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Abstract

This paper presents a novel approach to pollution assessment by investigating
Support Vector Machines (SVM) with an uncertainty option to overcome the
limitations of traditional kriging. While kriging is a major tool for geostatisti-
cal modelling, allowing to estimate the distribution of contaminants in a region
from a small set of samples, it does not allow to extract also the uncertainty
map. An uncertainty map is of great interest, as it allows to identify regions of
high uncertainty where one should sample in order to reduce high level of uncer-
tainties. In this paper, we propose two variants of the SVM with an uncertainty
option, each using a different hinge loss to improve the accuracy and efficiency.
These losses allow to estimate different levels of contaminations, as well as uncer-
tainty, such as the three levels: positive, uncertain and negative, namely for
pollution estimation: high-pollution, uncertain and low-pollution. In addition to
the exploration of SVM variants, we propose an innovative active sample selection
strategy based on the uncertainty criterion. This strategy is designed to systemat-
ically reduce uncertainties in pollution assessment, thus providing adaptability to
dynamic environmental changes. An incremental SVM with an uncertainty option
is introduced to further optimize the sample selection process. Furthermore, the
decision-making process is refined through the introduction of a novel three-hinge
loss. The corresponding optimization problem and its resolution allow for a more
nuanced contamination assessment with multiple levels of estimation, providing
a valuable tool for characterizing contamination levels with increased granularity.
Extensive experiments on synthetic and real data validate the proposed method-
ology. Synthetic data simulations assess the quality of the approach, while real
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data from a two-dimensional porosity measurement demonstrate practical appli-
cability. This research contributes to the advancement of pollution assessment
methodologies, providing an adaptable solution for environmental monitoring.

Keywords: Kriging, support vector machines, uncertainty, sample selection,
incremental algorithm, pollution assessment

1 Introduction

Kriging and variography are major tools for geostatistical modelling and machine
learning in the geosciences (Chilès and Desassis, 2018; Dramsch, 2020). Also known as
Gaussian process regression, kriging is an interpolation model based on a prior covari-
ance that controls the Gaussian process. Coupled with variography, it has been widely
used in geostatistics for data distribution, allowing concentrations of substances on a
map to be estimated from limited sampling information and the standard deviation to
be calculated over the entire map. Examples of kriging applications include estimat-
ing pollution in groundwater and soil for various contaminants (McLean et al., 2019;
Sun et al., 2019; Ouabo et al., 2020).

Sampling costs are relatively high in the geosciences. Thanks to its underlying
priors, kriging can operate with a small number of samples, unlike deep learning (not to
mention some recent attempts to overcome this problem with deep generative models
(Rakotonirina et al., 2024a,b)). Still, due to limited sampling, data have incomplete
coverage, yielding uncertainties in estimations. Uncertainties in the estimations due
to incomplete and imprecise knowledge are a major issue, as demonstrated in the
large literature of reservoir modeling to address subsurface heterogeneities (Pyrcz and
Deutsch, 2014; Liu et al., 2021). Moreover, many diverse case studies corroborate the
fact that the model is increasingly uncertain with distance away from the well-known
locations, and these values cannot be cross-checked in the absence of additional data,
as demonstrated for instance in the 3D hydrogeological characterization of the New
Jersey Shelf (Thomas et al., 2022).

While the given examples and references highlight the issue of uncertainties in krig-
ing estimations, it is worth noting that uncertainty underlines (statistical) machine
learning. Advanced statistical studies of uncertainty distinguish between two different
sources of uncertainty: statistical and systematic uncertainties, which are related to
the ideas of accuracy and precision in statistics. Recently, this definition was extended
to machine learning, under the categorization of aleatoric and epistemic uncertainties
by Hüllermeier and Waegeman (2021) or data uncertainty and model uncertainty by
Gawlikowski et al. (2023), as well as the concepts of conflict and ignorance uncertain-
ty/ambiguity by Hüllermeier and Brinker (2008). In few words, aleatoric or statistical
uncertainty depicts randomness, namely, the variability in the outcome of an experi-
ment due to inherently random effects. The epistemic or systematic uncertainty is due
to a lack of knowledge of the optimal model. In the present paper, we focus on the
latter, namely epistemic or systematic uncertainty due to ignorance. The amount of
such a model uncertainty reduces with an increasing number of training samples, as
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it has been well-known for density estimation and was recently demonstrated for ver-
sion space learning and Bayesian inference by Hüllermeier and Waegeman (2021), and
more recently for deep neural networks. See Gawlikowski et al. (2023); Psaros et al.
(2023) for recent surveys.

In this paper, we study the problem of estimating the contamination map, with the
possibility of estimating uncertain regions, which is of great interest since it allows to
assess the regions where the contamination estimates are not relevant but need more
samples to reduce these uncertainties. It turns out that kriging does not allow to prop-
erly address this topic1. Roughly speaking, kriging is used to predict the distribution
of contaminants on a map, and can also generate the variance on the entire map in
order to study the map points with the greatest uncertainty. However, the variance
map obtained from kriging is such that areas with large variances are often associated
with areas with fewer samples. However, this information is not very useful for pollu-
tion assessment, nor to identify further sampling locations, as it does not integrate the
level of pollution in the results. For instance, if areas with high variances have low con-
tamination, it would not be relevant to sample further in those areas (See Section 6.1
and Fig. 6 for an illustration). Therefore, we need to be skeptical of locations with
estimated contamination values close to the frontier of detection/classification, namely
uncertain zones where further sampling would be of great interest.

In this paper, we aim to overcome these limits in kriging, by integrating an uncer-
tainty option in the decision, which naturally provides a mechanism for future sampling
to reduce the uncertainty. To this end, we revisit Support Vector Machines (SVM) in
order to generate a decision function for three classes2: positive, uncertain and neg-
ative classes (e.g. high-pollution, uncertain and low-pollution, respectively). Such a
decision is of practical interest because it provides the pollution remediation experts
the 3 regions of interest: the region in the map to be decontaminated, the uncertain
region where further sampling needs to be carried out, and the region that does not
exceed the admissible pollution level. To this end, we consider the framework of SVM
for many reasons: SVM perform better on smaller datasets and are less prone to over-
fitting than neural networks thanks to solving a convex optimization problem, and
they are also computationally faster than deep neural networks for prediction. SVM
remain central in Machine Learning (Campbell and Ying, 2022; Pisner and Schnyer,
2020; Cervantes et al., 2020; Hu et al., 2021; Menaka and Ganesh Vaidyanathan, 2023)
and have been recently explored on kriging (De Caires et al., 2024; Chen et al., 2020;
Wu et al., 2023) and toxicity/pollution analysis (Leong et al., 2020; Jha and Yoon,
2020; Huang et al., 2023). To the best of our knowledge, this is the first time that

1The current work aims to assess uncertainties in the estimated output, which is not similar to addressing
uncertainties of the input data, where data is often modeled by means of intervals or fuzzy intervals.
While many researchers have been tackling input data uncertainties, even though yielding mathematically
debatable methods with intractable algorithms (Loquin and Dubois, 2010), providing output uncertainties
seems to be novel, even though kriging metamodels were proposed to address epistemic uncertainties (Fuhg
et al., 2021).

2The addressed problem is not a multiclass one, since in the latter the classes are not ordered, and the
miss-classification cost is independent of the target-estimated classes. The problem addressed in this paper
is a binary classification problem “detected pollution versus undetected pollution”, with the integration of
an uncertainty region between them. Moreover, in Section 5 we extend the proposed approach to multi-level
estimation, beyond the binary case
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an uncertainty option is investigated for estimation and classification, and that SVM
with an uncertainty option is investigated for sample selection.

Our methodology relies on revisiting SVM for binary-classification, by integrating
an uncertainty option, namely the classifier is allowed to predict the “uncertain” label.
It turns out that this is essentially SVM with a reject option, as defined by Grandvalet
et al. (2008); Wegkamp and Yuan (2011); Hanczar and Sebag (2014) and studied
more recently by Franc et al. (2023). We show how two variants can be implemented,
considering different double-hinge losses and regularization. Since the proposed SVM
formalism integrates uncertainty within the estimation, we use this information in
order to ingeniously select the future sample that would allow to highly reduce the
uncertainty. Moreover, we derive an incremental algorithm for the proposed SVM with
an uncertainty option.

Finally, we extend the proposed SVM with an uncertainty option, based on binary-
classification, to address more levels. To this end, we introduce a triple-hinge loss,
allowing to extract 5 ordered classes, and derive the corresponding optimization prob-
lem with its resolution. This is of interest in soil pollution assessment, because it
allows to go beyond the 3 classes “contaminated vs uncertainty vs non-contaminated”
to a more fine-grained assessment with several levels of contamination. The proposed
triple-hinge loss allows to define five levels of estimation, which could be viewed in
contamination assessment as: very high, high, moderate, light and very light.

The main contributions of this paper are as follows:

• We investigate SVM with an uncertainty option in order to overcome limitations of
the kriging in pollution assessment. Two variants are examined with different hinge
losses.

• We propose an active sample selection strategy based on this criterion and design
an appropriate incremental SVM with an uncertainty option.

• We propose to refine the decision by introducing a novel three-hinge loss and deriving
the corresponding optimization problem and its resolution.

To demonstrate the relevance of the proposed methodology, we conduct experiments
on both synthetic and real datasets. The simulated synthetic dataset allow to assess
the quality, while two real datasets are used to assess all the aforementioned contri-
butions. The first real dataset is a two-dimensional porosity measure using 200 wells.
It is worth noting that the porosity distribution is of great interest in geostatistics,
as demonstrated in the wide literature on the topic, such as by Pyrcz et al. (2005)
and Thomas et al. (2022). The second dataset is a well-known dataset for the pollu-
tion assessment of the Meuse river floodplains, consisting of topsoil of 4 heavy metal
concentrations and organic matter.

The rest of the paper is as follows. In the next section, we provide some background
material on SVM, before introducing the two variants of the SVM with an uncertainty
option in Section 3. Section 4 presents sample selection and the incremental algorithm.
The extension of this work to multi-level estimation is given in Section 5. Experiments
are conducted in Section 6. The paper is concluded in Section 8 with a conclusion and
future work.
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2 Background on SVM

Let X ∈ Rd be the space under investigation, with d = 2 for a two-dimensional area.
Let x1, x2, . . . , xn ∈ X be the available samples (e.g. geographic locations) with target
values y1, y2, . . . , yn, respectively (e.g. contaminant concentrations at these locations).
For a binary classification task (also known as detection), the target labels are either
−1 or +1 (e.g. non-contaminated vs contaminated). We aim to find a function f(x)
defined on X that computes the contamination level class for any x ∈ X .

To this end, one aims to minimize the regularized empirical risk function

R(x) =
1

n

n∑
i=1

L (yif(xi)) + ρR(f), (1)

for some loss function L(·) and regularization function R(·), where ρ is tradeoff param-
eter. From the representer theorem (Unser, 2021), it is known that the optimal function
that minimized the above risk function takes the form

f(x) =

n∑
j=1

λj κ(x, xj), (2)

for some kernel κ(·, ·), such as the Gaussian kernel defined by κ(xi, xj) = exp(−∥xi −
xj∥2/2σ2) for a bandwidth parameter σ. The functional minimization of (1) boils
down to the estimation of the n coefficients λ1, λ2, . . . , λn.

This formulation is general and the representer theorem is valid under mild con-
ditions on the loss function L and the regularization function R. SVM with a binary
classification task considers the hinge loss defined by

Lhinge(z) = max{0, 1− z}.

The often used regularization functions are the ℓ1 and ℓ2 norms defined respectively by

∥λ∥ℓ1 =

n∑
j=1

|λj | and ∥λ∥2ℓ2 =

n∑
j=1

λ2
j .

3 SVM with an uncertainty option

In this section, we introduce SVM with an uncertainty option so that, in a detection
context, the prediction of the classifier can be “detected vs uncertain vs undetected”.
Using mathematical expressions, we define the problem in the following.

In conjunction with the −1 and +1 labels, we include the label 0 in our decision
function, which corresponds to the uncertainty decision. Let decision(xi) ∈ {−1, 0, 1}
for i = 1, · · · , n be the labels of x1, x2, . . . , xn, with values −1, 0, and 1 for unde-
tected, uncertain, and detected, respectively (e.g. non-contaminated, uncertain and
contaminated). In order to integrate the uncertainty option in SVM, we investigate
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Fig. 1 The double-hinge loss

two versions using two different double-hinge losses following Wegkamp and Yuan
(2011) and Grandvalet et al. (2008) with different regularizations ℓ1 and ℓ2.

3.1 SVM with an uncertainty option by ℓ1 regularization
(LPSVM)

The double-hinge loss L2-hinge introduced by Wegkamp and Yuan (2011) is defined, as
illustrated in Fig. 1, by:

L2-hinge(z) =

 1− az if z ≤ 0
1− z if 0 ≤ z ≤ 1
0 if z > 1

(3)

where a = (1 − b)/b > 1 and b is user-defined. By injecting this loss in (1) and con-
sidering the ℓ1 regularization, the resulting optimization problem can be conveniently
formulated as a linear program.

The above optimization problem can be solved by introducing slack variables ξi,
leading to the following problem

min
λ,ξ

ξ1 + · · ·+ ξn + ρ(ξn+1 + · · ·+ ξ2n) (4)

subject to



ξi ≥ 0 for i = 1, · · · , n
ξi ≥ 1− yihi for i = 1, · · · , n
ξi ≥ 1− ayihi for i = 1, · · · , n
hi =

∑n
j=1 λj κ(xi, xj) for i = 1, · · · , n

ξn+i ≥ λi for i = 1, · · · , n
ξn+i ≥ −λi for i = 1, · · · , n

(5)

Indeed, any ξi (for i = 1, · · · , n) that satisfies the first 3 constraints is a minimizer of
L2-hinge(yif(xi)), the fourth constraint is for computational convenience, and the last
2 constraints allow to represent |λi|, for i = 1, · · · , n,

This linear programming problem can be solved using solvers such as CPLEX and
Gurobi Optimizer (e.g. cvxpy in Python), as shown in a typical implementation in
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Algorithm 1 Implementation of the LPSVM using cvxpy in Python

1 import cvxpy as CP
2 # The va r i a b l e s
3 var = cp . Var iab le (n+2∗m)
4 # The opt imizat i on problem
5 A = np . ones (n+m)
6 A[ n : ntm ] = A[ n : n+m]∗ r
7 ob j e c t i v e = cp . Minimize (A @ var [ : n+m] )
8 # The con s t r a i n t s
9 c on s t r a i n t s = [ np . z e ro s (n) <= var [ : n ] ]

10 c on s t r a i n t s += [ np . ones (n) − y @ ( var [ n+m: ] @ f ) <= var [ : n ] ]
11 c on s t r a i n t s += [ np . ones (n) − a ∗ y @ ( var [ ntm : ] @ f ) <= var [ : n ] ] c on s t r a i n t s

+= [ var [ ntm : ] <= var [ n : n+m] , −var [ n+m: ] <= var [ n : n+m] ]
12 # The problem r e s o l u t i o n
13 prob = cp . Problem ( ob j e c t i v e , c on s t r a i n t s )
14 prob . s o l v e ( )
15 r e s = var . va lue

Algorithm 1. This variant is denoted in the following LPSVM for Linear Programming
SVM.

3.2 SVM with an uncertainty option by ℓ2 regularization
(QPSVM)

A more complex double-hinge loss is introduced by Grandvalet et al. (2008), by con-
sidering the Bayes decision theory with an explicit definition of the costs of wrong
decisions and of abstaining from taking any decision, namely the uncertainty option.
Let c− be the cost of a false positive (i.e., a sample labelled −1 is predicted as +1),
and c+ be the cost of a false negative (i.e., a sample labeled +1 is predicted as −1).
Likewise, let r− and r+ be the costs of choosing the uncertain option for samples
labeled −1 and +1.

The double-hinge loss illustrated in Fig. 2 can be defined in two parts as follows:

• If yi = +1:

L2-hinge+(z) = max
{
− (1− p−)z +H(p−),−(1− p+)z +H(p+), 0

}
• If yi = −1:

L2-hinge-(z) = max
{
− p+z +H(p+),−p−z +H(p−), 0

}
where p+ = c−−r−

c−−r−+r+
, p− = r−

c+−r+−r−
and H(p) = −p log(p) − (1 − p) log(1 − p).

This double-hinge loss can be related to L2-hinge defined in Section 3.1 (Wegkamp and
Yuan, 2011) when considering a symmetric decision with c− = c+ = 1, and r− = r+,
with the uncertainty occurring when the latter is less than 0.5.

Considering the ℓ2 regularization, we get a quadratic programming problem, as
derived in the following. Let D = 1

ρ (p+ − p−), Ci =
1
ρ (1 − p+) for positive samples,

and Ci =
1
ρp− for negative samples. With the introduction of slack variables ξi and ηi
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Fig. 2 The double-hinge loss of QPSVM for positive and negative cases

for i = 1, · · · , n, the optimization problem can be written as follows

min
f,ξ,η

1
2∥f∥

2
ℓ2 +

n∑
i=1

Ciξi +D

n∑
i=1

ηi (6)

subject to


yif(xi) ≥ ti − ξi for i = 1, · · · , n
yif(xi) ≥ τi − ηi for i = 1, · · · , n
ξi ≥ 0 for i = 1, · · · , n
ηi ≥ 0 for i = 1, · · · , n

(7)

where ti = H(p+)/(1 − p+), τi = (H(p−) −H(p+))/(p− − p+) for xi in the positive
class, and ti = H(p−)/p−, τi = (H(p−)−H(p+))/(p−−p+) for xi in the negative class.

Following the representer theorem giving the general (2), and by using the variable
change γiyi = λi, we get the dual optimization formulation

min
α,γ,ζ

1
2γ

⊤Gγ − τ⊤γ − (t− τ)⊤α+ ζy⊤γ, (8)

where y = (y1, · · · , yn)⊤, t = (t1, · · · , tn)⊤, τ = (τ1, · · · , τn)⊤ et Gij = yi yj κ(xi, xj).
To solve this optimization problem, Grandvalet et al. (2008) use an active variable
algorithm proposed by Vishwanathan and Murty (2002), as described in the following.

The training dataset is partitioned into five subsets designated by the active box
constraints of the optimization problem (8). The training samples are indexed by

I0 = {i | γi = 0} such that yif(xi) > ti
It = {i | 0 < γi < Ci} such that yif(xi) = ti
IC = {i | γi = Ci} such that τi ≤ yif(xi) ≤ ti
Iτ = {i | Ci < γi = Ci +D} such that yif(xi) = τi
ID = {i | γi = Ci +D} such that yif(xi) < τi

(9)

With this partitioning, we need only to compute γi for the samples indexed in IT =
It ∪ Iτ , which means that the dual formulation of the optimization problem can be
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transformed into the following form

min
0≤γi≤Ci+D,γi ̸=Ci

1
2

∑
i,j∈IT

γiγjGij −
∑
i∈IT

γisi

subject to
∑
i∈IT

yiγi +
∑
i∈IC

Ciyi +
∑
i∈ID

(Ci +D)yi = 0
(10)

where si = ti −
∑

j∈IC
CjGji −

∑
j∈ID

(Cj + D)Gji for i ∈ It and si = τi −∑
j∈IC

CjGji−
∑

j∈ID
(Cj +D)Gji for i ∈ Iτ . We can therefore solve this problem by

solving the following linear system
∑
j∈IT

Gijγj + yiζ = si, for i ∈ IT∑
i∈IT

yiγi = −
∑
i∈IC

Ciyi −
∑
i∈ID

(Ci +D)yi
(11)

When the optimum function f(·) is obtained, the following decision function is
used to determine the classification:

decision(x) =

+1 if f(x) ≥ f+
0 if f− < f(x) < f+
−1 if f(x) ≤ f−

(12)

where f+ = log(p+/(1− p+)) and f− = log(p−/(1− p−)).
This variant is denoted in this paper by QPSVM for Quadratic Programming SVM.

4 Incremental SVM with active sample selection

Since sampling is expensive in general, the initial number of samples may be too small.
In order to increase the accuracy of the prediction, after each estimate, we want to
find a best location to be used for the next sampling, where best should be assessed
from the information provided by this estimate so far. By sampling at this location,
we get the new data (geographic location, measure), allowing to augment the available
dataset for training. From this new data, we adapt the SVM model accordingly. The
Iteration of these steps stops when the amount of information is rich enough for the
problem at hand, namely the estimation of the pollution in the area of interest.

Therefore, the two main ingredients to enhance the model precision are:

• The selection of the next location to be sampled in an optimal way, based on the
information provided by the current estimate.

• The training of the SVM with an uncertainty option presented in Section 3 in an
incremental way, namely adapting the model with each new sample.

We address these two ingredients in this section and illustrate the proposed approach
in Fig. 3.
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SVM with
uncertainty option
and incremental

sampling

Active sample
selection

argminX |f(x)|

Sampling
at x0

Chemical anal.
results ⇒ y0

Training

dataset

f(·)

x0

(x0, y0)

Fig. 3 Schematic illustration of the proposed incremental SVM with active sample selection. Initially,
the proposed SVM with uncertainty option described in Section 3 is trained on an initial training
dataset. And then, the active sample selection (13) determines the next sampling location x0, with
optimality in the sense of minimizing the uncertainty. The label of x0 is then determined (e.g., for the
soil assessment application, a soil sample is extracted from the location x0 and chemical analyses are
conducted to measure its pollution concentration y0). The new data (x0, y0) is fed to the incremental
algorithm described in Section 4.2.

4.1 Choice of the next sample location

We formulate the problem of estimating the location of the next sampling as follows.
We aim to find the next location, denoted the following x0, that leads to the “most
modification” on the model if this novel information is included.

This problem is essentially related to active learning, which is within the human-
in-the-loop concept. Active learning has been largely investigated in the literature
(Settles, 1995), including some recent advances (Yoo and Kweon, 2019; Ren et al.,
2021). In active learning, the learning algorithm can interactively ask the user to label
new data points with real labels. The basic idea is that if a machine learning algorithm
is allowed to select the data it wants to learn, it can achieve greater accuracy while
using less training data. Different approaches have been proposed in the literature to
address active learning (Yoo and Kweon, 2019; Ren et al., 2021). For instance, the
samples that are the closest to the decision frontier are selected by Jan Kremer and
Igel (2014), while the samples that are the farthest from the class are chosen by Huang
and Lin (2016), and the entropy measure is used by Jing et al. (2004).

Considering our Machine Learning model, which is SVM with an uncertainty
option, we propose to consider the choice of the sample that reduces the uncertainty.
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Therefore, we query the sample x0 that has the smallest absolute estimate, namely.

x0 = argmin
x∈X
|f(x)|. (13)

It turns out that this criterion is similar to the one proposed by Jan Kremer and Igel
(2014) for binary classification SVM and is called simple margin.

4.2 Incremental algorithm for SVM with an uncertainty option

Once the new location is determined and its corresponding sample obtained, we aim to
integrate this new data within this model, by adapting it in an incremental way, namely
operating the updates of the model when having a novel sample at each instance.

To this end, we update the classifier by examining in detail the Karush-Kuhn-
Tucker (KKT) conditions. Our approach follows the same idea of Cauwenberghs and
Poggio (2000) proposed for conventional SVM (see also Karasuyama and Takeuchi
(2009) and Laskov et al. (2006) for a survey), and we extend it to the proposed SVM
with an uncertainty option. In the following, we derive the expressions for the QPSVM.

4.2.1 The KKT conditions

Using the stationarity condition and the KKT complementarity condition of the dual
formulation (8) of QPSVM, namely the minimization of W = 1

2γ
⊤Gγ − τ⊤γ − (t −

τ)⊤α+ ζy⊤γ, we obtain the following conditions:

∂W

∂γi
=

∑
j

Gijγj + yiζ − τi = yi(f(xi))− τi

∂W

∂αi
= ti − τi

∂W

∂ζ
=

∑
j

yjγj = 0

In the following, we denote gi =
∂W
∂γi

. When having a novel sample defined by (x0, y0),
its addition to the training data leads to a modification of the coefficients γ. Let ∆γ0
be the incremental modification. Then to satisfy the KKT conditions, the coefficients
must be updated as follows:{

∆gi = Gic∆γ0 +
∑

j Gij∆γj + yi∆ζ for all i ∈ D ∪ {c}
0 = y0∆γ0 +

∑
j yj∆γj

(14)

Following the approach given by Cauwenberghs and Poggio (2000), we can conclude
that the new sample added to the QPSVM with an uncertainty option must satisfy
the following conditions.
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For the set IT = It ∪ Iτ , gi = 0, we have for all i ∈ IT :
0 ys1 · · · yslIT
ys1 Gs1s1 · · · Gs1slIT
...

... · · ·
...

yslIT
GslIT

s1 · · · GslIT
slIT


︸ ︷︷ ︸

G


∆ζ
∆γs1
...

∆γslIT

 = −


y0

Gs1c

...
GslIT

c

∆γ0

For all the training data, we have∆ζ = β∆γ0
∆γj = βj∆γ0 for all j ∈ D
∆gj = θj∆γ0 for all j ∈ D ∪ {c}

(15)

For the entries of IT , the vector [β, βs1 , · · · , βslIT
]T can be computed by


β
βs1
...

βslIT

 = −R


y0

Gs1c

...
GslIT

c


with R = G−1 and

θi =

{
Gic +

∑
j∈S Gijβj + yiβ for all i /∈ IT

0 for all i ∈ IT
(16)

Once the entries of IT are updated, the matrix R should be updated. To add an
entry in R, we operate as follows

R←


0

R
...
0

0 · · · 0 0

+
1

θ0


β
βs1
...

βslIT
1


[
β βs1 · · · βslIT

1
]

To remove the k-th entry in R, we operate as follows:

Rij ← Rij −R−1
kkRikRkj ,

for all i, j ∈ IT ∪ {0} and i, j ̸= k.

12



Fig. 4 The proposed triple-hinge loss

5 Extension to a multi-level estimation

While in the parts of the paper we have considered three levels of assessment, namely
“contaminated vs uncertainty vs non-contaminated”, we provide in this section an
extension to a more fine-grained assessment with five levels, namely “very high vs high
vs moderate vs light vs very light contaminated”. To this end, we define the proper
triple-hinge loss and derive the corresponding optimization problem and its resolution.

5.1 Triple-hinge loss

The study of double-hinge loss of Wegkamp and Yuan (2011) has inspired us to extend
this work to a triple-hinge loss. By using the concept of Section 3.1, we define the
triple-hinge loss as follows:

L3-hinge(z) =


1 + (a2 − a1)thresh− a2z if z ≤ thresh
1− a1z if thresh ≤ z ≤ 0
1− z if 0 ≤ z ≤ 1
0 if z > 1

(17)

The triple-hinge loss is illustrated in Fig. 4 with its parameters a1, a2 et thresh. With
this definition of the loss function, the decision function can be written in the following
form:

decision(x) =


−1 if f(x) ≤ b1
−0.5 if b1 < f(x) < b2
0 if b2 ≤ f(x) ≤ 1− b2
0.5 if 1− b2 < f(x) < 1− b1
1 if f(x) ≥ 1− b2

where the labels 1, 0.5, 0, −0.5 and −1 are the very high, high, moderate, light and
very light contamination classes respectively. The relationship between a1, a2, thresh,
b1 and b2 is a1 = (1− b1)/b1 and a2 = (1− b2 − a1thresh)/(b2 − thresh).

13



Algorithm 2 Implementation of the LPSVM with the triple-hinge loss in Python

1 import cvxpy as cp
2 # The va r i a b l e s
3 va r l = cp . Var iab le (n+m)
4 var2 = cp . Var iab le (m)
5 # The opt imiza t i on problem
6 A = np . ones (ntm)
7 A[ n : n+m] = A[ n : n+m]∗ r
8 ob j e c t i v e = cp . Minimize (A @ var l )
9 # The con s t r a i n t s

10 c on s t r a i n t s = [ np . z e ro s (n) <= var1 [ : n ] ]
11 c on s t r a i n t s += [ np . ones (n) − y @ ( var2 @ f ) <= var l [ : n ] ]
12 c on s t r a i n t s += [ np . ones (n) − a l ∗ y @ ( var2 @ f ) <= var1 [ : n ] ]
13 c on s t r a i n t s += [ np . ones (n) ∗ (1 + a2 ∗ s− a l ∗ s ) − a2 ∗ y @ ( var2 @ f ) <=

var l [ : n ] ]
14 c on s t r a i n t s += [ var2 <= var l [ n : ] , −var2 <= var1 [ n : ] ]
15 # The problem r e s o l u t i o n
16 prob = cp . Problem ( ob j e c t i v e , c on s t r a i n t s )
17 prob . s o l v e ( qcp=True )
18 r e s = var2 . value

5.2 Optimization problem and resolution

By applying the triple-hinge loss, the optimization problem can be written as follows,
where slack variables are used:

min
λ,ξ

ξ1 + · · ·+ ξn + ρ (ξn+1 + · · ·+ ξ2n) (18)

subject to



ξi ≥ 0 for i = 1, · · · , n
ξi ≥ 1− yihi for i = 1, · · · , n
ξi ≥ 1− a1yihi for i = 1, · · · , n
ξi ≥ 1 + (a2 − a1)thresh− a2yihi for i = 1, · · · , n
hi =

∑n
j=1 λj κ(xi, xj) for i = 1, · · · , n

ξn+i ≥ λj for i = 1, · · · , n
ξn+i ≥ −λj for i = 1, · · · , n

(19)

In order to understand this constrained optimization problem (18)-(19) resulting from
the triple-hinge loss (17), we compare it to the optimization problem (4)-(5) obtained
from the double-hinge loss (3). It is easy to see that the only difference is the novel
fourth constraint, which is a linear inequality constraint. This is where the piece-
wise addition to the triple-hinge loss comes into play, by refining the classification in
adding 2 classes for a total of 5, compared to the 3 classes with the double-hinge loss.
This result can be extended to a multiple-hinge loss, where each additional piece-wise
addition in the hinge induces an additional linear inequality constraint.

To solve this constrained optimization problem, we use the same techniques used
in Section 3.1 of LPSVM with an uncertainty option, where the added constraint can
be easily integrated in the linear programming with solvers like CPLEX and Gurobi
Optimizer (e.g. cvxpy in Python). A typical implementation is given in Algorithm 2.
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Fig. 5 Illustration of the kriging results on the 2D data, with the estimation map (left) and the
uncertainty map (right).

6 Experimental results

In order to assess the relevance of the proposed methodology and the derived methods,
we evaluate this work on a dataset in two dimensions of the porosity measure using
200 wells (i.e., sampling points)3. It is worth noting that oil contamination affects
soil porosity, as oil tends to force soil particles together, thereby decreasing porosity
(Ndimele et al., 2018; Zhang et al., 2019)

As a baseline, we investigate the ordinary kriging model. Fig. 5 shows the estimated
map and the uncertainty map, the latter is computed from the standard deviation
estimation on each location.

6.1 On the limits of kriging

Since the cost of sampling is relatively high in geostatistics, one may aim to be able
to further refine the location of the boundaries of the different regions. To this end,
it would be ideal that the largest uncertainties appear at the frontier of the regions,
thus guiding us to sample at these locations. However, the kriging does not allow this
properly, since both estimation map and uncertainty map are not “conditional” to one
another.

We illustrate this limit of kriging in Fig. 6. On one hand, if we examine the esti-
mation map in order to have new samples at the boundaries, such as marker ■ in the
left figure (at the limit value of 0.15), the uncertainty of such a point is low as given
in the right figure. On the other hand, if we use the uncertainty map (right figure) to
find the point with the highest uncertainty value, such as marker ▲, it turns out that
such a point lies in the middle of the green zone of the estimation map (left figure);
Therefore, we can be almost certain that this point is one of low contamination and
thus less interesting to sample. These two examples show that kriging and its vari-
ogram do not give the information we need, because the uncertainty map only gives
us spatial uncertainties and does not take into account the pollution concentration at
each location.

3https://github.com/GeostatsGuy/GeoDataSets/blob/master/2D MV 200wells.csv
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Fig. 6 Same figures as in Fig. 5 with marker ■ showing a boundary limit and marker ▲ showing a
large uncertainty.

σ = 1.5 σ = 2

Fig. 7 Classification maps of LPSVM with σ = 1.5 (first column) or σ = 2 (second column), and
b = 0.4 (first row) or b = 0.45 (second row).

6.2 Results using the proposed methods

To overcome these limits, we should be more concerned with classifying different
regions on the map and treating points between two regions as having higher uncer-
tainty, as proposed in Section 3 with SVM with an uncertainty option. We therefore
have 3 target values. We set high pollution to +1 for higher contamination density
(color red in figures), low pollution to −1 for lower contamination density (green color
in figures), and 0 for the uncertainty region (yellow).

First of all, we examine the influence of the hyperparameters on the results. For
both LPSVM and QPSVM, we can see in Fig. 7 and 8 that as the value of bandwidth
parameter σ increases, the range of influence of each point widens. For LPSVM, as the
value of b decreases, the area of the uncertainty class becomes smaller. For QPSVM,
where we set c+ = c− = 1, we can see that, as the values of r+ and r− decrease,
the area of the uncertainty class becomes larger. In practice, we can adjust these
parameters accordingly to our real needs.
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σ = 1, r+ = r− = 0.45 σ = 1.3, r+ = r− = 0.45

σ = 1.6, r+ = r− = 0.45 σ = 1.6, r+ = r− = 0.4

Fig. 8 Classification maps of QPSVM with several values of bandwidth parameter σ and (r+, r−).

Kriging LPSVM QPSVM

Fig. 9 The results of Kriging interpolation (left), LPSVM (middle) and QPSVM (right)

6.3 Assessing the quality of interpolation using synthetic data

To confirm that LPSVM and QPSVM can achieve similar performance to Kriging in
terms of interpolation results, we generated a 10-by-10 map with values following a
Gaussian distribution, and selected 31 random samples in the map as the training
dataset. We use this dataset to compare the results of the proposed methods with
kriging interpolation.

From Fig. 9, we can clearly see that the interpolation results of the two variants of
SVM behave in the same way as the kriging results, while at the same time our SVM
is able to take into account the uncertainty class and compute the boundary equations
for each class.

6.4 Comparative analysis with different classifiers

In order to provide a comparative analysis with several classifiers, we operate as
follows. We use the 2D dataset of porosity with 200 wells and use the kriging to inter-
polate the whole region. For the training dataset, we generated our training dataset
using a regular-grid sampling on the contamination distribution map obtained using
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Fig. 10 The target classification map

kriging. For the evaluation dataset, we took 100 random points on the contamina-
tion distribution map produced using kriging. We treat sample points with a degree
of contamination equal to or greater than 1.5 as contaminated and the others as
uncontaminated. The resulting map is given in Fig. 10.

For comparative analysis, we considered Random Forest (RF), AdaBoost (ADA)
and Gradient Boosting with Decision Tree (GBDT), where the number of trees was
500 and a maximum depth of 2. In order to provide a fair comparison with other
classifiers that are binary classifiers but without an uncertainty class, we need to
design a setting to use them in our context of two-class plus an uncertainty class.
To this end, inspired by the one-versus-rest procedure in multiclass classification,
we operate as follows. We divide the training dataset into two categories according
to the contamination value of each sample using two strategies. The first strategy
seeks to discriminate the contaminated data versus all the other (i.e., uncertain and
uncontaminated data), and the second strategy to discriminate uncontaminated data
versus all the rest (i.e., uncertain and contaminated data). By applying these two
strategies to each traditional classifier, we get two sets of labels. We combine the
results, with samples where predicted labels differ are treated as uncertain samples.
Lastly, the final accuracy and uncertainty rate are computed.

As given in Table 1, we can see that the classification accuracy of both LPSVM
and QPSVM is higher than all the conventional classifiers. Moreover, the proposed
methods provide lower uncertainty rates compared to the other methods, with 2 to 3
folds if we compare LPSVM with all conventional methods. These results demonstrate
that the proposed methodology provides algorithms that are able to meet the expected
requirements.

6.5 Assessing incremental learning with sample selection

In this section, we assess the sample selection and incremental learning algorithm of
QPSVM with an uncertainty option. To this end, we consider the same real 2D data
of 200 wells and use kriging to interpolate the whole region in order to constitute the
map regarded as groundtruth, as described in Section 6.4 and illustrated in Fig. 10.

As in practical geoscience sampling, samples are selected on a regular grid. Con-
sequently, when selecting the next sampling, we choose the location with the greatest
uncertainty among all the points of the regular grid, following the discussion conducted
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Table 1 Comparative analysis

Model Accuracy Uncertainty Rate

LPSVM (this paper) 97% 10%

QPSVM (this paper) 92% 13%

RF 72% 21%

ADA 82% 28%

GBDT 88% 29%

+ 1 sample + 2 samples + 3 samples

Fig. 11 The evolution of the estimated maps (estimation in the upper row, classification in the lower
row) after adding 1, 2 and 3 samples

Table 2 Change rate between two consecutive iterations

Iteration 1 → 2 Iteration 2 → 3 Iteration 3 → 4

0.59% 0.50% 0%

in Section 4.1. The final mathematical expressed mathematically becomes

x0 = arg min
x∈Grid

|f(x)|,

where Grid is the set of sampleable locations not sampled so far. This sampling is
iterated with the incremental update described in Section 4.2. As a stopping criterion,
we consider the stability of the estimation.

For these experiments, we set σ = 1, r+ = r− = 0.45, and c+ = c− = 1 (see
Section 6.2 for the influence of these parameters). The evolution of the estimation map,
as well as the classification map, is shown in Fig. 11 for four consecutive iterations,
illustrating the stability of the map throughout iterations. the change rate reduces
with iterations, as given in Table 2
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Fig. 12 The estimation map (left) and classification map (right) obtained by LPSVM with the
triple-hinge loss

6.6 Increasing the assessment levels

As in the work process of soil contamination assessment, one might be interested in
assessing different areas of the soil for the level of contamination. In this section, we
evaluate the method proposed in Section 5, considering the classification of the soil
into five levels of contamination: very high, high, moderate, light and very light.

By considering the same data as in the previous sections, we set thresh = −1,
b1 = 0.25, b2 = 0.4 and σ = 2. The obtained results are given in Fig. 12 in terms
of estimation map and classification map. Depending on the application at hand,
the user can define one of these levels as “uncertain”, allowing to refine-and-reduce
it by integrating active sample selection and incremental learning in the process, as
proposed in Section 4. This part is beyond the scope of this paper.

7 Experiments on the Meuse river dataset

In this section, we demonstrate the relevance of the proposed methods on another
real well-known dataset: the Meuse river dataset, available from the R sp package4

(Middelkoop, 2000; Bivand et al., 2008). The dataset was collected in the Meuse river
floodplains west of the town Stein, southeastern Netherland. It consists of topsoil of 4
heavy metal concentrations and organic matter (OM) at different locations, as well as
several soil and landscape features at the observation locations. These concentrations,
in ppm (parts per million), are bulk sampled from an area of approximately 15 m ×
15 m. The dataset has 156 samples from different locations of cadmium, copper, lead,
zinc and OM concentrations. The distributions of all the heavy metal and OM concen-
trations are shown in Fig. 13, as well their spatial distributions in Fig. 14, illustrating
their diversities and the difficulties in addressing such non-Gaussian distributions with
nonlinear variabilities.

As opposed to the dataset studied in Section 6 where samples are scattered in all
the 2D space under study, the current dataset has samples from the river floodplains
with pollution on both sides of the river; Therefore, an increased uncertainty area
is expected. Fig. 15 illustrates the classification maps generated by QPSVM using
different parameters for all 4 heavy metals and OM. These results demonstrate the
uncertainty region (yellow color in figures) beyond the river and within the river
floodplains between the higher (red) and low (green) levels of contamination. These

4https://cran.r-project.org/web/packages/sp/
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Cadmium Copper Lead

Zinc Organic Matter

Fig. 13 Distribution of the heavy metal and OM concentrations

Cadmium Copper Lead

Zinc Organic Matter

Fig. 14 Locations of samples and the spatial distribution of the heavy metal and OM concentrations

results illustrate the impact of the bandwidth parameter on the spatial granularity
of the results. Similar results can be drawn from LPSVM, omitted here due to space
limit.

Finally, we study the performance of the proposed methods LPSVM and QPSVM.
To this end, we compare them to the different ML methods given in the previous
section, and use the same setting used in that section. Table 3 presents the obtained
results on all 4 heavy metal and OM concentrations, demonstrating that both proposed
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Fig. 15 Classification maps of QPSVM with several values of bandwidth parameter σ with r+ =
r− = 0.45, for the Cadmium (first row), Copper (second row), Lead (third row), Zinc (fourth row),
and OM (last row).

methods LPSVM and QPSVM outperform the other methods from the literature.
Moreover, LPSVM slightly outperforms QPSVM. All these results corroborate the
results obtained in Section 6 on the 200-well dataset, demonstrating the relevance of
the proposed methods.

8 Conclusion and future work

This paper proposed an original way to overcome some drawbacks of the kriging, by
investigating SVM with an uncertainty option. As this is essentially related to the lit-
erature of the so-called SVM with reject option, we explored two variants leading to
LPSVM and QPSVM. Moreover, we explored the concept of active sampling, which
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Table 3 Comparative analysis in terms of accuracy of
different methods for the 4 heavy metal and OM

Method Ca Cu Zn Pd OM

LPSVM (this paper) 92% 99% 99% 99% 99%

QPSVM (this paper) 91% 93% 97% 98% 99%

RF 86% 88% 90% 90% 86%

ADA 83% 88% 92% 86% 85%

GBDT 82% 88% 90% 90% 86%

turned out to be relevant for our proposed methodology, as we can select the sam-
ple that allows to reduce the uncertainty. Having a sampling selection, we designed
a relevant incremental learning algorithm for the SVM with an uncertainty option.
Finally, we demonstrated that it is easy to extend the SVM with an uncertainty option
to a multi-level estimation, by introducing a triple-hinge loss and deriving the cor-
responding optimization problem and resulting algorithm. We conducted extensive
experiments that demonstrated the relevance of these methodological and algorith-
mic developments on different real data. As of future work, one could be interested in
defining a multi-hinge loss, beyond the triple hinge proposed in this paper. It is worth
noting that this extension seems straightforward, as explained in this paper. Integrat-
ing sample selection and incremental learning for such multi-hinge loss seems also to
be straightforward.
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transition ADEME in France for the funding of this research work.
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