ
Nl

D(l)(x)W (l+1)T b(l+1)(x)

〈
b(l)(x), b(l)(x′)

〉
=

cσ
Nl

〈
D(l)(x)W (l+1)T b(l+1)(x), D(l)(x′)W (l+1)T b(l+1)(x′)

〉
Since W (l+1) are not independent to b(l+1)(x). Changing W (l+1) by W̃ (l+1),

followings the same distribution as W (l+1) and independant to b(l+1)(x) won’t
change the limits.
Then:
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〈
b(l)(x), b(l)(x′)

〉
=

cσ
Nl

〈
D(l)(x)W (l+1)T b(l+1)(x), D(l)(x′)W (l+1)T b(l+1)(x′)

〉
≃ cσ

Nl

〈
D(l)(x)W̃ (l+1)T b(l+1)(x), D(l)(x′)W̃ (l+1)T b(l+1)(x′)

〉
=

cσ
Nl

Nl∑
i=1

σ̇(f
(l)
i (x))σ̇(f

(l)
i (x′))

Nl+1∑
k=1

Nl+1∑
m=1

W̃
(l+1)
ki W̃

(l+1)
mi b

(l+1)
k (x)b(l+1)

m (x′)

−−−−→
Nl→∞

cσEu,v∼N (0,Λ(l));wz∼N (0,1)∀z∈[Nl+1][σ̇(u)σ̇(v)

Nl+1∑
k=1

Nl+1∑
m=1

wkwmb
(l+1)
k (x)b(l+1)

m (x′)]

= cσEu,v∼N (0,Λ(l))[σ̇(u)σ̇(v)]Ewz∼N (0,1)∀z∈[Nl+1][

Nl+1∑
k=1

Nl+1∑
m=1

wkwmb
(l+1)
k (x)b(l+1)

m (x′)]

= Σ̇(l)(x, x′)

Nl+1∑
k=1

NL+1∑
m=1

b
(l+1)
k (x)b(l+1)

m (x′)Ewz∼N (0,1)∀z∈[Nl+1][wkwm]

= Σ̇(l)(x, x′)

Nl+1∑
k=1

b
(l+1)
k (x)b

(l+1)
k (x′)

= Σ̇(l)(x, x′)
〈
b(l+1)(x), b(l+1)(x′)

〉
=

L∏
l′=l

Σ̇(l′)(x, x′)

So: 〈
b(l)(x), b(l)(x′)

〉
−−−−→
Nl→∞

L∏
l′=l

Σ̇(l′)(x, x′) (5)

Then using equality 3, 4 and 5:

Θ0(x, x′)
∀l∈[L]

−−−−→
Nl→∞

L+1∑
l=1

Σ(l−1)(x, x′)

L∏
l′=l

Σ̇(l′)(x, x′) (6)

That ends the demonstration of the NTK being deterministic at initialization.

5.2 The NTK is constant during training

During the training of an ANN, the weights are continuously updated, leading
to changes in the network’s parameters. Consequently, the NTK, which depends
on these parameters, typically evolves throughout the training. However, in the
case of an infinitely wide ANN, the NTK remains constant during training, as
demonstrated in [1].

Θt = Θ0

12



To verify this property, we will examine the evolution of the relative norm of
the NTK across several architectures with varying widths. We expect that
as the architecture’s width increases, the relative norm will remain closer to
zero, indicating greater constancy during training. These initial experiments
are conducted on the Boston dataset, a regression task where the goal is to
predict the median home value in a neighborhood based on various features
related to that neighborhood.

relative norm =
∥Θt −Θ0∥2

∥Θ0∥2

Figure 2: Evolution of the relative norm of the NTK during the training process
for a regression problem

The results align with our expectations: as the width of the network in-
creases, the evolution of the relative norm becomes more constant and remains
closer to zero. However, there is an exception with models of width 50 and
100, where the smaller model appears more stable than the width-100 model in
our experiments. Despite this anomaly, the results for the larger models remain
consistent with our hypothesis.
While the NTK theory we explored was originally developed for regression prob-
lems, its properties have been extended to ANN with convolutional layers, as
shown in [1], and remain valid for classification tasks. In the case of convolu-
tional layers, the network width is defined by the number of output channels in
each convolution.
We will conduct a similar study on a classification problem using the MNIST
dataset. The first part will focus on a standard ANN, investigating the con-
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stancy of the NTK during classification with dense layers. The second part will
extend the analysis to ANNs with convolutional layers.

Figure 3: Evolution of the relative
norm of the NTK during the train-
ing process for a classification prob-
lem using classic ANN

Figure 4: Evolution of the relative
norm of the NTK during the train-
ing process for a classification prob-
lem using Convolutional CNN

Figure 3 illustrates the evolution of the relative norm of the NTK during train-
ing for a classification problem using classic ANNs. The results are consistent
with previous findings: as the model size increases, the NTK becomes more con-
stant and remains closer to zero throughout the training process. However, for
smaller models, this relationship does not hold; smaller models can sometimes
exhibit greater constancy and remain closer to zero compared to larger models.
However, for very large models, the inequality holds true.
Figure 4, which shows the evolution of the relative norm of the NTK for a
convolutional CNN, demonstrates similar results to the classic ANN. In fact,
the results are more clear for the convolutional layers: the larger the number of
out channels, the more consistent the NTK norm becomes, staying close to zero
throughout the training process. This reinforces the idea that increasing the
number of out channels improves the constancy close to 0 of the NTK during
training.

6 Bounding the Training Loss with the NTK

Having a bound on the evolution of the training loss at initialization allows us
to assess whether an architecture is well-positioned to progress effectively in
the loss space. This can be particularly useful in Neural Architecture Search,
where comparing numerous architectures at initialization is critical for selecting
promising candidates.
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6.1 Bound for a regression problem

Now, let’s revisit regression problems. We consider we train using:

Lt =
1

2
∥Y − fθt(X )∥22

Then:
∇θtLt = (fθt(X )− Y)

We will demonstrate that:

∥Y − fθt(X )∥22 ≤ e−λt
mint∥Y − fθ0(X )∥22 (7)

Here, λt
min represents the smallest eigenvalue of the NTK at time t. In the

case of an infinitely wide ANN, we can substitute λt
min with λ0

min, which is the
smallest eigenvalue of the NTK at initialization. Therefore, we obtain:

∥Y − fθt(X )∥22 ≤ e−λ0
mint∥Y − fθ0(X )∥22 (8)

Hence, The larger λ0
min, the lower Lt is susceptible to be.

Let’s proove 7:
We recall that :

∂fθt(xj)

∂t
= −

N∑
i=1

(
∂fθt(xj)

∂θt

)T
∂fθt(xi)

∂θt

∂l(fθt(xi), yi)

∂f

Then:

∂fθt(X )

∂t
=

∂
(
fθt(X )− Y

)
∂t

= −Θt(fθt(X )− Y) = Θt(Y − fθt(X ))

Considering the spectral decomposition of Θt, we have:

Θt = PtDtP
T
t

Where:

• Pt is orthogonal,

• Dt is diagonal with each entry being eigenvalue of Θt.

Then we have:

min
∥x∥=1

xTΘtx = min
∥x∥=1

xTPtDtP
T
t x

= min
∥x∥=1

(
PT
t x

)T
Dt

(
PT
t x

)
= min

∥y∥=1
yTDty

= λt
min (the minimal eigenvalue of Θt) (9)
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Furthermore:

∂∥Y − fθt(X )∥22
∂t

= −
(
Y − fθt(X )

)∂fθt(X )

∂t

= −
(
Y − fθt(X )

)
Θt(Y − fθt(X ))T

= −∥Y − fθt(X )∥22

(
Y − fθt(X )

)
∥Y − fθt(X )∥

Θt

(
Y − fθt(X )

)T
∥Y − fθt(X )∥

≤ −λt
min∥Y − fθt(X )∥22 (using 9) (10)

We will focus on the variation of exp(λt
mint)∥Y − fθt(X )∥22

∂

∂t
exp(λt

mint)∥Y − fθt(X )∥22

= λt
min exp(λ

t
mint))∥Y − fθt(X )∥22 + exp(λt

mint))
∂

∂t
∥Y − fθt(X )∥22

≤ λt
min exp(λ

t
mint))∥Y − fθt(X )∥22 − exp(λt

mint))λ
t
min∥Y − fθt(X )∥22

= 0

Thus exp(λt
mint)∥Y − fθt(X )∥22 is decreasing over time:

exp(λt
mint)∥Y − fθt(X )∥22 ≤ exp(λ0

min × 0)∥Y − fθ0(X )∥22
= ∥Y − fθ0(X )∥22

We thus have:

∥Y − fθt(X )∥22 ≤ exp(−λt
mint)∥Y − fθ0(X )∥22

Then:
Lt ≤ exp(−λt

mint)L0

To verify this property, we continue using the Boston dataset. At each iteration
of the training process, we will compare the value of the loss function Lt with
its theoretical bounds.

Figure 5: Evolution of the training loss and its theoretical bounds

Examining figure 5, we observe that as the width of our dense network increases,
the theoretical bounds (in red and blue) become closer to the training error. For
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the network with width 10, the theoretical bounds correctly upper-bound the
training error but remain relatively loose. Indeed, they stay constant, equal
to the error observed at initialization, which can be explained by very small
eigenvalues. In contrast, for wider networks, the bounds better follow the trend
of the error curve, although they sometimes no longer upper-bound it. This
could be due to the fact that the NTK is not computed on the entire training
set but only on a subsample. We conclude that the inequality becomes more
relevant in the context of wide networks.

6.2 Bound for a classification problem

The previous inequality applies to regression problems. However, in classifica-
tion problems, the NTK takes the form of a tensor with shape (N,N, nclasse, nclasse).
The training loss differs, and calculating the minimal eigenvalue of the NTK
becomes non-trivial due to its complex structure. As a result, the previous in-
equality does not hold for classification problems. In this paper, we introduce
a new inequality tailored to classification tasks, which provides a bound on the
training loss for such problems.
In multi-class classification problems, the output of our ANN (typically a CNN)
is a vector of size nclasse. For the purpose of this demonstration, we assume the
ANN uses a softmax function as the final activation. Each coordinate of the
output vector represents the model’s predicted probability that a given sample
belongs to a specific class. In this demonstration, we will consider the squared
cross-entropy loss as the training loss. We denote by f̃θt(x) = fθt(x)y the
probability to belong to the true class given the model parameters. We expect
each f̃θt(x) to be close to 1. We denote by Lt our theorical loss function:

Lt =
1

2
∥1− f̃θt(X )∥22

To obtain our new inequality:

∥1− fθt(X )∥22 ≤ exp(−λt
mint)∥1− fθ0(X )∥22 (11)

It is enough to replace Y by 1 in the proof for regression in 6.1. Using these
f̃θt(x) which outputs a single scalar being the probability given the model to
belong to the true class y, the NTK Θt is now a squared matrix with:

Θt
i,j =

〈∂f̃θt(xi)

∂θt
;
∂f̃θt(xj)

∂θt

〉
And computing its minimal eigenvalue λt

min is now trivial.
In Figure 6, we test our theoretical bounds on classification tasks using clas-
sic ANNs (without convolutions). The results are similar to those observed
in regression problems: as the width of the ANN increases, our bounds more
accurately approximate and constrain the actual value of the loss function dur-
ing training. However, for the model with a width of 1000, the bound using
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λt
min fails to upper bound the loss, which is contrary to our expectations and

inconsistent with the theory.

Figure 6: Evolution of the training loss and its theoretical bounds using classic
ANN

We performed a comparable analysis for CNNs, as depicted in Figure 7. In
our exploration of classification tasks using CNNs, we found results that closely
resembled those observed in regression scenarios. Specifically, as the width of the
CNN increased, our theoretical bounds offered a more accurate approximation
and tighter constraints on the actual loss function during training. Notably, in
these experiments, the training loss was well-bounded. However, due to memory
limitations, we were unable to test CNNs with output channels exceeding 100.

Figure 7: Evolution of the training loss and its theoretical bounds using CNN

7 Conclusion

The Neural Tangent Kernel provides valuable insights into the training dynam-
ics of wide neural networks. It exhibits several properties and offers interesting
inequalities that enhance our understanding of these systems. Furthermore,
the NTK has practical applications, such as in Physics-Informed Neural Net-
works (PINNs) [5] and Neural Architecture Search (NAS) [6], demonstrating its
versatility and potential for advancing research in the field.
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