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We discuss a variety of extensions of connected components in temporal graphs, focusing on 
extensions using connectivity over time through temporal paths (or journeys). Starting with 
components induced by temporal sources or sinks, we build up to components induced by 
multiple sources or sinks, and eventually components where all vertices are sources and sinks, 
i.e. temporally connected components. The cases of bounded components (i.e. defined on time 
windows), and open or closed components, are also considered. Our contributions mainly 
include structural results on the number of components, and algorithmic and complexity results 
of corresponding decision problems. Several new NP-completeness proofs are provided while 
exploring the boundaries between easy and difficult problems.

1. Introduction

Temporal graphs have become increasingly popular in the literature over the years, and for good reasons. Dynamic settings, whether 
failure-prone systems or highly mobile entities, which static graphs fail to model, can be modelled naturally with temporal graphs 
[13,28,31,49]. Many problems in temporal graphs can be solved by extending static graph structures and related problems and 
algorithms to time dimension, resulting in various more complicated extensions.

Concerning the problems, often these become harder in terms of time and/or space complexity [1,5,40]. Naturally, this leads to 
results considering specific classes of temporal graphs, often restraining the underlying graph (or footprint), approximation results, 
and/or fixed-parameter tractability results (or, in the negative case, 𝑊 [1] or even 𝑊 [2] hardness results) [15,19,20,23,33,51]. 
Temporal graph theory has also natural links with gossip theory [4,25,26], and with rainbow structures in edge-coloured static 
graphs [10,16,37].

We use standard notation and terminology from graph theory [21]. However, temporal graphs can be defined in a number of 
(more or less) equivalent ways, and as a result exist under a multitude of distinct names, including dynamic graphs, stream graphs, 
link streams, time-varying graphs and evolving graphs [3,13,22,39]. Usually, the vertex set is constant, and the edges may appear 
and disappear. We choose the following representation, often referred to as the compact representation: we start from a classical 
graph (called footprint or underlying graph) and associate to each edge a list of time labels at which the edge is present.

Note that in this largely used model, time is discrete. Discrete temporal graphs may be equivalently represented by a sequence of 
time indexed static graphs called snapshots. It is also possible to represent them by keeping track of the changes between successive 
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Fig. 1. Example of temporal graph 1 (presented in the compact representation), with at least two journeys (in red) but no static path from vertex 𝑠 to vertex 𝑡 in any 
of the snapshots. The journey to the right is strict. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

snapshots, which may lead to more compact encoding, especially in the case of low dynamicity (small number of added or removed 
edges between successive snapshots). It is usually used in the dynamic graph algorithm setting, see [29]. A few works consider con-
tinuous models (see for instance [24] for flow problems). However, it is often necessary to discretise the model to obtain algorithmic 
results.

Journeys and temporal connectivity In static graphs, including snapshots of temporal graphs, vertices 𝑠, 𝑡 are adjacent if they are 
connected by edge {𝑠, 𝑡}, and edges {𝑢, 𝑣}, {𝑣, 𝑤} are said to be incident. An (elementary) path is defined as a (non-repeating) sequence 
of adjacent vertices. If for all pairs of vertices in 𝐺 there exists a path including both vertices, then 𝐺 is said to be connected. If 𝐺
isn’t connected, then 𝐺 can be partitioned into subgraphs such that each subgraph is connected. Such subgraphs, and equivalently 
the associated vertex sets, are referred to as the connected components of 𝐺.

In temporal graphs, one may consider path-based connectivity, where the existence of paths between some or all vertices, for each 
snapshot, is maintained throughout time [46]. However, a natural extension of paths exists in which even though two vertices may 
admit no path in any of the snapshots, over time they might still be connected thanks to some structures called temporal paths or 
journeys. A journey is a sequence of incident edges (a path in the footprint) with non decreasing time labels. If the time labels are 
increasing, the journey is called strict, see Fig. 1. In this paper, non-strict journeys are considered.

The aim of this paper is to present a comprehensive study of the fundamental question “What is a connected component based on 
journeys in temporal graphs?” Some works have appeared over the years offering answers to this question, in one way or another. 
Here, we wish to group these results, not unlike a survey, and add or complete missing pieces of information relevant to this central 
question. We choose to consider a well-established hierarchy of temporal connectivity properties proposed by Casteigts et al. in [13], 
and more recently revisited in [12], as a basis for all sorts of connectivity which may arise or exist in temporal graphs. For some of 
these properties defined through journeys, we define the corresponding component and present results on computational complexity, 
algorithms, and the number of components.

Section 2 formalizes the main concepts regarding temporal graphs, journey-based connectivity, and associated components. It 
then details our main results with regard to previous works, which are summarized in Fig. 2. In Section 3, we state results regarding 
temporal components in which one vertex connects to/from all others. We show that some of these problems may be solved in 
polynomial time. Most of these results are new. Then, in Section 4, we present results regarding temporal components in which all 
vertices connect to/from all others. These results regarding complexity are new or tighten previous results from the literature. Finally, 
in Section 5, we conclude and discuss some open questions and future works.

2. Related work and main results of the paper

2.1. Main definitions

A temporal graph  = (𝐺, 𝜆) is defined by a static graph 𝐺 = (𝑉 , 𝐸) with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺) ⊆ 𝑉 (𝐺) × 𝑉 (𝐺), and 
a labelling of the edges 𝜆 ∶ 𝐸→ 2ℕ ⧵ ∅ determining at which discrete times edges are present. 𝐺 is commonly called the underlying 
graph (or footprint) of , sometimes denoted as 𝐺↓() or simply 𝐺↓. In this paper, we consider only finite-time temporal graphs, with 
the largest label, or lifetime, of  being denoted as 𝑇 (). When there is no ambiguity, we denote 𝑉 (𝐺), 𝐸(𝐺) and 𝑇 () as simply 
𝑉 , 𝐸 and 𝑇 respectively, and 𝑛 = |𝑉 | and 𝑚 = |𝐸|. We use the notation 𝐺𝑡() (or simply 𝐺𝑡) for the static graph corresponding to 
temporal graph  at time 𝑡, i.e. 𝐺𝑡 = (𝑉 , 𝐸𝑡 ⊆ 𝐸) with 𝑒 ∈ 𝐸𝑡 ⟺ 𝑡 ∈ 𝜆(𝑒). 𝐺𝑡 is called a snapshot of . It is sometimes useful to 
represent temporal graphs as sequences of snapshots, e.g.  = (𝐺1, 𝐺2, ..., 𝐺𝑇 ). Let the restriction of  on time window [𝑡1, 𝑡2] for some 
𝑡1 ≤ 𝑡2 ≤ 𝑇 be the temporal graph denoted [𝑡1 ,𝑡2] = (𝐺𝑡1 , 𝐺𝑡1+1, ..., 𝐺𝑡2 ), and 𝐺[𝑡1 ,𝑡2] denote its footprint. Finally, let the subgraph of 
induced by vertex set 𝑉 ′ ⊆ 𝑉 be the temporal graph denoted [𝑉 ′] = (𝐺′ = (𝑉 ′, 𝐸′), 𝜆), with {𝑢, 𝑣} ∈𝐸′ ⟺ 𝑢, 𝑣 ∈ 𝑉 ′ and {𝑢, 𝑣} ∈𝐸.

We denote a path from 𝑢 to 𝑣 as 𝑢 → 𝑣 or, since we consider undirected graphs, 𝑢 ↔ 𝑣. Journeys have been introduced in 
the previous section as paths of the footprint, each associated with a sequence of non decreasing time labels. In this paper, the 
journeys may be non-strict, that is successive labels may be equal (or equivalently, a journey may admit several successive edges 
of the same snapshot). We denote a journey, or the existence of a journey, from 𝑢 to 𝑣, as 𝑢 ⇝ 𝑣. Journeys, as opposed to paths, 
are neither symmetrical nor transitive, i.e. 𝑢 ⇝ 𝑣 and 𝑣 ⇝ 𝑤 does not necessarily imply 𝑢 ⇝ 𝑤. The notation 𝑢 ⇝ 𝑣 ⇝ 𝑤 implies 
that journey 𝑣 ⇝ 𝑤 takes place later in time than journey 𝑢 ⇝ 𝑣 (which also implies 𝑢 ⇝ 𝑤). When a temporal graph  admits 
journeys from all vertices to all other vertices, the graph is said to be temporally connected, or  . We use the notation 𝑢 ↺ 𝑣 for a 
round-trip journey 𝑢 ⇝ 𝑣 ⇝ 𝑢. We note that a journey can be described using temporal logic (see e.g. [44]) as follows: 𝑗(𝑢, 𝑣) ∶ (𝑢 =
2

𝑣) ∨ 𝑒(𝑢, 𝑣) ∨ (∃𝑤, 𝑒(𝑢, 𝑤) ∧ 𝑗(𝑤, 𝑣)) ∨𝑋𝑗(𝑢, 𝑣), where 𝑋 denotes the next operator.
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2.2. Size of a temporal graph encoding

Whether one considers the compact representation, or the sequence of snapshots representation, in both cases the size of a temporal 
graph is 𝑂(𝑛 +𝑚𝑇 ). In specific cases, more appropriate representations exist, such as storing only the differences from one snapshot 
to the next (added and removed edges), which is specially effective for temporal graphs with few changes between snapshots, or 
low dynamics. Another possibility is to store for each edge, the sequence of associated presence intervals, effective when the number 
of these intervals is limited (again this implies a low dynamicity). In this paper however, we do not specifically consider temporal 
graphs with low dynamicity. Finally, without loss of generality, we assume 𝑚 = Ω(𝑛). Indeed, if for some temporal graph  we have 
𝑚 < 𝑛 − 1, i.e. the footprint admits multiple connected components 𝑉 ′, precomputing allows us to reduce to 𝑂(𝑛) temporal graphs 
′ = [𝑉 ′] where 𝑚′ ≥ 𝑛′ − 1.
In this setting, an algorithm on temporal graphs is polynomial if and only if it runs in polynomial time regarding 𝑛, 𝑚, and 𝑇 .

2.3. Classification of connectivity properties for temporal graphs

In [13], more recently revisited in [12], Casteigts et al. introduce a hierarchy of temporal properties, giving rise to a number of 
classes among temporal graphs. We consider in this paper the subset of properties based on the existence of journeys, and that may 
be used to define different connected components. As stated previously, we also restrict the study to finite-time temporal graphs. The 
considered properties are classified according to two dimensions. First, existence:

• Property  (𝑆 for “source”) indicates there is a vertex 𝑠 such that 𝑢 ⇝ 𝑣, ∀𝑣 ∈ 𝑉 (denoted  1∀ in [13]).
• Property  (𝑇 for “target”, or sink) indicates there is a vertex 𝑡 such that 𝑣 ⇝ 𝑡, ∀𝑣 ∈ 𝑉 (denoted  ∀1 in [13]).
• Property   as usual indicates 𝑢 ⇝ 𝑣, ∀𝑢, 𝑣 ∈ 𝑉 .
• Property  ↺ indicates 𝑢 ↺ 𝑣, ∀𝑢, 𝑣 ∈ 𝑉 .

Then, occurrence: journeys may exist during the complete time interval (no superscript). It may also appear several times during this 
interval. Hence superscript  will be used if a property is verified during each time window of bounded size Δ. This includes periodic 
occurrences, that will not be specifically studied here. We also use superscript  if the source (resp. target) may be different at each 
time window (dynamic source or target).

For example,  considers temporal graphs for which a journey exists from any vertex toward some vertex 𝑡.   means there are 
such journeys toward 𝑡 for each time window of size Δ, where Δ is a given number larger than 1.   considers the previous graphs, 
for which 𝑡 may be different for each time window.

We note that in the hierarchy of temporal properties, some properties based on (static) paths and edges are presented. It is possible 
to naturally define components based on such properties as in [2,46].

2.4. Reachability graph

Besides the footprint, another useful structure concerning temporal graphs is the reachability graph, which represents the reach-
ability (through journeys) of all vertices of the graph. Formally, the reachability graph of a temporal graph  corresponds to the 
directed graph 𝐻() = (𝑉 , 𝐴 ⊆ 𝑉 × 𝑉 ), with 𝐴 = {(𝑣, 𝑣′) ∶ 𝑣 ⇝ 𝑣′}. Note that this definition introduced by [9] uses the notion of 
closure in a temporal sense: as stated previously, 𝑢 ⇝ 𝑣 and 𝑣 ⇝𝑤 implies 𝑢 ⇝ 𝑤 only if the second journey takes place later than 
the first one. So 𝐻() is not, as usual, the reachability graph of some relation, for instance the relation associated to the existence 
of journeys between vertex couples, but precisely the graph of this relation. When clear from the context, we simply denote 𝐻() as 
𝐻 . We note that the term “transitive closure” was first used instead of the term “reachability graph”, but has now replaced it in the 
temporal graph community.

For example, the reachability graph of the temporal graph 1 from Fig. 1 corresponds to a complete bidirectional graph (all arcs 
in both directions exist) except for arcs (𝑏, 𝑠) and (𝑡, 𝑠) which are missing, meaning the only journeys missing for 1 to be temporally 
connected are from 𝑡 and 𝑏 to 𝑠.

Constructing the reachability graph can be done in time 𝑂(𝑛(𝑚 log𝑇 + 𝑛 log𝑛)) through 𝑛 calls of an adaptation of Dijkstra’s 
algorithm [48], or in time 𝑂(max(|𝐸𝑖|)𝑛𝑇 ) through an online algorithm gradually building the reachability graph snapshot by snapshot 
[6,7,42]. The latter is more efficient in specific cases when the lifetime 𝑇 =𝑂(𝑛) and the snapshot density max(|𝐸𝑖|) = 𝑜(log𝑚). For 
simplicity, we will consider the former time complexity throughout this paper, and we will refer to the adaptation of Dijkstra’s 
algorithm as the temporal Dijkstra algorithm.

2.5. From connectivity properties to temporal components

The rest of the paper is organized to define and study, for a given journey-based temporal property  , the analogue of a connected 
component corresponding to this property, which we will refer to as a  component in this section.

Definition 1 ( component). Given a temporal graph , a  component is a maximal subset 𝑉 ′ ⊆ 𝑉 such that  is respected by 𝑉 ′
3

in .
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Note the maximality requirement for 𝑉 ′, which mimics the maximality requirement for static connected components. It is natural 
to look for largest components also in the temporal case. Definition 1 can be ambiguous concerning the latter part, since technically 
 is a property of temporal graphs, not of a set of vertices in a temporal graph. For now, it is sufficient to say that we simply aim to 
present the difference between  components and closed  components, Definition 1 and Definition 2 resp. Also, these definitions 
are formal and clear when presented using concrete properties in Sections 3 and 4.

Using terminology from [9,27,46], we say a  component V’ is closed if journeys between vertices 𝑢, 𝑣 ∈ 𝑉 ′ necessary for property 
 , do not use vertices from 𝑉 ⧵ 𝑉 ′. In other words, to verify if 𝑉 ′ is a (potentially non-maximal) closed  component, it suffices to 
verify the  property on [𝑉 ′], and this verification does not depend on the rest of . Going back to the definition of a journey using 
temporal logic in Section 2.1, a closed  component thus specifies that 𝑤 has to be part of 𝑉 ′ (and not generally any vertex).

Definition 2 (Closed  component). Given a temporal graph , a closed  component is a maximal subset 𝑉 ′ ⊆ 𝑉 such that  is 
respected by [𝑉 ′].

Open  components are defined as  components in which there exists at least one journey necessary for  which goes outside of 
the component. Most of the components studied in static graphs are closed (an exception being 𝑘-connected components [47] which 
may be open). In the following, we give results for  components, and if applicable, also for closed  components.

For each property  , we start by studying the worst-case number of  components, i.e. the maximum number of  components 
which may exist in a given temporal graph. This can be useful for enumeration and partition problems.

For each property  , the corresponding decision problem  Component is defined as follows.

Definition 3 ( Component decision problem). 
Input: temporal graph , integer 𝑘 (and integer Δ if  is a windowed property).
Question: does  admit a  component of size at least 𝑘?

Algorithms and complexity results for  Component are presented. As stated in Section 1, depending on property  , some 
results may already exist in the literature. However we additionally determine the boundary (if one exists) between polynomial-time 
solvability and 𝑁𝑃 -hardness depending on the lifetime of the graph. To obtain such results, we modify reductions from the literature 
or use different reductions altogether.

Regarding hardness implications, Bhadra et al. [9] give the following argument for   components and closed   components, 
which we generalize for any temporal properties 1, 2. 1 components are a special case of 2 components, but the 𝑁𝑃 -hardness 
of 1 Component does not directly imply that 2 Component is 𝑁𝑃 -hard as well. This is because a possible polynomial time 
algorithm for 2 Component need only answer the decision problem and not identify the components of size at least 𝑘, thus 
potentially making it difficult to verify if at least one such a component is a 1 component. Also, the same temporal graph may 
contain both a 1 component (of indeterminate size) and a 2 component of size 𝑘, so the decision problem for the latter would 
always return “yes”, ignoring the presence or absence of a 1 component of size 𝑘, thereby leaving its decision problem unsolved. 
Of course, the other way around, since 1 components are a special case of 2 components, if 2 Component is 𝑁𝑃 -hard, then 1
Component is not necessarily 𝑁𝑃 -hard either. Since hardness results do not transfer one way or the other, note that this implies 
that neither do results on polynomial-time solving. This is a major difference with the study of connectivity at the graph level.

Regarding hardness proofs, i.e. reductions, we use the following trick from [9]: if all  components in the transformed instance 
are closed, then the reduction works for both  Component and Closed  Component.

2.6. Summary of results

A concise summary of this paper results is given in the following table, where we precise for each  component the worst-case 
number of components (parameterised by the number of vertices 𝑛 of the temporal graph), or the presented bounds on this number 
using notation [lower bound, upper bound]. We also present the algorithmic complexity of finding a solution, if any, and the 
complexity class of the corresponding decision problem (𝑃 referring to polynomial-time solvable, 𝑁𝑃𝐶 to 𝑁𝑃 -complete). For 
components defined through the   property (lower part of the table) we give the constant values of 𝑇 (and Δ when applicable) for 
which the corresponding decision problem is 𝑁𝑃 -complete. Results for  properties are not presented. As we shall proof in section 3, 
the results for  properties easily transfer to them. Our study shows that NP-hardness basically comes from a non polynomial number 
of potential vertex subsets to check.

Temporal graphs with lifetime 𝑇 = 1 trivially admit polynomial-time algorithms for all these problems (since they reduce to finding 
connected components in the static graph), so they are not presented. We also prove  

↺ Component and Closed  
↺ Com-

ponent can be solved in polynomial time for temporal graphs with lifetime 𝑇 = 2. Note that all these results are proven in this 
paper, although some parts (about   and alike) were first presented in related works: Casteigts [12], adapting the work of [41], 
provided first results on the number of   components. Bhadra et al. [8] proved that   Component is NP-complete for 𝑇 ≥ 4, 
and provided an algorithm studied by Nicosia et al. [43]. Very recently, Costa et al. [18] presented new parameterized complexity 
results for   Component. Gómez-Calzado et al. [27] studied the existence of   Components, and Huyghues-Despointes et al. 
4

[32] their maximum size.
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Component Worst-case Number Algorithmic complexity Class

 𝑛 ( 𝑛
2

if no isolated vertices) 𝑂(𝑛(𝑚 log𝑇 + 𝑛 log𝑛)) P

 𝑛 𝑂((𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)) P

Closed  𝑛 𝑂(𝑛(𝑇 −Δ)(𝑛− 𝑘)(𝑚 logΔ + 𝑛 log𝑛)) P

 [𝑛,min(2𝑛, 𝑛𝑇−Δ+1)] 𝑂(𝑛min(𝑘,𝑇−Δ+2)(𝑇 −Δ)𝑘(𝑚 logΔ + 𝑛 log𝑛)) NPC

Closed  [𝑛,min(2𝑛, 𝑛𝑇−Δ+1)] 𝑂(min(2𝑛, 𝑛𝑇−Δ+1)(𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)) NPC

  [20.52
√
𝑛,20.53𝑛] 𝑂(𝑛𝑚 log𝑇 +min( 𝑛

𝑘𝑘2

𝑘!
,20.25𝑛)) NPC (𝑇 > 1)

Closed   [20.52
√
𝑛,20.53𝑛] 𝑂(2𝑛𝑛(𝑚 log𝑇 + 𝑛 log𝑛)) NPC (𝑇 > 1)

  [20.52
√
𝑛,20.53𝑛] 𝑂((𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛) + min( 𝑛

𝑘𝑘2

𝑘!
,20.25𝑛)) NPC (𝑇&Δ > 1)

Closed   [20.52
√
𝑛,20.53𝑛] 𝑂(2𝑛(𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)) NPC (𝑇&Δ > 1)

 ↺ [20.52
√
𝑛,20.53𝑛] 𝑂(𝑛2(𝑚 log𝑇 + 𝑛 log𝑛) + min( 𝑛

𝑘𝑘2

𝑘!
,20.25𝑛)) NPC (𝑇 > 2)

Closed  ↺ [20.52
√
𝑛,20.53𝑛] 𝑂(2𝑛(𝑛2(𝑚 log𝑇 + 𝑛 log𝑛)) NPC (𝑇 > 2)

Fig. 2. Table of results concerning the type of connectivity and worst-case number, algorithmic complexity, and complexity class.

2.7. Other problems related to connectivity

Of course there are other questions linked to connectivity, but they are out of scope of this paper. The interested reader might 
look at [20,48], among many others, for shortest paths, [15] for spanners and spanning trees, [33] for temporal exploration.

3. One to all / one from all (, ,  ,  ,  ,  )

A temporal source is a vertex 𝑢 such that all other vertices 𝑣 in the temporal graph admit a journey 𝑢 ⇝ 𝑣. The concept is mainly 
useful to model a network over which one agent, say the leader, can control the entire network, diffusing information, messages 
or influence throughout the network using peer-to-peer broadcasting [17,34,50]. In this section, we prove that in most cases, the 
problem of finding, and even enumerating the connected components is polynomial. The exception is the case of dynamic sources (
superscript), where the number of solutions can be non polynomial.

Definition 4 ( component). An  component of a temporal graph  is a maximal subset 𝑉 ′ ⊆ 𝑉 such that ∃𝑢 ∈ 𝑉 ′, ∀𝑣 ∈ 𝑉 ′, 𝑢 ⇝ 𝑣

in .

Adding the natural constraint of time windows has mainly two advantages, first a time bound after which one is ensured all other 
vertices can be reached from the source, and second the possibility for the source to reach other vertices multiple times over the 
lifetime of the network.

Definition 5 ( component). An  component of duration Δ of a temporal graph  is a maximal subset 𝑉 ′ ⊆ 𝑉 such that ∃𝑢 ∈
𝑉 ′, ∀𝑡 ≤ 𝑇 −Δ + 1, ∀𝑣 ∈ 𝑉 ′, 𝑢 ⇝ 𝑣 in [𝑡,𝑡+Δ−1].

A natural relaxation of the latter allows for any vertex to be the source in a time window, not necessarily the same vertex for all 
time windows. In other words, the source may be dynamic and change over time.

Definition 6 ( component). An  component of duration Δ of a temporal graph  is a maximal subset 𝑉 ′ ⊆ 𝑉 such that ∀𝑡 ≤
𝑇 −Δ + 1, ∃𝑢 ∈ 𝑉 ′, ∀𝑣 ∈ 𝑉 ′, 𝑢 ⇝ 𝑣 in [𝑡,𝑡+Δ−1].

Closely related to source vertices are sink vertices, where other vertices are able to reach such a vertex, leading to properties  , 
 , and  . These problems are often studied independently as they have their own specific applications such as collecting data to 
analyse a network, and broadcasting information to control a network (e.g. [30, 33, 47]). However, for intents and purposes in this 
paper, these problems can be treated in an equivalent manner by reversing the timeline as presented below (also used recently in 
[11]).

Lemma 1.  (resp.  ,  , ,  , ) components in temporal graph  = (𝐺, 𝜆) of lifetime 𝑇 correspond to  (resp.  , ,  , , 
 ) components in temporal graph ′ = (𝐺, 𝜆′) of lifetime 𝑇 , where ∀𝑒 ∈𝐸(𝐺), 𝜆′(𝑒) =

⋃
𝓁∈𝜆(𝑒)

𝑇 − 𝓁.

Proof. Any journey in  from vertex 𝑢 to 𝑣 is reversed in ′. Thus, a vertex able to reach all vertices in  (or in some [𝑡,𝑡+Δ−1]) can 
be reached by all vertices in ′ (or in some ′[𝑡′ ,𝑡′+Δ−1]) and vice versa. ◀

Lemma 1 allows us to focus only on  components, since any structural result transfers to  components, and algorithmic results 
transfer too, with a polynomial overhead of 𝑂(𝑚𝑇 ) to build the reversed graph (but they can be adapted easily without any overhead). 
5

The same holds for  components and   components, as well as for  components and   components.
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3.1.  components

Lemma 2.  components are necessarily closed.

Proof. In an  component, all vertices on a journey from the source to some other vertex also admit a journey from the source, and 
are thus by maximality included in the component as well. ◀

Lemma 3. A vertex can only be a source for one  component.

Proof. If a vertex was a source for two distinct  components, then at least one wouldn’t be maximal since their union would result 
in a larger  component. ◀

Observation 1. An isolated vertex in the footprint is an  component.

Theorem 1. The worst-case number of  components is 𝑛.

Proof. Lemma 3 implies that at most 𝑛  components can exist, which by Observation 1 is tight when considering the trivial case 
of the empty temporal graph, i.e. a temporal graph composed of empty graph snapshots 𝐺𝑖 = (𝑉 , ∅). ◀

Concerning the worst-case number of  components, we establish a relation between  components and locally minimum label 
edge sets, the latter being defined as maximal connected edge sets such that all edges share some common label and such that no 
edges incident to this set exist with smaller labels. A similar concept called locally earliest edges was used recently in [38].

Lemma 4. The number of  components is at most the number of locally minimum edge sets in a temporal graph without isolated vertices.

Proof. For any locally minimum label edge set 𝐸′ = {{𝑢1, 𝑢2}, ...{𝑢𝑗 , 𝑢𝑘}}, observe that  components 𝑆𝑢𝑖 with source 𝑢𝑖 ∈ 𝑉 (𝐸′) are 
identical (in terms of their vertex set), since all vertices 𝑢𝑖 can reach all vertices reachable by all other vertices of 𝐸′ through the locally 
minimum label edge set. Hence, such vertices 𝑢𝑖 of a locally minimum label edge set produce altogether at most one  component. 
Concerning vertices which are not part of a locally minimum label edge set, say vertex 𝑣, observe that since 𝑣 is not part of a locally 
minimum label edge set, this means that its incident edge with the smallest label, say {𝑣, 𝑥}, must have some incident edge {𝑥, 𝑦}
with an even smaller label (or {𝑣, 𝑥} is part of a connected edge set of the same label which has such an incident edge). Now, either 
{𝑥, 𝑦} is part of a locally minimum label edge set or it has again some incident edge with a smaller label (or again its connected edge 
set of the same label does). Continue this process until having found a locally minimum label edge set, say 𝐸′ = {{𝑢1, 𝑢2}, ...{𝑢𝑗 , 𝑢𝑘}}. 
Note that any 𝑢𝑖 can reach 𝑣 at the latter’s earliest incident edge’s label, implying any vertex 𝑣 can reach, can be reached by 𝑢𝑖 as 
well, through 𝑣.  component 𝑆𝑣 with source 𝑣 thus has to be contained (in terms of their vertex set) within the larger  component 
𝑆𝑢𝑖

with source 𝑢𝑖, since 𝑢𝑖 can reach all vertices 𝑣 can reach. Hence, vertices 𝑣 which are not part of a locally minimum label edge 
set cannot be the source of a  component, since it would not be maximal. This combined with locally minimum label edge sets 
producing at most one  component each, effectively bounds the number of  components by the number of locally minimum label 
edge sets. ◀

Note that there is not necessarily equality for Lemma 4, for example when one component induced by a locally minimum label 
edge set is included in another, such as shown in Fig. 3.

Lemma 5. At most 𝑛2 locally minimum label edge sets may exist in any temporal graph, which is tight.

Proof. Since locally minimum label edge sets cannot be incident by definition, and cover at least two vertices each, at most 𝑛2 locally 
minimum label edge sets exist in any graph. This is shown tight as follows. Take a complete graph on 𝑛 vertices 𝐾𝑛 = (𝑉 , 𝐸) without 
any labels. Now, take a maximum matching in 𝐾𝑛 and assign small labels to it, and to the rest of the edges, either assign large labels 
or remove these edges. The result is a temporal graph with exactly 𝑛2 locally minimum label edge sets, corresponding to the 𝑛2 edges 
of the maximum matching. ◀

Theorem 2. The worst-case number of  components is 𝑛2 in temporal graphs without isolated vertices.

Proof. Fig. 4 shows a graph family which admits exactly 𝑛2  components, which by Lemma 4 and Lemma 5 finishes the proof. ◀
6

Theorem 3.  Component is solvable in polynomial time 𝑂(𝑛(𝑚 log𝑇 + 𝑛 log𝑛)).
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Fig. 3. Example graph family for which Lemma 4 does not induce an equality between the number of  components (only one exists composed of all vertices with 
source either 𝑢 or 𝑣) and the number of locally minimum edge sets (two such sets exist: {𝑢, 𝑣} and {{𝑠, 𝑤}, {𝑤, 𝑡}}).

Fig. 4. A graph family with 𝑛

2
 components. A component with its corresponding source is marked in red.

Proof. We propose the following algorithm for  Component. First, construct the reachability graph 𝐻 of the given temporal 
graph , then check if 𝑘 ≤ Δ+(𝐻) + 1, where Δ+(𝐻) denotes the maximum out degree of 𝐻 . The described algorithm has a time 
complexity of 𝑂(𝑛(𝑚 log𝑇 + 𝑛 log𝑛)) to construct the reachability graph 𝐻 , and an additional 𝑂(𝑛2) to compute the maximum out 
degree Δ+(𝐻). ◀

Theorem 4. For a given temporal graph, all  components can be enumerated in time 𝑂(𝑛𝑚 log𝑇 + 𝑛3).

Proof. Start by computing the reachability graph 𝐻 , taking time 𝑂(𝑛(𝑚 log𝑇 + 𝑛 log𝑛)). Any  component is a subset composed of 
some vertex 𝑣 (the source) with all its out-neighbours in 𝐻 . Now, some of these subsets may be included into others, meaning they may 
be non-maximal. To remove non-maximal subsets, start by sorting the vertices in each subset, taking time 𝑂(𝑛2 log𝑛). Then, for each 
pair of subsets, of which there are 𝑂(𝑛2), check whether one is a subset of the other, and remove it if so, which can be done in time 𝑂(𝑛)
after sorting. All in all, enumeration of  components can be done in time 𝑂(𝑛(𝑚 log𝑇 +𝑛 log𝑛) +𝑛2 log𝑛 +𝑛3) =𝑂(𝑛𝑚 log𝑇 +𝑛3). ◀

3.2.  components

Observation 2. Contrary to  components,  components can be open, as shown in Fig. 5.

Lemma 6. A vertex can only be a source for one  component.

Proof. If a vertex was a source for two distinct  components, then at least one wouldn’t be maximal since their union would result 
in a larger  component. ◀

The above results are true also for closed components. We first focus on the general case: the components might be open.

3.2.1. General case

Theorem 5. The worst-case number of  components is 𝑛.

Proof. Lemma 6 implies at most 𝑛  components may exist, which is tight for example for the empty temporal graph. ◀

In fact, this is tight even for much denser graphs; a temporal graph with one window of size Δ containing only empty snapshots 
is sufficient to obtain 𝑛  components of size 1, meaning even a temporal graph with a complete graph as footprint may attain 𝑛
7

 components.
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Fig. 5. A graph family admitting an open  component for Δ = 2 (in dashed and red with vertex 𝑠 as source) and an open   component for Δ = 2 (in dashed and 
red with vertex 𝑡 as sink).

Theorem 6.  Component is solvable in polynomial time 𝑂((𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)).

Proof. We propose the following algorithm for  Component. Start by enumerating the  components of the windowed temporal 
graph [1,Δ], which by Theorem 4 can be done in time 𝑂(𝑛𝑚 logΔ + 𝑛3). However, we are not interested in maximal  components, 
so the added 𝑂(𝑛3) can be removed. Thus, we enumerate  components, some of which may not be maximal, in time 𝑂(𝑛(𝑚 logΔ +
𝑛 log𝑛)). Keep only those of size at least 𝑘. These are candidate components for  components. Let us denote these candidate 
components as 𝑆𝑠 by their unique corresponding source vertex 𝑠 (Lemma 3). Then, for each windowed temporal graph [𝑡,𝑡+Δ−1] , 
of which there are 𝑂(𝑇 −Δ), obtain their  components in the same manner, again in time 𝑂(𝑛(𝑚 logΔ + 𝑛 log𝑛)). Denote these 
components as 𝑆𝑠[𝑡, 𝑡+Δ− 1]. For each candidate component 𝑆𝑠, of which there are 𝑂(𝑛), update 𝑆𝑠 by setting it to the intersection 
of 𝑆𝑠 and 𝑆𝑠[𝑡, 𝑡+Δ− 1] which is doable in time 𝑂(𝑛 log𝑛). Remove 𝑆𝑠 from the candidate components if its size is less than 𝑘. If 
no candidate components remain at some point, the instance is negative, otherwise it is positive. All in all, this gives a total time 
complexity of 𝑂(𝑛(𝑚 logΔ + 𝑛 log𝑛) + (𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛 + 𝑛(𝑛 log𝑛))) =𝑂((𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)). ◀

Theorem 7. For a given temporal graph, all  components can be enumerated in time 𝑂((𝑇 −Δ)𝑛(𝑚 log𝑇 + 𝑛 log𝑛) + 𝑛3).

Proof. Run the algorithm from Theorem 6 (except for the removal of candidates of size less than 𝑘) and at the end add the verification 
and removal of non-maximal  components, doable as in Theorem 4 in time 𝑂(𝑛3), for a total of 𝑂((𝑇 − Δ)𝑛(𝑚 log𝑇 + 𝑛 log𝑛) +
𝑛3). ◀

3.2.2. Closed  components

Theorem 8. The worst-case number of closed  components is 𝑛.

Proof. Theorem 5 directly adapts for closed  components, since 𝑛  components of size 1 are necessarily closed. ◀

Lemma 7. Verifying if a vertex subset 𝑆𝑠 of source 𝑠 and of size 𝑘 is a (potentially non-maximal) closed  component takes time 𝑂((𝑇 −
Δ)(min(𝑚, 𝑘2) logΔ + 𝑘 log𝑘)).

Proof. For each windowed temporal subgraph [𝑆𝑠][𝑡,𝑡+Δ−1], of which there are 𝑂(𝑇 − Δ), apply the temporal Dijkstra algorithm 
from vertex 𝑠 to obtain its reachability which is done in time 𝑂(min(𝑚, 𝑘2) logΔ + 𝑘 log𝑘). If for all windows, its reachability covers 
the whole vertex set 𝑆𝑠, then 𝑆𝑠 is a solution, else it is not. ◀

Theorem 9. Closed  Component is solvable in polynomial time 𝑂(𝑛(𝑛 − 𝑘)(𝑇 −Δ)(𝑚 logΔ + 𝑛 log𝑛)).

Proof. We propose the following algorithm for Closed  Component. Run the algorithm for  Component. At the end of 
the algorithm, the set of candidates contains all  components 𝑆𝑠 of size at least 𝑘. For all 𝑆𝑠, test if it is closed, i.e. if for all 
𝑡 ≤ 𝑇 −Δ + 1, 𝑆𝑠 is an  component of temporal graph [𝑆𝑠][𝑡,𝑡+Δ−1]. If some component is, then the instance is positive. If however 
𝑆𝑠 is open, meaning at some time 𝑡 ≤ 𝑇 −Δ + 1, vertex 𝑠 cannot reach all vertices in [𝑆𝑠][𝑡,𝑡+Δ−1], then 𝑆𝑠 can be shrunk down to 
contain only the reachable vertices in [𝑆𝑠][𝑡,𝑡+Δ−1]. This shrunken down 𝑆𝑠 can now be tested again: if it is of size at least 𝑘 and 
closed, then the instance is positive, and if not we can again shrink 𝑆𝑠 etc. If no closed  component remains of suitable size, then 
the instance is negative. The algorithm for  Component runs in time 𝑂((𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)), after which 𝑂(𝑛) candidate 
components are tested whether they contain a large enough closed  component. For each of these, testing if they are closed takes 
time 𝑂((𝑇 −Δ)(𝑚 logΔ +𝑛 log𝑛)) by Lemma 7. This process is repeated in case the component is not closed and a shrunken component 
has to be tested which again isn’t closed but contains another shrunken component to be tested etc. This can happen at most 𝑛 − 𝑘
times, since the size of a component is at most 𝑛 and we’re not interested in components of size less than 𝑘. Hence, all together, we 
8

obtain a complexity of 𝑂(𝑛(𝑇 −Δ)(𝑚 logΔ + 𝑛 log𝑛) + 𝑛(𝑛 − 𝑘)(𝑇 −Δ)(𝑚 logΔ + 𝑛 log𝑛)) =𝑂(𝑛(𝑛 − 𝑘)(𝑇 −Δ)(𝑚 logΔ + 𝑛 log𝑛)). ◀
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Fig. 6. A graph family admitting an open  component for Δ = 2, with T odd (in dashed and red with vertex 𝑠 as source for windows [odd, even] and 𝑡 as source 
for windows [even, odd]).

3.3.  components

Some results from  components transfer for  components, or give bounds, since  components are  components in 
which the source for every window is the same vertex.

Observation 3. Even  components where sources change between successive windows can be open, such as shown in Fig. 6.

Lemma 8. An ordered set of vertices (one source per window possibly with repetitions) corresponds to sources of at most one  component.

Proof. If such a set of vertices were sources for two distinct  components, then at least one wouldn’t be maximal since their union 
would result in a larger  component. ◀

3.3.1. General case

Theorem 10. The worst-case number of  components is at least 𝑛, and at most min(2𝑛, 𝑛𝑇−Δ+1).

Proof. The lower bound comes from Theorem 8, with an example being the empty temporal graph. For the upper bounds, since 

components are subsets of vertices which may intersect, at most 2𝑛  components may exist. By Lemma 8, representing components 
through their sources, i.e. ordered sets of vertices (one source per window), another bound of 𝑛𝑇−Δ+1 is found. ◀

Lemma 9. Verifying if a vertex subset 𝑉 ′ of size 𝑘 is a (potentially non-maximal)  component takes time 𝑂((𝑇 −Δ)𝑘(𝑚 logΔ + 𝑛 log𝑛)).

Proof. For each window [𝑡, 𝑡 + Δ − 1], of which there are 𝑇 − Δ + 1, one constructs a partial reachability graph 𝐻 ′ of [𝑡,𝑡+Δ−1] in 
which only reachability for the vertices 𝑉 ′ is computed. This takes time 𝑂(𝑘(𝑚 logΔ + 𝑛 log𝑛)). For each induced subgraph 𝐻 ′[𝑉 ′], 
checking if a vertex with out degree 𝑘 − 1 exists takes time 𝑂(𝑘2). In total, this takes time 𝑂((𝑇 − Δ)(𝑘(𝑚 logΔ + 𝑛 log𝑛) + 𝑘2) =
𝑂((𝑇 −Δ)𝑘(𝑚 logΔ + 𝑛 log𝑛)). ◀

Theorem 11.  Component is solvable in time 𝑂(𝑛min(𝑘,𝑇−Δ+2)(𝑇 −Δ)𝑘(𝑚 logΔ + 𝑛 log𝑛)).

Proof. We present two algorithms, the first being the brute force algorithm that tests all possible subsets of vertices of size 𝑘, the 
second a generalization of the algorithm for  Component. Let us start by analysing the brute force algorithm. For all possible 
subsets of vertices, of which there exist 

(𝑛
𝑘

)
= 𝑂(𝑛𝑘), we verify if it is a suitable solution. By Lemma 9, one verification takes time 

𝑂((𝑇 − Δ)𝑘(𝑚 logΔ + 𝑛 log𝑛)), meaning the brute force algorithm runs in time 𝑂(𝑛𝑘(𝑇 − Δ)𝑘(𝑚 logΔ + 𝑛 log𝑛)). Concerning the 
generalization of the algorithm for  Component, only one change needs to be made. Instead of shrinking candidate component 
𝑆𝑠 at every window by taking the union with 𝑆𝑠[𝑡, 𝑡+Δ− 1], we will need to instead shrink the candidate component with all 
𝑆𝑣[𝑡, 𝑡+Δ− 1] for all 𝑣 ∈ 𝑆𝑠 (which could all correspond to a source for that time window), splitting a candidate component up into 
potentially 𝑂(𝑛) distinct components every time window. A result of this is that at every time window [𝑡, 𝑡 +Δ −1], not 𝑂(𝑛) candidate 
components 𝑆𝑠 exist from previous windows, but at most 𝑛𝑡 =𝑂(𝑛𝑇−Δ+1) candidate components 𝑆(𝑠,𝑡,𝑢,...,𝑣). Analysing the complexity 
gives 𝑂(𝑛𝑇−Δ+1𝑛(𝑇 −Δ)(𝑚 logΔ + 𝑛 log𝑛)). ◀
9

Theorem 12.  Component is NP-complete, even for window size Δ = 2.
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Proof. Lemma 9 proves  Component is in NP. To prove NP-hardness, we give a polynomial-time reduction from Clique to
 Component, i.e. we show how to transform any instance of Clique to an instance of  Component such that the instance of
Clique is positive if and only if the instance of  Component is positive.

Given an instance of Clique, being a graph 𝐺1 of 𝑛1 vertices and 𝑚1 edges and an integer 𝑘1, we describe the following polynomial-
time transformation to an instance of  Component, being a temporal graph 2 = (𝐺2, 𝜆2) of lifetime 𝑇2 and integers Δ2 and 𝑘2. Set 
𝑇2 = 3𝑛1 − 1, Δ2 = 2 and 𝑘2 =𝑚1 + 𝑛1 + 𝑘1. Let us construct the footprint 𝐺2 , initially the empty graph. Let 𝑉 (𝐺1) = {𝑣1, 𝑣2, ..., 𝑣𝑛1 }. 
For each vertex 𝑣𝑖 ∈ 𝑉 (𝐺1), add vertices 𝑣𝑖 and 𝑣𝑖,𝑖 with edge {𝑣𝑖, 𝑣𝑖,𝑖} to 𝐺2. We refer to vertices 𝑣𝑖 in 𝐺2 as original vertices, and to 
vertices 𝑣𝑖,𝑖 as satellite vertices. Then, for each edge {𝑣𝑖, 𝑣𝑗} ∈𝐸(𝐺1), add vertex 𝑣𝑖,𝑗 = 𝑣𝑗,𝑖 and edges {𝑣𝑖, 𝑣𝑖,𝑗}, {𝑣𝑖,𝑗 , 𝑣𝑗} to 𝐺2. These 
edges will allow for 𝑣𝑖 to reach 𝑣𝑗 and/or vice versa, depending on the labelling. We refer to vertices 𝑣𝑖,𝑗 as intermediary vertices. 
Finally, ∀𝑣𝑖,𝑗 , 𝑣ℎ,𝑘 ∈𝐺2, add edges {𝑣𝑖,𝑗 , 𝑣ℎ,𝑘} (essentially creating a clique of all intermediary and satellite vertices, of size 𝑚1 + 𝑛1). 
Let us refer to these last edges as the background edges. This concludes the construction of 𝐺2 . Note that 𝑛2 =𝑚1 + 2𝑛1.
Concerning 𝜆2 (see also Fig. 7), for each vertex 𝑣𝑎 ∈ 𝑉 (𝐺1) with 1 ≤ 𝑎 ≤ 𝑛1, we create a temporal graph 𝑣𝑎 Construct each 𝑣𝑎 by 
placing label 3𝑎 −1 on all edges {𝑣𝑖, 𝑣𝑖,𝑎} and on the background edges, and label 3𝑎 −2 on all other edges. Note that the intermediary 
vertices allow for 𝑣𝑖 and 𝑣𝑗 to reach each other, except for temporal graphs 𝑣𝑖 in which only 𝑣𝑖 can reach 𝑣𝑗 , and vice versa for 
𝑣𝑗 . Now, let 2 be the union of all 𝑣𝑎 , for all 1 ≤ 𝑎 ≤ 𝑛1, and add labels 3𝑎 on all edges, for all 1 ≤ 𝑎 ≤ 𝑛1 − 1. This concludes the 
polynomial-time transformation.

Now let’s show that the instance of Clique, being (𝐺1, 𝑘1), is positive if and only if the instance of  Component, being 
(2, Δ2 = 2, 𝑘2), is positive.

(𝐺1, 𝑘1) is positive ⟹ (2, Δ2, 𝑘2) is positive:

Suppose that a clique exists in 𝐺1 of size 𝑘1, composed of vertices 𝑉 ′ = 𝑣ℎ, 𝑣ℎ+1, ...𝑣ℎ+𝑘1 . Note that in all windows of size Δ2 = 2 in 
2, either the window contains 3𝑎 for some 𝑎 and thus all vertices can reach each other in this window using only edges with label 3𝑎, 
or the window does not contain 3𝑎 in which case it must contain 3𝑎 − 1, meaning 𝑚1 + 𝑛1 vertices can reach each other by using the 
background edges with label 3𝑎 − 1. In either case, this implies a  component of size at least 𝑚1 + 𝑛1 must exist in 2. To prove a 
larger  component exists, of size 𝑘2 =𝑚1 + 𝑛1 + 𝑘1, we can ignore windows containing 3𝑎, since in these windows a  component 
of size 𝑛2 ≥ 𝑘2 exists and can thus be shrunk to adapt to any  component suitable for the other windows. The remaining windows 
correspond exactly to the temporal graphs 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑛1. Now, all edges {𝑣𝑖, 𝑣𝑗} composing our clique in 𝐺1 exist by definition 
as edges {𝑣𝑖, 𝑣𝑖,𝑗} and {𝑣𝑖,𝑗 , 𝑣𝑗}, with either labels 1 and 1 resp. or 1 and 2 resp., or 2 and 1 resp. in temporal graphs 𝑣𝑎 . Let us iterate 
over these temporal graphs (with variable 𝑏), in which two cases are distinguished:

• If the edges of the clique in 𝐺1 are all transformed in edges with label 1 in the temporal graph 𝑣𝑏 , then vertex 𝑣ℎ is a source 
able to reach 𝑉 ′ in 𝑣𝑏 , for a total of at least 𝑚1 + 𝑛1 + 𝑘1 = 𝑘2 vertices.

• If some edges of the clique in 𝐺1 are transformed into edges with label 2 in the temporal graph 𝑣𝑏 , then 𝑣𝑏 must be a part of the 
clique in 𝐺1, since by definition only adjacent edges to 𝑣𝑏 are transformed into edges with label 2 in 𝑣𝑏 (outside of background 
edges). Also, 𝑣𝑏 (and only 𝑣𝑏 amongst the original vertices) corresponds to a source able to reach 𝑉 ′ in 𝑣𝑏 , for a total of at least 
𝑚1 + 𝑛1 + 𝑘1 = 𝑘2 vertices.

In both cases, and thus for all 𝑣𝑎 , a  component exists containing the aforementioned 𝑚1 + 𝑛1 vertices, as well as the 𝑘1 vertices 
from the clique in 𝐺1. The result of a  component of size 𝑚1 + 𝑛1 + 𝑘1 = 𝑘2 existing in 2 follows directly.

(2, Δ2, 𝑘2) is positive ⟹ (𝐺1, 𝑘1) is positive:

Again, observe that any  component in 2 must contain the 𝑚1 + 𝑛1 vertices which the background edges cover. Let us look at 
the other 𝑘2 − (𝑚1 + 𝑛1) = 𝑘1 vertices. These vertices must be 𝑣𝑖 for some 𝑖 (since vertices 𝑣𝑖,𝑗 are already contained through the 
background edges), meaning they correspond directly to vertices 𝑣𝑖 of 𝐺1. Let’s denote these vertices as 𝑉 ′. Consider temporal graph 
𝑣𝑏 for some 𝑣𝑏, and observe that any vertex 𝑣𝑖 can, by construction, only reach other vertices 𝑣𝑗 by traversing intermediary vertices 
𝑣𝑖,𝑗 . Also, at most one original vertex 𝑣𝑗 can be reached by a journey starting at a vertex 𝑣𝑖. This implies all vertices in 𝑉 ′ must be 
linked pairwise through intermediary vertices in 𝑣𝑏 . By construction, intermediary vertices between vertices 𝑉 ′ can only exist in 
𝑣𝑏 if the corresponding edges exist between 𝑉 ′ in 𝐺1. Thus a clique of size |𝑉 ′| = 𝑘1 must exist in 𝐺1. ◀

3.3.2. Closed  components

Theorem 13. The worst-case number of closed  components is at least 𝑛, and at most min(2𝑛, 𝑛𝑇−Δ+1).

Proof. The lower bound from Theorem 10 works as  components of size 1 are closed. The upper bounds transfer directly from 
Theorem 10. ◀

Lemma 10. Verifying if a vertex subset 𝑉 ′ of size 𝑘 is a (potentially non-maximal) closed  component takes time 𝑂((𝑇 −
Δ)𝑘(min(𝑚, 𝑘2) logΔ + 𝑘 log𝑘)).

Proof. For each window [𝑡, 𝑡 + Δ − 1], of which there are 𝑇 − Δ, constructing the reachability graph of [𝑉 ′][𝑡,𝑡+Δ−1] takes time 
𝑂(𝑘(min(𝑚, 𝑘2) logΔ +𝑘 log𝑘)). In each reachability graph, checking if a vertex with out degree 𝑘 −1 exists takes time 𝑂(𝑘2). In total, 
10

this takes time 𝑂((𝑇 −Δ)(𝑘(min(𝑚, 𝑘2) logΔ + 𝑘 log𝑘) + 𝑘2) =𝑂(𝑘(𝑇 −Δ)(min(𝑚, 𝑘2) logΔ + 𝑘 log𝑘)). ◀
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Fig. 7. Example of transformation from a Clique instance graph 𝐺1 to a  Component instance temporal graph 2 . For visibility, for all 𝑣𝑎 , blue full edges 
correspond to edges with label 3𝑎 −2, red dashed edges to edges with label 3𝑎 −1, and orange dotted edges to background edges with label 3𝑎 −1. Also for visibility, 
not all background edges are represented.

Lemma 11. A closed  component of size > 𝓁 does not imply a (non-maximal) closed  component of size 𝓁 exists.

Proof. Consider Fig. 8, in which an infinite family of temporal graphs is presented (𝑇 =Δ +1), or each of these graphs, say , a closed 
 component exists of size 𝑛, with any vertex as source for both windows. However, no (non-maximal) closed  component exists 
of size 𝑛 − 1, since considering any such set of vertices 𝑉 ′ would result in either 𝐺([𝑉 ′][1,Δ]) or 𝐺([𝑉 ′][2,Δ+1]) to be disconnected, 
implying no temporal source can exist in that window. ◀

This fact, common to other kinds of closed components, has a negative impact when searching for closed components. Indeed, if 
a candidate component over time interval [1, 𝜃] is no more candidate at 𝜃 +1, its subsets have to be verified for all 𝑡 ≤ 𝜃 (see also the 
proof of Theorem 9).
11

Theorem 14. Closed  Component is solvable in time 𝑂(min(2𝑛, 𝑛𝑇−Δ+1)(𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)).
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Fig. 8. Temporal graph family in which a closed  component of size 𝑛 exists but no non-maximal component of size 𝑛 −1 exists. The temporal graphs corresponding 
to time window [1, Δ] and time window [2, Δ + 1] are shown in the middle and on the right respectively.

Proof. Due to Lemma 11, a brute force algorithm cannot simply verify all possible subsets of size 𝑘, as a closed  component of 
size > 𝑘 may still exist even if one of size 𝑘 does not. Hence, all possible subsets of size at least 𝑘 will have to be checked, of which 
there are 𝑂(min(2𝑛, 𝑛𝑇−Δ+1)) by Theorem 13. Verifying a solution takes time 𝑂((𝑇 − Δ)𝑘(min(𝑚, 𝑘2) logΔ + 𝑘 log𝑘)) by Lemma 10, 
meaning the brute force algorithm runs in time 𝑂(min(2𝑛, 𝑛𝑇−Δ+1)(𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)). ◀

Theorem 15. Closed  Component is NP-complete.

Proof. To prove Closed  Component is in NP, we need to show that if an instance is positive, then there exists a polynomial-
size certificate which can be checked in polynomial time. We claim this certificate can be any (potentially non-maximal) closed 

component of size at least 𝑘, which can indeed be checked in polynomial time through Lemma 10.
To prove NP-hardness, the same reduction as in Theorem 12 is used, since all the  components in the transformed instance of 

the reduction are closed  components. ◀

4. All to all / all from all ( ,  ,  ↺)

A graph is said to be temporally connected if there exists a journey from each vertex to every other vertex. In other words, 
over time, each vertex is able to connect to the whole temporal graph, and is used for example in contexts with multi-hop message 
passing, distributed mobile agents, or social communication networks [30,35,36]. Contrasting the previous section, finding all-to-
all components is always NP-hard, which seems due to the potentially high number of connected components, and the closeness 
to finding cliques in the reachability graph. We consider fixed and constant lifetime 𝑇 , and give tight results on when exactly the 
problems become hard regarding 𝑇 .

Definition 7 (  component). A   component of a temporal graph  is a maximal subset 𝑉 ′ ⊆ 𝑉 such that ∀𝑢, 𝑣 ∈ 𝑉 ′, 𝑢 ⇝ 𝑣.

Similar to , time windows add multiple advantages to temporal connectivity. Gomez et al. suppose a   component ex-
ists in their work on agreement in dynamic systems in [27]. In [14], Casteigts et al. present a general framework for computing 
parameters in temporal graphs, one of which being Δ for which the given graph is  . Closed   components are studied by 
Huyghues-Despointes et al. in [32]. They propose polynomial-time algorithms for computing lower and upper bounds on the maxi-
mum component size.

Definition 8 (  component). A   component of duration Δ of a temporal graph  is a maximal subset 𝑉 ′ ⊆ 𝑉 such that 
∀𝑣, 𝑣′ ∈ 𝑉 ′, ∀𝑡 ≤ 𝑇 −Δ + 1, 𝑣 ⇝ 𝑣′ in temporal graphs [𝑡,𝑡+Δ−1].

Another parameter Casteigts et al. are interested in is the round trip temporal diameter, being the shortest duration for which 
there exist round trip journeys between every pair of vertices. More generally, round-trip connectivity can represent systems in which 
feedback or acknowledgements are needed in a connection, such as Transmission Control Protocol (TCP).

Definition 9 ( ↺ component). A  ↺ component of a temporal graph  is a maximal subset 𝑉 ′ ⊆ 𝑉 such that ∀𝑢, 𝑣 ∈ 𝑉 ′, 𝑢 ↺ 𝑣 in 
.

4.1.   components
12

Observation 4.   components can be open such as shown in Fig. 9.



Theoretical Computer Science 1013 (2024) 114757S. Balev, E. Sanlaville and J. Schoeters

Fig. 9. A graph family admitting an open   component (in dashed and red).

Fig. 10. A graph with at least 20.52
√
𝑛   components is constructed by taking a Moon and Moser graph (left) admitting 3𝑛∕3 cliques, and replacing each edge with a 

semaphore gadget (right). All initial cliques now correspond to   components, which are maximal when including semaphore vertices.

As usual, we start with the general case: components may be open.

4.1.1. General case

A lower bound on the worst-case number of   components has been obtained by Casteigts et al. [12] by adapting a Moon and 
Moser graph [41] on 𝑛 vertices and 

(𝑛
2

)
− 𝑛 edges admitting 3𝑛∕3 cliques. Every edge of this graph is replaced by a semaphore gadget 

(see Fig. 10) creating a temporal graph of 𝑁 = 𝑛2 − 2𝑛 vertices in which every initial clique is now a   component, obtaining a 
total of 3𝑛∕3 = 3(

√
𝑁+1+1)∕3 > 3

√
𝑁∕3 > 20.52

√
𝑁   components. We provide an upper bound on this number, to obtain the theorem 

below.

Theorem 16. The worst-case number of   components is at least 20.52
√
𝑛, and at most 20.53𝑛.

Proof. Outside of the trivial upper bound of 2𝑛, a better upper bound can be obtained as follows. Since   components of 
correspond to bidirectional cliques in the reachability graph of  (see [9]), modify the reachability graph as follows. For all arcs (𝑢, 𝑣)
such that (𝑣, 𝑢) exists as well, replace both arcs by one (undirected) edge {𝑢, 𝑣}. All other arcs are removed. The corresponding graph 
is undirected and cliques in this graph correspond to   components. According to Moon and Moser [41], at most 3𝑛∕3 cliques can 
exist in undirected graphs, which implies the same upper bound 3𝑛∕3 < 20.53𝑛 holds for   components in temporal graphs. ◀

Note that the exact bounds are 3(
√
𝑛+1+1)∕3 and 3𝑛∕3 respectively. We used 20.52𝑘 < 3𝑘∕3 < 20.53𝑘 so that results are comparable 

with results using powers of 2.
An algorithm is mentioned by Bhadra et al. [9], and implemented and experimented on by Nicosia et al. [43]. To the best of our 

knowledge, no complexity analysis of this algorithm has been performed.

Theorem 17.   Component is solvable in time 𝑂(𝑛𝑚 log𝑇 +min( 𝑛
𝑘𝑘2

𝑘! , 2
0.25𝑛)).

Proof. The algorithm starts by constructing the reachability graph of the input temporal graph. This is done in time 𝑂(𝑛(𝑚 log𝑇 +
𝑛 log𝑛)). Then, it searches for bidirectional cliques (a subset of vertices with arcs in both directions between vertices) in the reachability 
graph. This has the same asymptotic complexity as searching for cliques. Since we’re interested in cliques of size at least 𝑘, the brute 
force algorithm of testing each subset of size 𝑘 runs in time 𝑂( 𝑛

𝑘𝑘2

𝑘! ). Also, one can obtain a maximum-size clique in time 𝑂(2𝑛∕4) [45]. 

All together,   Component can thus be solved in time 𝑂(𝑛(𝑚 log𝑇 +𝑛 log𝑛) +min( 𝑛
𝑘𝑘2

𝑘! , 2
𝑛∕4)) =𝑂(𝑛𝑚 log𝑇 +min( 𝑛

𝑘𝑘2

𝑘! , 2
0.25𝑛)). ◀

The good news is that a polynomial algorithm exists when 𝑘 is fixed. Unfortunately, Bhadra et al. prove that   Component
is NP-complete. They use a reduction from Clique in which they produce a temporal graph with a lifetime 𝑇 = 4 (so using labels 
between 1 and 4 included). This leaves the 𝑁𝑃 -hardness question open for lifetimes 1 < 𝑇 < 4 (𝑇 = 1 being polynomial-time solvable). 
We treat the case of 𝑇 = 2, thus covering the gap. We believe Bhadra et al. may have attempted to reduce using only the semaphore 
trick (thus with 𝑇 = 2) but encountered some issues concerning large   components in the transformed instance even when no 
large cliques are present in the Clique instance. They proposed a solution to this issue using their structure requiring two extra time 
13

steps. We first discovered a solution to this by using “elongated semaphores”, i.e. semaphores with two intermediary vertices on each 
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Fig. 11. On the left an example instance of Clique with a clique of size 3 which, when transformed as shown on the right, allows for a   component of size 201
(shown in red and dashed).

journey instead of only one, and using labels 1, 2 and 3 instead of 1 and 2. We present here a better solution, being the satellite 
vertices, which allows for the temporal graph to remain at lifetime 𝑇 = 2. This result complements [18], where the authors prove 
𝑊 [1]-hardness of the problem with unbounded lifetime, and of the problem in directed temporal graphs with a bounded lifetime of 
𝑇 = 2.

Theorem 18.   Component is 𝑁𝑃 -complete, for all constant lifetimes 𝑇 > 1.

Proof. First,   Component is in NP because a given set of vertices 𝑉 ′ ⊆ 𝑉 can be checked in polynomial time to be a (potentially 
non-maximal)   component: it is sufficient to construct the reachability graph and to verify if a bidirectional clique exists between 
vertices 𝑉 ′.

For NP-hardness, we show how to reduce Clique to   Component in polynomial time. Given a graph 𝐺 = (𝑉 , 𝐸) for the Clique
problem, create temporal graph  with (initially) the same vertex set 𝑉 . For each edge (𝑢, 𝑣) ∈ 𝐸, add a semaphore gadget between 
𝑢 and 𝑣 in , with intermediary vertices 𝑢𝑣 and 𝑣𝑢. Also, add 𝑛3 satellite vertices 𝑣𝑖,1, ..., 𝑣𝑖,𝑛3 to every original vertex 𝑣𝑖 , with the 
corresponding edges having labels 1 and 2. See Fig. 11 for an example of how to construct . Note that  has lifetime 𝑇 = 2.

We prove a clique of size 𝑘 exists in 𝐺 if and only if a   component of size 𝑘𝑛3 + 𝑘2 exists in .

Clique ⟹   Component

If a clique of size at least 𝑘 exists in 𝐺 of vertices 𝐾 = {𝑣𝑖 ∶ 𝑖 ≤ |𝐾|}, then consider the corresponding vertices in , as well as all 
corresponding intermediary vertices between them (these must exist by construction), and all corresponding satellite vertices. Let’s 
refer to this set of vertices in  as 𝑉 ′. 𝑉 ′ is of size 𝑘𝑛3 + 𝑘2 and furthermore 𝑉 ′ is a   component, since all the vertices can reach 
each other: any vertex 𝑣𝑖 ∈ 𝐾 can clearly reach any other vertex 𝑣𝑗 ∈ 𝐾 through the semaphore between the vertices. Concerning 
the other vertices in 𝑉 ′, since they all have an edge with label 1 (resp. label 2) connecting them to a vertex 𝑣𝑖 ∈𝐾 , they can reach 
(resp. be reached by) the exact same vertex set 𝑣𝑖 can reach (resp. be reached by). Thus, a   component of size at least 𝑘𝑛3 + 𝑘2
must exist.

  Component ⟹ Clique

If a (maximal)   component 𝑉 ′ of size at least 𝑘𝑛3 + 𝑘2 exists in , then consider all vertices 𝐾 = 𝑉 ′ ∩ 𝑉 . Clearly |𝐾| ≥ 𝑘 as there 
exists no other way of obtaining an addend of at least 𝑘𝑛3 in the size of 𝑉 ′ than it containing at least 𝑘 groups of satellite vertices, 
and by maximality if a satellite vertex 𝑣𝑖,𝑎 is contained in 𝑉 ′, then so must all other satellite vertices 𝑣𝑖,𝑏 for all 𝑏, as well as the 
original vertex 𝑣𝑖. Since all vertices in 𝐾 are part of a   component 𝑉 ′, they are all able to reach each other, which is only possible 
if a semaphore gadget exists between each pair of vertices of 𝐾 . A semaphore gadget can only be present if a corresponding edge 
exists in 𝐺, thus 𝐾 forms a clique of size at least 𝑘 in 𝐺, finishing the proof. ◀

4.1.2. Closed   components

Theorem 19. The worst-case number of closed   components is at least 20.52
√
𝑛, and at most 20.53𝑛.

Proof. Theorem 16 directly adapts for closed components, as the components obtained by the lower bound’s construction are 
14

closed. ◀
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Fig. 12. Temporal graph family in which a closed   component of size 𝑛 exists but no non-maximal component of size 𝑛− 1 exists.

Lemma 12. Verifying if a vertex subset 𝑉 ′ of size 𝑘 is a (potentially non-maximal) closed   component takes time 𝑂(𝑘(min(𝑚, 𝑘2) log𝑇 +
𝑘 log𝑘)).

Proof. To verify 𝑉 ′, we construct the reachability graph of temporal graph [𝑉 ′] and check if it is a (bidirectional) complete graph, 
doable in time 𝑂(𝑘(min(𝑚, 𝑘2) log𝑇 + 𝑘 log𝑘) + 𝑘2) =𝑂(𝑘(min(𝑚, 𝑘2) log𝑇 + 𝑘 log𝑘)). ◀

Observation 5. A closed   component of size > 𝑘 does not imply a (non-maximal) closed   component of size 𝑘 exists.

Proof. Consider Fig. 12, in which an infinite family of temporal graphs is presented. For each of these graphs, say , a closed  

component exists of size 𝑛. However, no (non-maximal) closed   component exists of size 𝑛 − 1, since considering any such set of 
vertices 𝑉 ⧵ 𝑢𝑖 (resp. 𝑣𝑖) would result in 𝑣𝑖 (resp. 𝑢𝑖) not being able to reach any vertex 𝑣𝑗 (resp. 𝑢𝑗 ). ◀

Theorem 20. Closed   Component is solvable in time 𝑂(2𝑛𝑛(𝑚 log𝑇 + 𝑛 log𝑛)).

Proof. We describe the brute force algorithm of testing all possible subsets of vertices. Due to Observation 5, we cannot only test 
subsets of size 𝑘, needing to possibly test all subsets of size at least 𝑘, of which there are 𝑂(2𝑛). Verifying a vertex subset takes time 
𝑂(𝑛(𝑚 log𝑇 + 𝑛 log𝑛)) by Lemma 12, giving a total time complexity of 𝑂(2𝑛𝑛(𝑚 log𝑇 + 𝑛 log𝑛)). ◀

Bhadra et al. also prove Closed   Component is 𝑁𝑃 -complete through the same reduction as for   Component, again 
leaving open NP-hardness for constant lifetimes 1 < 𝑇 < 4. We completely fill the gap, by proving NP-hardness for 𝑇 = 2.

Theorem 21. Closed   Component is 𝑁𝑃 -complete, for all constant lifetimes 𝑇 > 1.

Proof. To prove Closed   Component is in NP, we need to show that if an instance is positive, then there exists a polynomial-
size certificate which can be checked in polynomial time. We claim this certificate can be any (potentially non-maximal) closed  

component of size at least 𝑘, which can indeed be checked in polynomial time through Lemma 12.
In the construction from Theorem 18, all   components (of required size) in  are closed. This suffices to prove that

Closed   Component is 𝑁𝑃 -hard as well, for all lifetimes 𝑇 > 1. Since Closed   Component is both in NP and NP-hard, 
it is thus NP-complete. ◀

4.2.   components

Lemma 13.   components can be open.

Proof. Since   components are   components for the specific setting of Δ = 𝑇 , Theorem 16 transfers directly. ◀

4.2.1. General case

Theorem 22. The worst-case number of   components is at least 20.52
√
𝑛 and at most 20.53𝑛.

Proof. The lower bound transfers directly from Theorem 16.
The upper bound is obtained in a similar manner as for Theorem 16. Start by creating an adaptation of the reachability graph, 

in which an arc (𝑢, 𝑣) is present if and only if a journey exists from 𝑢 to 𝑣 in every window of size Δ. (This can be computed 
easily using temporal Dijkstra algorithm from [48].) Then, for all arcs (𝑢, 𝑣) such that (𝑣, 𝑢) exists as well, replace both arcs by one 
(undirected) edge {𝑢, 𝑣}. All other arcs are removed. The corresponding graph is non directed and cliques in this graph correspond to 
  components. According to Moon and Moser [41], at most 3𝑛∕3 cliques can exist in non directed graphs, which implies the same 
upper bound 3𝑛∕3 < 20.53𝑛 holds for   components in temporal graphs. ◀
15

Theorem 23.   Component is solvable in time
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Fig. 13. Graph family admitting an open  ↺ component (in red and dashed). Vertex 𝑠 can reach vertex 𝑡 and back through a journey inside the component, but a 
journey from 𝑡 to 𝑠 and back has to go outside the component.

Proof. For all windowed temporal graphs [𝑡,𝑡+Δ−1], construct reachability graphs 𝐻[𝑡,𝑡+Δ−1] , taking time 𝑂((𝑇 − Δ)(𝑛(𝑚 logΔ +
𝑛 log𝑛))). Afterwards, take the intersection of these reachability graphs, denoted by 𝐻 . An arc (𝑢, 𝑣) in 𝐻 means that 𝑢 can reach 𝑣
in all windowed temporal graphs. A bidirectional clique of size 𝑘 in 𝐻 thus represents a   component of size 𝑘. As described in 
Theorem 17, such a clique of size at least 𝑘 can be found in time 𝑂(min( 𝑛

𝑘𝑘2

𝑘! , 2
𝑛∕4)). All in all,   Component can thus be solved 

in time 𝑂((𝑇 −Δ)(𝑛(𝑚 logΔ + 𝑛 log𝑛)) +min( 𝑛
𝑘𝑘2

𝑘! , 2
0.25𝑛)). ◀

Again, since   components are   components by setting window size Δ = 𝑇 , NP-hardness transfers. We however prove a 
more general hardness for   Component regarding any constant lifetime and window size.

Theorem 24.   Component is 𝑁𝑃 -complete, for all constant lifetimes and window sizes 𝑇 ≥Δ > 1.

Proof. It is trivially true that instances of   Component are equivalent to instances of   Component such that Δ = 𝑇 .
Let us consider Δ arbitrarily smaller than 𝑇 . Any instance (, 𝑘) for   Component, where the lifetime of  is 𝑇 , is equivalent to 

instance (′, 𝑘, Δ = 𝑇 ) for   Component, where ′ corresponds to  with some additional complete snapshots, i.e. ′ =  ∪ (𝐺𝑖 =
𝐾𝑛)𝑇

′
𝑖=𝑇+1 for some arbitrary 𝑇 ′ > 𝑇 . Combined with Theorem 18, this proves that   Component is 𝑁𝑃 -hard for all 𝑇 ≥Δ > 1. ◀

4.2.2. Closed   components

Theorem 25. The worst-case number of closed   components is at least 20.52
√
𝑛 and at most 20.53𝑛.

Proof. The lower bound from Theorem 16 transfers since the construction produces closed   components, which are also closed 
  components for Δ = 𝑇 . The upper bounds from Theorem 22 transfer directly. ◀

Lemma 14. Verifying if a vertex subset 𝑉 ′ of size 𝑘 is a (potentially non-maximal) closed   component takes time 𝑂((𝑇 −
Δ)𝑘(min(𝑚, 𝑘2) logΔ + 𝑘 log𝑘)).

Proof. For each window [𝑡, 𝑡 + Δ − 1], compute the reachability graph 𝐻[𝑡,𝑡+Δ−1] of temporal graph [𝑉 ′][𝑡,𝑡+Δ−1]. 𝑉 ′ is a solution 
for Closed   Component if and only if all 𝐻[𝑡,𝑡+Δ−1] are bidirectional complete graphs. ◀

Theorem 26. Closed   Component is solvable in time 𝑂(2𝑛(𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)).

Proof. We present the brute force algorithm. Due to Observation 5, we know it may not be sufficient to verify only the subsets of 
size exactly 𝑘; we may need to verify all subsets of size at least 𝑘, of which there exist 𝑂(2𝑛). By Lemma 14, verifying such a subset 
requires 𝑂((𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)) time. In total, the brute force algorithm thus takes time 𝑂(2𝑛(𝑇 −Δ)𝑛(𝑚 logΔ + 𝑛 log𝑛)). ◀

Theorem 27. Closed   Component is 𝑁𝑃 -complete, for all constant lifetimes and window sizes 𝑇 ≥Δ > 1.

Proof. To prove Closed   Component is in NP, we need to show that if an instance is positive, then there exists a polynomial-
size certificate which can be checked in polynomial time. We claim this certificate can be any (potentially non-maximal) closed  

component of size at least 𝑘, which can indeed be checked in polynomial time through Lemma 14.
In the reductions used in Theorems 18 and 24, all   components in the transformed instance are closed. This suffices to prove 

that Closed   Component is NP-hard, for all constant lifetimes and window sizes 𝑇 ≥Δ > 1. ◀

4.3.  
↺ components
16

Observation 6.  
↺ components can be open, such as shown in Fig. 13.
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Fig. 14. A graph with at least 20.52
√
𝑛  ↺ components is constructed by taking a Moon and Moser graph (left) admitting 3𝑛∕3 cliques, and replacing each edge with 

a semaphore gadget (right). All initial cliques now correspond to  ↺ components, which are maximal when including semaphore vertices.

Definition 10 (Extension of reachability graph). 𝐻 ′() = (𝑉 , 𝐸′) is the directed graph obtained as follows: ∀𝑢, 𝑣 ∈ 𝑉 , (𝑢, 𝑣) ∈ 𝐸′ ⇔
𝑢 ↺ 𝑣.
𝐻 ′() = (𝑉 , 𝐸′) is denoted 𝐻 ′ when there is no ambiguity.

Lemma 15. Constructing graph 𝐻 ′() takes time 𝑂(𝑛2(𝑚 log𝑇 + 𝑛 log𝑛)).

Proof. Initialize 𝐻 ′ with vertex set 𝑉 . For all couples of vertices, of which there are 𝑂(𝑛2), do the following. Apply the temporal 
Dijkstra algorithm from [48] starting from 𝑢 to obtain the smallest label at which 𝑣 is reached from 𝑢 through a journey, suppose label 
𝑡. If 𝑣 is unreachable from 𝑢, let 𝑡 =∞. This takes time 𝑂(𝑚 log𝑇 + 𝑛 log𝑛). Then, if 𝑡 ≠∞, on temporal graph [𝑡,𝑇 ], apply again the 
temporal Dijkstra algorithm to check if 𝑢 is reachable from 𝑣. This again takes time 𝑂(𝑚 log𝑇 + 𝑛 log𝑛). If 𝑡 ≠∞ and if 𝑢 is reachable 
from 𝑣 in [𝑡,𝑇 ], then add arc (𝑢, 𝑣) to 𝐻 . ◀

4.3.1. General case

Theorem 28. The worst-case number of  ↺ components is at least 20.52
√
𝑛, and at most 20.53𝑛.

Proof. The lower bound can be obtained as follows. Take a Moon and Moser graph [41] on 𝑛 vertices and 
(𝑛
2

)
− 𝑛 edges admitting 

3𝑛∕3 cliques. Every edge of this graph is replaced by a semaphore gadget (see Fig. 14) creating a temporal graph of 𝑁 = 𝑛2 − 2𝑛
vertices in which every initial clique is now a  ↺ component, obtaining a total of 3𝑛∕3 > 20.52

√
𝑁  ↺ components.

Outside of the trivial upper bound of 2𝑛, a better upper bound can be obtained as follows. By definition,  ↺ components of 
are exactly the bidirectional cliques of 𝐻 ′ . Further modify 𝐻 ′ as follows. For all arcs (𝑢, 𝑣) such that (𝑣, 𝑢) exists as well, replace both 
arcs by one (non directed) edge {𝑢, 𝑣}. All other arcs are removed. The corresponding graph is non directed and cliques in this graph 
correspond to  ↺ components. According to Moon and Moser [41], at most 3𝑛∕3 cliques can exist in non directed graphs, which 
implies the same upper bound 3𝑛∕3 < 20.53𝑛 holds for  ↺ components in temporal graphs. ◀

Lemma 16. Verifying if a vertex subset 𝑉 ′ of size 𝑘 is a solution for  
↺ Component takes time 𝑂(𝑘2(𝑚 log𝑇 + 𝑛 log𝑛)).

Proof. As established in Lemma 15 proof, checking if 𝑢 ↺ 𝑣 in  is 𝑂(𝑚 log𝑇 + 𝑛 log𝑛). As there are 𝑂(𝑘2) couples of vertices to 
verify, the result follows. ◀

Note that another way to check this is to build 𝐻 ′ , and then simply check if 𝑉 ′ is a bidirectional clique, which is 𝑂(𝑘2). However, 
see Lemma 15, building 𝐻 ′ has larger complexity than the algorithm above.

Theorem 29.  
↺ Component is solvable in time 𝑂(𝑛2(𝑚 log𝑇 + 𝑛 log𝑛) +min( 𝑛

𝑘𝑘2

𝑘! , 2
0.25𝑛)).

Proof. Let us first construct 𝐻 ′. Then modify it such that if (𝑢, 𝑣) and (𝑣, 𝑢) exist, replace both arcs by a (non directed) edge {𝑢, 𝑣}. 
Remove all other arcs. The resulting graph is now non directed, and its cliques correspond to  ↺ components. Since we are interested 
in cliques of size at least 𝑘, the brute force algorithm of testing each subset of size 𝑘 runs in time 𝑂( 𝑛

𝑘𝑘2

𝑘! ) (the number of subsets is 

𝑂( 𝑛
𝑘

𝑘! )). Also, one can obtain a maximum-size clique in time 𝑂(2𝑛∕4) [45]. All together,  
↺ Component can thus be solved in time 

𝑂(𝑛2(𝑚 log𝑇 + 𝑛 log𝑛) +min( 𝑛
𝑘𝑘2

𝑘! , 2
0.25𝑛)). ◀

Note that using the algorithm of Lemma 16 to check directly each subset is exactly 𝑂( 𝑛
𝑘𝑘2

𝑘! (𝑚 log𝑇 + 𝑛 log𝑛)). The reader can 
verify that this complexity is strictly higher than that of the theorem as soon as 𝑘 > 3.
17

Outside of the trivial case of lifetime 𝑇 = 1,  
↺ Component can be solved in polynomial time for lifetime 𝑇 = 2 as well.
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Fig. 15. Temporal graph family in which a closed  ↺ component of size 𝑛 exists but no non-maximal component of size 𝑛− 1 exists.

Theorem 30.  
↺ Component is solvable in polynomial time 𝑂(𝑛 +𝑚) on temporal graphs with constant lifetimes 𝑇 ≤ 2.

Proof. The case of 𝑇 = 1 trivially reduces to finding connected components in the snapshot, doable in time 𝑂(𝑛 +𝑚).
For the case of 𝑇 = 2, note that three possible  ↺ components can exist. The first (resp. second) type of  ↺ components uses 

only labels 1 (resp. 2). These  ↺ components correspond to connected components in the corresponding snapshot, and can thus be 
computed in time 𝑂(𝑛 +𝑚) as well. The third, and final, type of  ↺ components uses both labels 1 and 2. We continue by proving 
the latter type of  ↺ components does not exist, finishing the proof.

By contradiction, let us suppose one such a  ↺ component exists, say 𝑉 ′. For any two vertices 𝑢, 𝑣 ∈ 𝑉 ′, if a journey using only 
labels 1 (resp. 2) does not exist between 𝑢 and 𝑣, then a journey using only labels 2 (resp. 1) must exist between 𝑣 and 𝑢 (or 𝑉 ′ would 
not be a  ↺ component). Let us build the non directed graph 𝐺′ = (𝑉 ′, 𝐸′), such that an edge with label 𝑖 is drawn between vertices 
𝑢 and 𝑣 if the corresponding journey between 𝑢 and 𝑣 uses only labels 𝑖. 𝐺′ is thus a complete graph with some arbitrary labelling 
of one label per edge, being either 1 or 2. We finish by showing that in 𝐺′ there is necessarily a spanning structure using only label 
1, or using only label 2, implying that in fact 𝑉 ′ is not a  ↺ component needing both labels 1 and 2, as a spanning structure using 
only labels 1 or only labels 2 exists which is sufficient for  ↺.

𝐺 contains a spanning structure using only labels 1 or only labels 2:

We prove this property by induction. A 𝐾2 graph trivially admits such a spanning structure. Now, if a 𝐾𝑛 graph has this property, 
suppose w.l.o.g. that the spanning structure has only labels 1 (the case of the spanning structure having only labels 2 is analogous by 
switching labels 1 and 2). Adding a vertex so as to obtain a 𝐾𝑛+1 implies adding 𝑛 edges connecting this vertex to the other vertices. 
To avoid having this property in the newly constructed 𝐾𝑛+1, none of these edges can have label 1 (since otherwise a spanning 
structure with only labels 1 exists), but they cannot all have label 2 either (since otherwise a spanning structure with only labels 2 
exists), which is impossible. ◀

Theorem 31.  
↺ Component is 𝑁𝑃 -complete, for all constant lifetimes 𝑇 > 2.

Proof. We show how to reduce Clique to  
↺ Component in polynomial time. Given a graph 𝐺 = (𝑉 , 𝐸) for the Clique problem, 

create temporal graph  such as specified in Theorem 18. See again Fig. 11 for an example of how to construct . Then, for each edge 
having label 1, also add label 3. Note that  has lifetime 𝑇 = 3.

We prove a clique of size 𝑘 exists in 𝐺 if and only if a  ↺ component of size 𝑘𝑛3 + 𝑘2 exists in .

Clique ⟹  
↺ Component

If a clique of size at least 𝑘 exists in 𝐺 of vertices 𝐾 = {𝑣𝑖 ∶ 𝑖 ≤ |𝐾|}, then consider the corresponding vertices in , as well as all 
corresponding intermediary vertices between them (which must exist by construction), and all corresponding satellite vertices. Let’s 
refer to this set of vertices in  as 𝑉 ′, which is of size 𝑘𝑛3 + 𝑘2. 𝑉 ′ is a  ↺ component, since all vertices can reach each other 
and then reach back: any vertex 𝑣𝑖 ∈ 𝐾 can clearly reach any other vertex 𝑣𝑗 ∈ 𝐾 and back, through the semaphore between the 
vertices and back. Note that the reaching of 𝑣𝑗 (before heading back) necessarily happens at time 2. Concerning every other vertex 
𝑣𝑘 in 𝑉 ′, since they all have an edge with labels 1 and 3 connecting to a vertex 𝑣𝑖 ∈ 𝐾 , we have that for all vertices 𝑣𝓁 such that 
𝑣𝑖 ↺ 𝑣𝓁 , 𝑣𝑘 ↺ 𝑣𝓁 . Furthermore, since 𝑣𝑘 has an edge with label 2 connecting to some 𝑣𝑖 ∈𝐾 , we have that for all vertices 𝑣𝓁 such 
that 𝑣𝓁 ↺ 𝑣𝑖, 𝑣𝓁 ↺ 𝑣𝑘. Thus, a  ↺ component of size at least 𝑘𝑛3 + 𝑘2 must exist.

 
↺ Component ⟹ Clique

If a (maximal)  ↺ component 𝑉 ′ of size at least 𝑘𝑛3 +𝑘2 exists in G, then consider all vertices 𝐾 = 𝑉 ′ ∩𝑉 . Clearly |𝐾| ≥ 𝑘 as there 
exists no other way of obtaining an addend of at least 𝑘𝑛3 in the size of 𝑉 ′ than it containing at least 𝑘 groups of satellite vertices, 
and by maximality if a satellite vertex 𝑣𝑖,𝑎 is contained in 𝑉 ′, then so must all other satellite vertices 𝑣𝑖,𝑏 for all 𝑏, as well as the 
original vertex 𝑣𝑖, since they are all connected by edges with all labels (effectively acting like one massive vertex). Since all vertices 
in 𝐾 are part of a  ↺ component 𝑉 ′, they are all able to reach each other and back, which is only possible if a semaphore gadget 
(with the added label 3) exists between each pair of vertices of 𝐾 . Such a semaphore gadget can only be present if a corresponding 
edge exists in 𝐺, thus 𝐾 forms a clique of size at least 𝑘 in 𝐺, finishing the proof. ◀

4.3.2. Closed  ↺ components

√

18

Theorem 32. The worst-case number of closed  ↺ components is at least 20.52 𝑛, and at most 20.53𝑛.
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Proof. The lower bound comes from the fact that all  ↺ components in the construction from Theorem 28 are closed, and the 
upper bound transfers directly from Theorem 28. ◀

Lemma 17. Verifying if a vertex subset 𝑉 ′ of size 𝑘 is a (potentially non-maximal) closed  ↺ component takes time 𝑂(𝑘2(min(𝑚, 𝑘2) log𝑇 +
𝑘 log𝑘)).

Proof. Let us consider the induced subgraph [𝑉 ′], with 𝑘 vertices and 𝑚′ edges, and the corresponding adapted reachability graph 
𝐻 ′([𝑉 ′]) =𝐻 ′. According to Lemma 15, 𝐻 ′ can be computed in 𝑂(𝑘2(𝑚′ log𝑇 +𝑘 log𝑘)). Checking that 𝐻 ′ is a bidirectional clique 
is 𝑂(𝑘2). As 𝑚′ =𝑂(min(𝑚, 𝑘2), the result follows. ◀

Lemma 18. A closed  ↺ component of size > 𝑘 does not imply a (non-maximal) closed  ↺ component of size 𝑘 exists.

Proof. Consider Fig. 15, in which an infinite family of temporal graphs is presented. For each of these graphs, say , a closed  ↺

component exists of size 𝑛. However, no (non-maximal) closed  ↺ component exists of size 𝑛 − 1, since considering any such set 
of vertices 𝑉 ⧵ 𝑢𝑖 (resp. 𝑣𝑖) would result in 𝑣𝑖 (resp. 𝑢𝑖) not being able to reach any vertex 𝑣𝑗 (resp. 𝑢𝑗 ) and back. ◀

Theorem 33. Closed  
↺ Component is solvable in time 𝑂(2𝑛(𝑛2(𝑚 log𝑇 + 𝑛 log𝑛)).

Proof. We present the brute force algorithm. Due to Lemma 18, we know it may not be sufficient to verify only the subsets of size 
exactly 𝑘; we may need to verify all subsets of size at least 𝑘, of which there exist 𝑂(2𝑛). By Lemma 17, verifying such a subset 
requires 𝑂(𝑛2(𝑚 log𝑇 + 𝑛 log𝑛)) time. In total, the brute force algorithm thus takes time 𝑂(2𝑛(𝑛2(𝑚 log𝑇 + 𝑛 log𝑛)). ◀

Theorem 34. Closed  
↺ Component is solvable in polynomial time 𝑂(𝑛 +𝑚) on temporal graphs with constant lifetimes 𝑇 ≤ 2.

Proof. In Theorem 30, we prove that all  ↺ components in temporal graphs of lifetime 𝑇 ≤ 2 correspond to connected components 
in 𝐺1 or 𝐺2. Such connected components are necessarily closed, thus all  ↺ components in temporal graphs of lifetime 𝑇 ≤ 2 are 
necessarily closed. Since  

↺ Component can be solved in time 𝑂(𝑚 + 𝑛) on such temporal graphs, Closed  
↺ Component can 

be solved in time 𝑂(𝑚 + 𝑛) as well. ◀

Theorem 35. Closed  
↺ Component is 𝑁𝑃 -complete, for all constant lifetimes 𝑇 > 2.

Proof. To prove Closed  
↺ Component is in NP, we need to show that if an instance is positive, then there exists a polynomial-

size certificate which can be checked in polynomial time. We claim this certificate can be any (potentially non-maximal) closed  ↺

component of size at least 𝑘, which can indeed be checked in polynomial time through Lemma 17.
In the reduction used in Theorem 31, all  ↺ components in the transformed instance are closed. This suffices to prove that

Closed  
↺ Component is NP-hard, for any constant lifetime 𝑇 > 2. ◀

5. Conclusion

5.1. General perspectives

This paper studies many extensions of connected components to temporal graphs, especially those defined thanks to journeys 
(temporal paths), distinguishing, when relevant, closed and general components. It provides results on the number of such com-
ponents, the complexity of the problem to find them, and associated algorithms. It closes some complexity gaps by proposing new 
proofs. There is still room for improvement, particularly with regard to the maximum number of components and the algorithmic 
complexity. Furthermore, the paper did not consider strict-journey-based connectivity, nor path-based connectivity. Furthermore, no 
hypothesis is done on the dynamicity of the considered temporal graphs. If this dynamicity is low, better adapted data structures, 
such as keeping track of the changes between successive snapshots, or representing the temporal graph by a set of presence intervals, 
might help to design faster algorithms.

5.2. A short discussion about optimisation of windowed components

This paper provided algorithms (polynomial or not) to solve the windowed versions of our problems. Some of these consider the 
windows in the specific order ([1, Δ], [2, Δ +1], ...[𝑇 −Δ +1, 𝑇 ]). We note this order isn’t necessary, in the sense that the result would 
remain unchanged if the time windows were considered in any order. A consequence potentially useful for optimisation is that one 
could reorder the time windows in the most “favourable” way. For example, for , start with the window in which the correspond-
ing temporal graph may have few and small candidate components, and start the intersection process with windows in which the 
19

corresponding temporal graphs may have very distinct  components from the candidate components. Of course, theoretically this 
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would only be useful if such an estimation and reordering of time windows could be done in time 𝑂((𝑇 −Δ)(𝑛(𝑚 logΔ + 𝑛 log𝑛))) as 
well, and even then practically this may still induce a significant change in running time.

Another possible optimisation concerns some bounded versions of problems related to  , where reachability graphs are computed 
for each time window. Can one do better by computing a modified reachability graph over the whole graph, which iteratively keeps 
track of how old journeys’ starting dates are, and removes them over time if too old? Our first investigations did not allow to show 
this idea brings a breakthrough.

Both of these directions we leave as open research avenues in this paper.

5.3. A quick note on parameterised complexity

Among the NP-hard problems in this paper, all but two are para-NP-hard concerning the lifetime parameter, i.e. for some constant 
value of 𝑇 the problem is NP-hard. The two problems which are not para-NP-hard regarding lifetime 𝑇 are  Component and
Closed  Component. Both are in XP, i.e. the problems are polynomial-time solvable for all constant 𝑇 .

In the same manner, all general versions of the NP-hard problems are in XP regarding the size parameter 𝑘. So  Component
is in XP regarding both parameters. By contrast, all closed versions are likely to remain para-NP-hard concerning the size parameter. 
It may be of interest to determine where exactly in XP the problems are situated, e.g. FPT or W[1]-hard. Of course, outside of 𝑇 and 
𝑘, other natural parameters may be considered. Again, this research is left as open avenue.
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