
HAL Id: hal-04735967
https://normandie-univ.hal.science/hal-04735967v1

Preprint submitted on 14 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Dynamic Steiner Tree problem: definitions,
complexity, algorithms

Stefan Balev, Yoann Pigné, Eric Sanlaville, Mathilde Vernet

To cite this version:
Stefan Balev, Yoann Pigné, Eric Sanlaville, Mathilde Vernet. The Dynamic Steiner Tree problem:
definitions, complexity, algorithms. 2024. �hal-04735967�

https://normandie-univ.hal.science/hal-04735967v1
https://hal.archives-ouvertes.fr

The Dynamic Steiner Tree problem: definitions,1

complexity, algorithms2

Stefan Balev3

Yoann Pigné4

Éric Sanlaville1
5

Université Le Havre Normandie, Univ Rouen Normandie, INSA Rouen Normandie, Normandie6

Univ, LITIS UR 4108, F-76600 Le Havre, France7

Mathilde Vernet8

LIA, Avignon Université, Avignon, France9

Abstract10

This paper introduces an extension of the Steiner tree problem applied to dynamic graphs. In11

various application domains of this problem, the associated graphs undergo temporal changes, such12

as variations in the edge set or associated costs. The paper presents three extension models, and13

we opt for the one demonstrating the most desirable features: a fixed Steiner set (a set of selected14

vertices) maintained throughout the time horizon and of minimum cardinality, ensuring connectivity15

among the terminal vertices.16

We show that the resulting problem of minimizing the size of the Steiner set is NP-hard, even17

when dealing with only two terminals and a lifetime of 2 time steps. This contrasts with the18

corresponding static problem, which is among the rare polynomial versions of the Steiner tree19

problem. However, polynomial algorithms exist when the size of the Steiner set is bounded. An20

algorithm is designed, analyzed and tested on specially generated and on real data sets. We show21

that it solves exactly non trivial instances when the Steiner set size in bounded.22

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems23

Keywords and phrases Steiner Tree, Dynamic Graph, Complexity, experimental study24

Funding This work was Supported by the French ANR, project ANR-22-CE48-0001 (TEMPOGRAL)25

26

1 Introduction and contributions of this work27

The Steiner tree problem is one of the most studied combinatorial problems on graphs.28

Roughly speaking, the goal is to preserve the connectivity among some selected vertices,29

called terminals, minimizing the cost associated to the chosen edges, or vertices, in the30

process. This kind of problems occurs in many application domains, as in communication31

networks, sensor networks, social networks, logistic networks, etc.32

Although it is simple to formulate, there is no easy way to solve it as it was very early33

proven to be NP-hard [15]. Furthermore, the problem remains NP-hard even in most of34

its simple versions. Indeed, it is the case even with unitary costs on the edges[12], that is,35

when the objective is to minimize the number of vertices to connect the terminal vertices. In36

the following, the vertex set used to connect the terminals, including the terminal vertices37

themselves, will be called the Steiner set.38

However, there exist cases for which the Steiner problem is easy as it can be solved using39

polynomial algorithms. The first case is when the number of terminals is two, as it then40

1 corresponding author

2 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

reduces to a shortest path problem. The second case is when every vertex of the graph is a41

terminal as it then reduces to a spanning tree problem.42

In the application domains cited above, the underlying graph may change over time.43

This is undoubtedly the case for social networksas interactions among people have a limited44

lifespan. This is also true for some communication networks (for instance ad-hoc networks or45

mobile networks). And also for logistic networks, even if the dynamic is much slower, because46

of works on the road or congestion phenomena for instance. For some years now, a growing47

literature has been considering the well-known classical combinatorial problems in this new48

setting. Recalling all papers dealing with dynamic graphs (the name may vary) is out of the49

scope of this paper, but one may cite, as the most relevant for this work, [22, 17] for paths and50

their extensions like hamiltonian cycles, [11, 18, 19] for flows, [6, 20] for some considerations51

about connectivity issues, . . . Observe that there are different ways (and names) to define a52

dynamic graph (temporal graphs, dynamic or temporal networks, or time evolving graphs).53

Still, and when time is considered as a discrete variable, such a graph is basically constituted54

of an ordered sequence of graphs indexed by time: G = (Gi)i∈T . This is the way it will be55

considered throughout the paper. The term of dynamic graph is preferred because, as we56

shall see, it is not mandatory to know the graph evolution in advance to find a Steiner set57

(the set of vertices used to connect the terminals).58

Designing the temporal counterpart of a given optimization problem on static graphs59

may not always be easy. This is specially the case when the problem involves connectivity60

issues, as connectivity in a temporal setting may have different meanings. A Steiner tree61

is the cheapest way to ensure connectivity between a subset of nodes called terminals. In62

a temporal setting, we are looking for a structure that maintains connectivity whereas the63

graph is changing. Basically, connectivity here may be defined in two ways. In the first64

way, one simply looks for the existence of a journey, also called temporal path, from each65

terminal to any other terminal. This journey-based connectivity ensures some information,66

or some good, will eventually be transferred. But this is a one shot property: typically, after67

a given time, no journey may exist for a couple of terminals and the transfer is no more68

possible. Conversely, in the second way one may wish to maintain some "instantaneous"69

connectivity: at each time, a path exists between each pair of terminals. We claim that70

instantaneous, or path-based connectivity (see [20]) , may be better adapted to some situations,71

like a set of mobile robots that cooperate for a given common goal, thus needing frequent72

communications between some distinguished nodes of the network. Many works exist that73

study the existence of journeys, see for instance the seminal work of [22]. Many works also74

study some journey-based extensions of connected components, see [4, 3], or of spanning trees,75

namely spanners, see [2, 7]. The path-based extensions of spanning tree are of less interest,76

as it may consist either in computing the minimum spanning tree at each snapshot (without77

building any persistent structure), or in computing the spanning tree of the intersection of78

all snapshots (using only edges constantly present). Note that to the best of our knowledge,79

no previous work considers the solving of direct extensions of Steiner trees. Still, the recent80

work of Klobas et al [16] introduced a journey-based temporal version : when does it exist81

a journey between all terminal vertices? However, their paper studies the dual problem82

of finding a minimum temporal labelling allowing the existence of a temporal Steiner tree.83

Although this problem is NP-Hard, The number of labels is bounded by 2n− 4, and these84

labels may be assigned to a tree whose leafs are the terminals, plus one edge. When the85

temporal labelling is given, we shall see that the number of edges (and of vertices) to ensure86

instantaneous connectivity among the terminals may be much larger.87

This paper first investigates the temporal counterpart of Steiner tree problem when the88

Balev et al. 3

goal is to maintain instantaneous connectivity at minimal cost. Several possible extensions of89

the Steiner Tree problem to the case of dynamic graphs are presented. Note that the study is90

restricted to the case of unit costs. The obvious extension is to compute the Steiner trees for91

all time steps. Its drawbacks are that one must keep a different set of intermediate vertices92

at each time step, which is not of practical use; and it is computationally intensive. The93

other proposed extensions build a Steiner set, that is, a subset of vertices that will guarantee94

the connectivity of the terminal vertices throughout the lifetime of the graph. The second95

extension builds at each time step a spanning tree whose vertices are the terminals plus all96

the vertices of the Steiner set. We show that this problem cannot be reduced to successive97

solving of classical Steiner tree problems. However, the drawback of this model is that it98

retains too many edges that are not necessary at each time step to keep the terminal vertices99

connected. Therefore, the total cost might exceed by far the cost for the other models. Our100

last extension minimizes the size of the Steiner set. Note that the sum of the costs of the101

edges used at each time step might be used as a second criterion in case of arbitrary costs.102

This definition is more suitable for the applications, as the obtained solutions will be less103

resource consuming in terms of vertices and edges used, and is used in the remaining of the104

paper. However, we simply prove that the associated decision problem is NP-Complete even105

when the costs are not considered, and there are only two terminals. A more intricated proof106

shows it remains the case even with two time steps.107

This calls for the design of exact algorithms that should be efficient for Steiner sets of108

small size, or of approximation algorithms, that will be designed specifically for the dynamic109

setting. This paper proposes an exact algorithm that computes all Steiner sets of a given size,110

studies its complexity, and provides some experimental tests. The algorithm might be used111

on-line: at each time step, all vertex sets that are so far Steiner sets, are computed. It might112

be worth to discuss here about the distinction between temporal or dynamic graphs and113

multi-layered graphs. Multi-layered graphs have been studied in a number of papers, see for114

instance [5] where several kinds of subgraph searches (including connected components) are115

investigated. They are similar to temporal graphs in the sense that they can also be defined116

as a collection of static graphs with an identical set of vertices. However, these static graphs117

are not ordered, contrary to the snapshots of temporal graphs. As we shall see in the next118

section, definitions of Steiner problems based on maintaining instantaneous connectivity do119

not need to consider some ordering of the snapshots. However, it is interesting to solve these120

problems through on-line algorithms, so that at each time step, the collection of current121

Steiner sets is given. That is why we introduced these extensions of the Steiner problems122

through the setting of dynamic graphs (to our knowledge, there is no paper generalizing the123

Steiner problem to multi-layered graphs).124

Experiments with different randomly generated dynamic graphs show that our algorithm125

is able to solve medium size instances. The number of solutions is highly dependent on the126

type of graphs. The results confirm that Steiner sets are much more numerous on scale-free127

graphs. The algorithm is also applied to a dynamic graph obtained from real data about128

mobile ad hoc networks. The graph is small, but the time horizon is large. The algorithm is129

able to find rapidly all Steiner sets, for different parameter values.130

The main contributions of this paper are therefore:131

We discuss how to extend the Steiner tree problem to dynamic graphs. Among the132

possible extensions, we identify the more relevant one.133

We show that unlike its static counterpart, the dynamic Steiner problem is NP-hard even134

with two terminals.135

We propose an exact algorithm that computes all Steiner sets of a given size, study its136

4 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

complexity and test it experimentally on generated and real-word instances.137

2 The Dynamic Steiner Set problem138

Let us first recall the static problem settings. Let G = (V, E) be a (static) graph. A non-139

negative weight we is associated to each edge e ∈ E. For a given subset of vertices S ⊂ V ,140

called terminals, the objective is to find a tree of minimum weight covering all vertices of S.141

If the case of unit costs, It is of course equivalent to minimize the number of vertices of the142

tree.143

Let us see now how the Steiner Tree Problem can be extended to dynamic graphs. Let G144

be an non-directed dynamic graph such that G = (G1, . . . , GL), with Gi = (V, Ei) ∀1 ≤ i ≤ L145

and E =
⋃

i Ei. The successive Gis are called snapshots of G at each time step. As in the146

static case, let us consider a subset S of special vertices, called terminals. The goal is still to147

ensure connectivity between the terminals. Note that we limit our study to the case where148

no travel time is associated to the edges. Hence there is no travel time associated to paths149

either: the (instantaneous) connectivity requirement applies to each time step.150

2.1 Direct extension: allowing a varying Steiner set151

The direct way to extend the Steiner Tree problem to such dynamic graphs is of course to152

compute, at each time step, the Steiner tree associated to S. This extension has one major153

drawback: at each time step, the Steiner set is different. It is not really convenient, for154

instance in a communication network, to change the intermediate nodes at each time step.155

More deeply, we do not make any use of the knowledge of the dynamic graph as a whole,156

considering each Gi separately. Note also that this approach is very time consuming, as a157

complete Steiner tree is recomputed at each time step. Hence in the remaining of the section,158

we focus on computing a Steiner set that is fixed during all the time of study.159

2.2 Second model: Fully Connected Minimum Steiner Set160

2.2.1 Definition161

▶ Definition 1 (Fully Connected Minimum Steiner Set). Let us consider some dynamic graph162

G. For a given vertex set S ⊂ V of terminals, find E′
i ⊂ Ei ∀i ≤ L and V ′ with S ⊂ V ′ ⊂ V163

such that:164

G′
i = (V ′, E′

i) is a connected graph ∀i ≤ L165

|V ′| is minimum166

We look for a minimum subset V ′ of V containing S, such that the subgraphs of all167

snapshots induced by V ′ are connected (subgraph of G induced by X : subgraph containing168

X and all edges linking vertices of X, denoted G[X]).169

The subset V ′, still called the Steiner set, is a subset of nodes that keep the terminals170

connected. But in fact the condition verified by each G′
i is stronger: it keeps the connectivity171

between all vertices of V ′, not only the terminals.172

2.2.2 Remarks173

Several elements are important to notice regarding the problem given by Definition 1.174

1. When T = 1, this problem is the Steiner Tree problem.175

Balev et al. 5

2. Enforcing the subset E′
i to be the same at each time step makes this problem solvable as176

a static problem by intersecting all Gi177

3. The vertices from the optimal Steiner tree of S at a given time step do not necessarily178

belong to the optimal solution.179

4. The union of the optimal Steiner trees at each time step is not optimal.180

5. The intersection of the Steiner trees obtained by the solution of this problem at each181

time step is not a connected graph.182

6. Choosing V ′ = V is always a solution, but the worst possible in terms of cardinality.183

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

Figure 1 A dynamic graph with 7 vertices and 3 time steps. The graph is represented at each
time step.

2.2.3 Example184

Figure 1 presents an example of the evolution of a dynamic graph on 3 time steps.185

Rectangular vertices (vertices 1 and 4) correspond to the terminal subset S. Vertices with186

identification in red (vertices 1, 2, 4, 6 and 7) correspond to the subset V ′ of the optimal187

solution of the Fully Connected Steiner Set Problem (Definition 1).188

Blue circled vertices and blue edges are the optimal Steiner trees for the subset S at each189

time step. Their size are 3, 4 and 3, respectively. The set {1, 2, 3, 4, 5, 7} resulting from their190

union is not connected for the thierd snapshot.191

The Steiner set for this example is V ′ = {1, 2, 4, 6, 7}, its cardinality is 5.192

This example illustrates the remarks presented in section 2.2.2. The blue vertex set193

and the red vertex set are not equivalent, which is the point of remark 3. Intersecting the194

Steiner trees at each time step (in other words, intersecting blue edges and vertices) gives an195

independent set in this example. Therefore, no solution can be extracted from this, which is196

the point of remark 5. The union of the optimal Steiner Sets at each time step (remark 4) is197

not always connected in this specific example, and as stated by remark 6, taking all vertices198

gives of course a solution of value 7 instead of 5.199

2.2.4 Issues200

This Fully Connected Steiner Set problem cannot be simply reduced to the computation of a201

Steiner tree on some static graph built from the dynamic graph. Therefore, it deserves a202

specific study.203

Unfortunately, the full connectivity constraint on each G′
i is rather artificial with regard to204

applications. Remember the initial goal of building Steiner sets is to keep only the terminals205

6 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

connected. One could wonder why enforce the connectivity of the whole Steiner Set as long206

as the terminals are connected. An optimal solution of this problem might keep some edges207

and vertices that will not be used to connect the terminals at each snapshot, thus significantly208

increasing the overall cost (this remains true if costs are added to edges). This is the case in209

the example presented before. For instance, 4 edges are necessary to ensure connectivity at210

each snapshot. But during the first and third time steps, only two edges are necessary to211

connect the two terminals.212

Another issue is the difficulty to solve the problem in practice. Note however that the213

problem is polynomial when the size of the searched Steiner set is bounded. Indeed, for a214

fixed maximum size of the Steiner set, there is a polynomial number of sets to test (if we215

consider the terminals to be part of the Steiner Set, the number of terminals does not matter).216

And this test consists in searching for the L minimum spanning trees associated with the217

induced subgraphs. First we should enumerate all connected subsets W of V containing S218

and find the minimum spanning tree of the graph induced by W at each time step. The219

optimal solution is the subset W for which the sum of the weights at each time step is220

minimum. This method is obviously not applicable is practice as their might be as much as221

2n−k sets W to check on a graph with n vertices and with S having k vertices.222

2.3 Third model: The terminal set is connected, not the Steiner set223

2.3.1 Definition224

From the previous extension of the Steiner Problem, one major remark was that it seemed225

artificial to keep the whole Steiner set connected because the objective is to connect the226

terminals. This is how we came to another possible definition to extend the Steiner problem227

to dynamic graphs: the Partially Connected Steiner Set.228

▶ Definition 2 (Partially Connected Minimum Steiner Set). Let us consider some dynamic229

graph G. For a given vertex set S ⊂ V of terminals, find V ′ with S ⊂ V ′ ⊂ V , and230

E′
i ⊂ Ei ∀i ≤ L such that:231

All vertices of S are part of the same connected component in the static graph G′
i = (V ′, E′

i),232

∀i ≤ L.233

|V ′| is minimum234

The (partially connected) Steiner set V ′ is the subset of nodes that keep the terminals235

connected for the whole time interval of study of the graph, at a minimum cost. V ′ itself is236

not necessarily connected. This is an answer to a drawback of the previous definition.237

2.3.2 Remarks and complexity issues238

Most remarks from the previous definition remain valid. Again, when T = 1, this problem is239

the Steiner Tree problem. We still cannot deduce an optimal solution from the solution of240

static Steiner Problem at each time step. However, the problem does not directly extend to241

the case of weights on the edges. Indeed, if one minimizes the sum of weights of the Steiner242

trees chosen at each snapshot, then the optimal solution is simply to take V ′ = V and the243

optimal Steiner trees at each snapshot. It is then equivalent to the direct extension given in244

Section 2.1.245

Clearly, there is a compromise to accept between the size of the Steiner set and the overal246

cost of the chosen edges. Anyway, it seems natural to first compute the minimum size of a247

Steiner tree, and then to compute the solutions with minimum cost for a fixed value of the248

cardinality of V ′.249

Balev et al. 7

Finding the (partially connected) Dynamic Minimum Steiner Set, denoted DMSS, is250

NP-hard in the static case, even for bipartite[12] or for chordal graphs[21]. On the other251

hand, one might consider the case of a small number of terminals. Even with arbitrary costs,252

the problem with two terminals is easy in the static case as the Steiner tree reduces to a253

single path.254

In figure 1, there are two terminals. It is easy to see that {6, 7} ∪ {1, 4} is the Steiner set255

of minimum cardinality 4 Remember for the fully connected Steiner set variant, the optimal256

value is 5 for the same example. Note that it is easy to build examples for which the optimal257

cost for the second model is arbitrary larger than the optimal cost for the third model. In258

the next section, we consider the case of the Partially Connected Minimum Steiner tree, with259

two terminals, and we show that this problem is NP-hard. It is noted DMSS2 for (Partially260

Connected) Dynamic Minimum Steiner Set with 2 terminals.261

3 Partially Connected Dynamic Minimum Steiner Set with 2 Terminals262

3.1 Definition263

▶ Definition 3 (Partially Connected Minimum Steiner Set with 2 Terminals). Let us consider264

some dynamic graph G. For a given vertex set S ⊂ V of terminals, with |S| = 2, find V ′ with265

S ⊂ V ′ ⊂ V , and E′
i ⊂ Ei ∀i ≤ L such that:266

All vertices of S are part of the same connected component in G′
i = (V ′, E′

i)267

the cardinality of V ′ is minimum268

3.2 Remarks269

This problem is very easy when T = 1 as this is a shortest path problem in a graph where270

all edges have weight 1. But it is not so easy in the dynamic context, and some extreme271

examples can be given.272

Figure 2 presents a dynamic graph on 4 time steps. The terminal vertices are the squared273

ones. They are directly connected by an edge at each time step, therefore no extra vertex is274

necessary to connect them.275

Figure 3 presents a dynamic graph on n time steps. In each Gi, there is exactly one276

path of length 2 between the two terminals going through a different vertex at each time277

step. In this case, every vertex of the graph must be in the Steiner Set to keep the terminals278

connected.279

Figure 4 presents a dynamic graph on 4 time steps. At each time step, the terminals are280

connected by two distinct paths: one of length 3 and one of length at most 2. If we consider281

the vertices on the shortest path at each time step for the Steiner Set, we need 3 vertices to282

keep the terminals connected. But if we connect the terminals at each time step by a longer283

path (one of length 3), we only need 2 extra vertices for the Steiner set. This example also284

shows that the shortest path at each time step does not help getting an optimal solution, and285

that intersecting the graphs Gi does not help either. Indeed, the path of length 3 present at286

each time step goes through the same two vertices but not the same edges.287

Even though this problem is easy to describe, it is difficult to solve. This is what we288

prove in Section 3.3.289

3.3 NP-Completeness for DMSS2 decision problem290

Let us consider the associated decision problem. Note that for simplicity, we introduce the291

set Vs as the considered Steiner set minus the two terminals, denoted by a and b.292

8 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

S1 S2

n1

n2

(a) G1

S1 S2

n1

n2

(b) G2

S1 S2

n1

n2

(c) G3

S1 S2

n1

n2

(d) G4

Figure 2 Dynamic graph on 4 time steps. The terminal vertices are the squared vertices.

S1

S2

n1 n2 n3 nn...

(a) G1

S1

S2

n1 n2 n3 nn...

(b) G2

S1

S2

n1 n2 n3 nn...

(c) G3

S1

S2

n1 n2 n3 nn...

(d) Gn

Figure 3 Dynamic graph on n time steps. The terminal vertices are the squared vertices.

S1

S2n1

n2

n3
n4

n5

(a) G1

S1

S2n1

n2

n3
n4

n5

(b) G2

S1

S2n1

n2

n3
n4

n5

(c) G3

S1

S2n1

n2

n3
n4

n5

(d) G4

Figure 4 Dynamic graph on 4 time steps. The terminal vertices are the squared vertices.

Balev et al. 9

▶ Definition 4 (DMSS2 decision problem). Let G = (Gi)1≤i≤L be a dynamic graph such that:293

Gi = (V, Ei), i ≤ L294

∪i≤T Ei = E295

Let a ∈ V and b ∈ V be two vertices called terminals. Let Vs ⊂ V − {a, b} be a vertex set296

such that:297

∀i ≤ L there is a path between a and b in Gi using only vertices from Vs298

Question: for a given non-negative integer p, is there a vertex set Vs of size p?299

The NP-completeness of DMSS2 decision problem is proven with a reduction from the300

vertex cover problem (VC). This problem is defined as follows.301

▶ Definition 5 (VC). Let G = (V, E) be a graph, and let Vc ⊂ V be a vertex set such that302

∀(u, v) ∈ E, u ∈ Vc or v ∈ Vc.303

Question: for a given non-negative integer k, is there a vertex set (a cover set) Vc of304

size k?305

In order to prove that the DMSS2 decision problem is NP-complete, we first need to show306

that there is a polynomial reduction from a Vertex Cover instance to a DMSS2 instance307

(Lemma 6). Then we need to show that a valid VC instance gives a valid DMSS2 instance308

(Lemma 7) and that a valid DMSS2 instance gives a valid VC instance (Lemma 8) using the309

polynomial reduction. An instance of a given decision problem is said valid if the answer to310

the question is YES for this instance.311

▶ Lemma 6. There is a polynomial reduction from VC to DMSS2.312

Proof. Let us build a DMSS2 instance on a dynamic graph GDY N from a VC instance on313

graph G = (V, E).314

For each vertex u in G, there is a vertex u in the dynamic graph GDY N ;315

GDY N has two extra vertices a and b;316

For each edge e = (u, v) in G, there is a corresponding time step ie in GDY N and GDY N
ie

317

has 4 edges: (a, u), (u, b), (a, v), (v, b).318

Vertices a and b in GDY N are the terminal vertices. Figure 5 displays an example of such319

transformation.320

If graph G has n vertices and m edges, GDY N has m time steps, n + 2 vertices, and each321

GDY N
i has 4 edges.322

The DMSS2 instance is built in polynomial time (O(m + n)) from the VC instance. ◀323

▶ Lemma 7. If a VC instance is valid, then the corresponding DMSS2 instance is also valid.324

Proof. Consider a vertex cover Vc of size p, and let Vs be the vertex set of GDY N with the325

same vertices. Therefore Vs also has size p.326

Let us consider some time step i. The corresponding graph GDY N
i contains exactly two327

paths of length 2 between a and b using some vertex u and some vertex v. By construction328

of GDY N , (u, v) is an edge of G. Hence either u ∈ Vc or v ∈ Vc (or both). Therefore, in329

GDY N either u ∈ Vs or v ∈ Vs (or both). As at least one of them is in Vs, there exists in330

GDY N
i a path between a and b using only vertices from Vs.331

This is true for each time step in GDY N , so Vs is a solution of the DMSS2 instance. ◀332

▶ Lemma 8. If a DMSS2 instance is valid, then the corresponding VC instance is also valid.333

10 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

v1

v5

v3v2

v4

(a) VC. graph G.

v1

v3

v5

v2

a b

v4

(b) DMSS2. GDY N
1

v1

v3

v5

v2

a b

v4

(c) DMSS2. GDY N
2

v1

v3

v5

v2

a b

v4

(d) DMSS2. GDY N
3

v1

v3

v5

v2

a b

v4

(e) DMSS2. GDY N
4

v1

v3

v5

v2

a b

v4

(f) DMSS2. GDY N
5

Figure 5 Transforming a VC instance with 5 edges to a DMSS2 instance with 5 time steps. The
sets VC = VS = {v1, v4} are in blue.

Proof. Consider the set Vs of GDY N of size p, and let Vc be the vertex set of G with the334

same vertices. Therefore Vc also has size p.335

Let e = (u, v) be an edge of G. For the corresponding time step ie, GDY N
ie

has two paths336

of length exactly 2 between a and b, with u and v the two vertices on those paths. As Vs is337

a solution of the DMSS2 problem, it means that either u or v (or both) are in Vs. Therefore,338

as Vc and Vs contain the same vertices, u or v (or both) are in Vc.339

This is true for all edges of G, hence Vc is a solution of the Vertex Cover problem. ◀340

Figure 5 shows an example where both instances are valid for p = 2. The associated sets341

Vc and Vs are in blue. In Figure 5a, the blue vertices are a vertex cover. Indeed, each edge342

of the graph is adjacent to at least one blue vertex. In Figures 5b to 5f, the blue vertices,343

plus the terminal vertices, form a Steiner Set. Indeed, at each time step of the graph, vertex344

a and vertex b are connected by a path going only through blue vertices.345

▶ Theorem 9. The decision problem DMSS2 is NP-complete.346

Proof. Clearly, DMSS2 is in NP as a proof of YES answer is obtained by providing one347

Steiner set and one tree per snapshot containing all terminal vertices and some other vertices348

from the Steiner set.349

The remaining of the proof follows directly from lemmas 6, 7 and 8. ◀350

Remember that 3 variants were presented in the previous section; we can remark that in351

the first variant Steiner sets are independently computed for each snapshot. Hence with 2352

terminals it can be done through L breadth first searches, and the problem is polynomial.353

In the second variant, the whole Steiner set (including the two terminals) must be connected354

at each snapshot. The same proof than for partially connected DMSS can be used. Indeed,355

it suffices to modify slightly the reduction (see lemma 6) as follows: in GDY N
i all vertices356

Balev et al. 11

but a and b form a clique. Thus, the solution corresponding to the vertex cover set remains357

the same as it still needs to contain at least one extremity of each edge of G to connect a358

and b. Because of the clique edges, the restriction of GDY N
i to the solution set is connected359

for all i, so this vertex set is indeed a solution of the fully connected DMSS. So this variant360

is also NP-complete even with two terminals.361

3.4 NP-Completeness for two time-steps362

The dynamic Steiner optimization problem with two terminals is NP-hard. But in the363

reduction, the number of time-steps of the resulting dynamic graph is m, so at least Θ(n).364

What happens when the life-time is strictly smaller? In particular, the problem should be365

easier when the life-time is bounded by a constant. We now prove that the problem is still366

NP-hard, even when the lifetime is 2.367

▶ Definition 10 (DMSS2x2 decision problem). Let G = (G1, G2) be a dynamic graph with368

G1 = (V, E1) , G2 = (V, E2). Let a ∈ V and b ∈ V be two vertices called terminals. Let369

Vs ⊂ V \ {a, b} be a vertex set such that:370

∀i = 1, 2 there is a path between a and b in Gi using only vertices from Vs371

Question: for a given non-negative integer p, is there a vertex set Vs of size p?372

The NP-completeness of DMSS2x2 decision problem is proven with a reduction from373

the SAT problem. We first show that there is a polynomial reduction from a SAT instance374

to a DMSS2x2 instance (Lemma 11). Then we show that a valid SAT instance gives a375

valid DMSS2x2 instance (Lemma 12) and that a valid DMSS2x2 instance gives a valid SAT376

instance (Lemma 13) using the polynomial reduction.377

▶ Lemma 11. There is a polynomial reduction from SAT to DMSS2x2.378

Proof. Let us build a DMSS2x2 instance on a dynamic graph GDY N = (G1 = (V, E1), G2 =379

(V, E2)) from a SAT instance. The SAT instance formula is given as a conjunctive normal380

form, with n variables and c clauses. Graph G1 is first built as a level graph, one level per381

variable and two vertices by level. Then each initial vertex is replaced by a chain of c vertices.382

Some additional vertices are added in a straightforward way. Graph G2 is also built as a383

level graph, one level per clause and c vertices by level. Vertices cj are then used to separate384

these levels. The remaining vertices are connected to a to insure connexity. Thus, a shortest385

path in G1 is associated to an interpretation of the formula (i.e. a boolean assignment for386

each variable), and a shortest path of G2 to one litteral per clause. More formally:387

for each vertex variable xi and clause Cj , there are two vertices vj
i and v̄j

i in V ;388

for each clause Cj ; except Cn (j = 1→ (n− 1)), there is a vertex cj in V ;389

GDY N has two extra vertices a and b, also denoted c0 and cc;390

E1 contains the following edges:391

(a, v1
1); (a, v̄1

1) ; ∀i = 1→ n,∀j = 1→ c− 1, (vj
i , vj+1

i); (v̄j
i , v̄j+1

i) ;392

∀i = 1→ n− 1, (vc
i , v1

i+1); (vc
i , v̄1

i+1); (v̄c
i , v1

i+1); (v̄c
i , v̄1

i+1) ;393

(vc
n, c1); (v̄c

n, c1) ; ∀j = 1→ c− 1, (cj , cj+1).394

E2 contains the following edges:395

∀j = 1→ c, ∀xi ∈ Cj , (cj−1, vj
i); (vj

i , cj);396

∀j = 1→ c, ∀x̄i ∈ Cj , (cj−1, v̄j
i); (v̄j

i , cj);397

∀j = 1→ c,∀xi, x̄i /∈ Cj , (a, vj
i); (a, v̄j

i).398

Vertices a and b in GDY N are the terminal vertices. Figure 6 displays an example of such399

reduction. GDY N has 2 time-steps, 2nc + c + 1 vertices. E1 has (2n + 1)(c− 1) + 4n edges;400

12 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

a

V11 V11

V15

V21

V25

V31

V35

V15

V21

V25

V31

V35

c1

c4

b

(a) Graph G1

Xa

V11

V13

b

V21

c1

V12 V32

c2

V33

c3

c4

V23V13V13

V14 V34

V25

(b) Graph G2

Figure 6 Example of reduction from instance 1 of SAT. Dashed lines represent a path with some
inner vertices. X is the set of all vertices not present elsewere in G2, all linked to a. In blue, both
paths of a valid solution.

E2 has 2cn +
∑

j sj ≤ 3cn (sj is the number of litterals in clause Cj). Finally, the question401

for DMSS2x2 is: is it a vertex set Vs of size p = nc + (c− 1)?402

The DMSS2x2 instance is built in polynomial time O(nc) from the SAT instance. ◀403

Figure 6 shows a simple example of reduction. The SAT instance has 3 variables and 5404

clauses. Its formula is:405

(x1 + x2)(x1 + x3)(x̄1 + x̄2 + x3)(x̄1 + x̄3)x2. (1)406

The obtained instance of DMSS2x2 has 36 vertices. Both instances are valid. From the paths407

P1 and P2 of a solution Vs for DMSS2x2, one can easily get the corresponding solution for408

SAT: x1 is false, x2 and x3 are true.409

▶ Lemma 12. If a SAT instance is valid, then the corresponding DMSS2x2 instance is also410

valid.411

Proof. Consider a solution of the SAT instance, that is an interpretation I that satisfies the412

formula. Let us consider the path P1 from a to b in G1 so that: if xi ∈ I, then vj
i belongs413

to P1 for all j; and if x̄i ∈ I, then v̄j
i belongs to P1 for all j. The number of vertices of P1414

(a and b excluded) is exactly nc + c− 1 (and there are exactly 2n shortest paths). Let us415

now consider G2. As I is a solution of the SAT instance, it contains at least one litteral per416

clause Cj , say x̃ij
. So in G2, one can build an elementary path P2 from a to b including the417

Balev et al. 13

corresponding vertex of this litteral (vj
i or v̄j

i) for all Cj , plus the cj . By construction, all418

vertices of P2 belong to P1. So we have built a feasible solution for DMSS2x2 of size exactly419

p = nc + c− 1. ◀420

▶ Lemma 13. If a DMSS2x2 instance is valid, then the corresponding SAT instance is also421

valid.422

Proof. From the construction of GDY N , we know that all paths of G1 contain at least423

nc + c − 1 vertices (as usual, a and b excluded), and all elementary paths of G2 contain424

exactly 2c− 1 vertices. Let us consider a set Vs of GDY N of size p = nc + c− 1, supposed to425

be a valid solution, and denote P1 and P2 the corresponding paths. As Vs is a valid solution,426

P1 contains exactly nc + c− 1 vertices, and all vertices of P2 must be included into P1.427

Let us build an interpretation I of the SAT instance as follows: if some vj
i belongs to428

P2, then xi belongs to I. If some v̄j
i belongs to P2, then x̄i belongs to I. Note that it is429

impossible to have both vj
i and v̄j′

i in Vs for some i, as they belong to P1 and by construction,430

for a given i either all vj
i or all v̄j

i belong to P1. By construction of G2, the path P2 contains431

at least one vertex associated to one litteral of each clause. However, it is possible that for a432

given i it contains no vertex of the form vj
i , and no vertex of the form v̄j

i . In that case, one433

may add to I either xi or x̄i, indifferently. That way, interpretation I satisfies all clauses, so434

it is a valid SAT instance.435

◀436

▶ Theorem 14. The decision problem DMSS2x2 is NP-complete.437

Proof. Clearly, DMSS2x2 is in NP as DMSS2 is.438

The remaining of the proof follows directly from lemmas 11, 12 and 13. ◀439

Note that in the proposed reduction, both snapshots G1 and G2 are connected. Further-440

more, one may observe that all vertices of Vs ∪ {a, b}, if Vs is a valid solution of DMSS2x2,441

are connected. This is true in particular for the vertices of X that are all directly connected442

to a in G2. This choice was not mandatory to prove theorem 14, but was done to prove443

easily the following result.444

▶ Theorem 15. The decision problem associated to variant two: Fully Connected Minimum445

Steiner Set, with 2 terminals and 2 snapshots, is NP-complete.446

Proof. The proof is immediate. Indeed, in the second variant there is an additional condition447

on the Steiner set: its vertices must be connected through other vertices of the Steiner set.448

This property is verified for the reduction used in the above proof: in G1, the chosen vertices449

form a path. In G2, some of the chosen vertices form a path from a to b, and the others are450

directly connected to a. Therefore the proof directly applies to this variant. ◀451

4 Algorithmic issues452

This section focuses on efficiently solving the optimization problem associated with DMSS:453

costs on the edges are not considered, only the cardinality of the Steiner set matters. We first454

consider the problem of finding a Steiner set of given cardinality. Throughout this section,455

s is the number of terminals, k is the cardinality of the Steiner sets, and k′ = k − s is the456

number of vertices to add to the terminal vertices.457

Our objective is to design efficient (polynomial) algorithms when k is fixed.458

14 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

4.1 Basic ideas459

For a given time step i, there might be a very large number of vertex sets of cardinality k′
460

that allow the terminals to be connected. These sets will be called candidates for time step i.461

An obvious upper bound of this number is the number of vertex subsets of cardinality k′
462

among V − S, that is
(

n−s
k′

)
. The (dynamic) Steiner sets we are looking for belong to this463

set but, hopefully, are much less numerous. Still, for dynamic graphs with a high number464

of edges in the underlying graph and a slow dynamic, this bound might be close. Note465

however that the problem on such graphs should not be very interesting from the applications466

point of view. Furthermore, a Steiner set of the given cardinality will be found with high467

probability by a simple, and fast, breadth first search on the intersection graph (intersection468

of all snapshots). We shall discuss in the next section on these questions relative to the469

instance types.470

A Steiner set of cardinality k must by definition connect the terminals for each time step.471

Therefore, the algorithmic possibilities are straightforward. Let us discard the naive idea472

that consists in computing independently all candidate subsets for all time steps, and then473

computing their intersection. It is much more efficient to use an iterative process: suppose474

we have a set of candidates PSS for time steps 1, . . . , i. At iteration i + 1, only the solutions475

in PSS which are also candidates for time step i + 1 are kept. The process starts with all476

candidates for i = 1. It ends when i = L with all Steiner sets of cardinality k. This principle477

is used in the algorithm below. In the remaining of the section, we shall precise the different478

steps and give some complexity issues.479

Algorithm 1 FindSteinerFixedSize(G,k)

Input: G = (Gi)i∈{1,...,T } = (V, Ei); k ≤ |V |
Output: all Steiner sets of cardinality k.

PSS ← FindCandidates(G1,k)
for i from 2 to L do

PSS ← Update(PSS,i);
If (PSS = ∅) then STOP.

end
Return: PSS

480

4.2 Algorithm details and complexity481

Method FindCandidates(G1,k) computes all candidates for G1. Unfortunately, there is no482

other way than enumerating all subsets of V − S of cardinality k′. For each subset K,483

determining wether it is a candidate can be done in two steps. First, build the subgraph of484

G1 generated by S ∪K. Second, perform some search from any vertex of S on this subgraph.485

Subset K is candidate if and only if all other vertices of S are found during this search.486

Method Update(PSS,i) uses the same procedure as FindCandidates, but only on the487

elements of PSS, and on Gi.488

So the core procedure of the algorithm is a search on a small subgraph. Its complexity is489

O(m′) where m′ is the number of edges of the subgraph. This number is bounded by k2 and490

by m, the number of edges of the underlying graph.491

In the worst case (see above), the number of candidates remains very high throughout492

the iteration process, it is majored by
(

n−s
k′

)
, hence by (n−s)k′

k′! .493

Balev et al. 15

▶ Theorem 16. The worst case complexity of algorithm 1 as a function of the number494

of time steps L, the number of vertices n, the number of terminals s, and the size of the495

computed Steiner sets k, is Θ(T × (n− s)k−s × k2

(k−s)!). When k and s are fixed parameters,496

the complexity is Θ(T × nk−s).497

Proof. The first part is immediate from the number of iterations, the maximum number of498

candidates at each iteration, and the complexity of the search for each candidate.499

The best case is obtained when no Steiner set exists for G1. In that case, the algorithm tests500

all candidates for G1 then stops. ◀501

These recent years, many studies focused on revisiting classical problems in the light of502

parameterized complexity, and this is of course true for Steiner problems. The main results503

for Steiner, with a presentation of the basics of parameterized complexity, are summarized in504

[14]. When the parameter is the number of terminals s, the minimum cardinality problem505

is FPT (Fixed Parameter Tractable). But it is W[2]-hard if the parameter is the size of506

the Steiner set (the problem is still FPT if the graph is planar). This means no algorithm507

solves the problem in time f(k) · |I|O(1), where |I| is the instance size and f is an arbitrary508

function depending only of k, and this of course remains true in the dynamic case. Theorem509

16 however shows that DMSS is in the XP class when k (or k′ = k − s) is considered, but510

leaves open whether it is FPT for parameter s.511

4.3 Some additional remarks on the algorithms512

The worst case complexity is the same as that of the naive method that computes all513

candidates at each iteration. It is expected that the average and experimental complexity514

will be much better.515

If the snapshot graphs are sparse, it is expected that the number of kept candidates516

diminishes very fast as the number of iterations increases, and eventually equals 0. Then the517

algorithm stops and returns the empty set. One expects also for these instances that most518

of the work is done during first step. Finally, Note that a preprocessing phase accelerates519

greatly the tests (see next section): a graph search checks if a Steiner tree exists in the520

underlying graph. If not, the result is of course the empty set.521

Algorithm 1 returns all Steiner sets of size k. To return Steiner sets of minimal size k∗,522

two approaches are possible. The direct one is to use a dichotomy search and repeatedly523

call the algorithm. The number of calls is then O(log κ) where κ is an upper bound of524

k′∗ = k∗ − s (at most n − s). The second approach consists in keeping at each step the525

candidates that are minimal for the inclusion (that is, removing any vertex removes the526

subset from the candidate set). Updating this set at each time step is more complicated,527

and it is not clear wether this approach is faster.528

Finally, let us consider the problem of Steiner sets of fixed size and minimal cost. Due to529

the nature of the problem, a last step must be added to algorithm 1: for each final Steiner set,530

compute its weight. This implies to compute L minimum spanning trees (on a graph with k531

vertices) for each Steiner set, which costs at most O(T × k2 × log k) with Prim or Kruskal532

algorithms. Note that this complexity is polynomial in all parameters, and independent of n533

(but of course the number of Steiner sets is not independent of n, and not always polynomial).534

5 Experimental study535

In this section, we present an experimental study of our algorithm, both on randomly536

generated graphs and on real-world networks.537

16 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

5.1 Generated graphs538

The experimental study on randomly generated graphs was performed using the GraphStream539

Java library2[9]. The virtual machines used for this experiment have 8 core processors with540

64 GB of RAM.541

5.1.1 Experimental settings542

In order to run experiments on our algorithm, we generated dynamic graphs using a method543

previously presented in [20] to test connected component computation. First we generate544

the underlying graph, then we add dynamicity to the edges using a Markovian process.545

The underlying graph is generated using generators from the GraphStream library. We546

test three different types of graphs that present specific features:547

1. Random graphs, corresponding to the Erdős-Rényi model[10]. It is the most common548

way of randomly generating a static graph. GraphStream Random Graph generator is549

used. This generator adds a vertex and randomly connects it to the other vertices of the550

graph. This operation is repeated for each vertex added.551

2. Regular graphs, which are generated using GraphStream Grid generator. This generator552

generates a torus with the given number of vertices, all with the same degree.553

3. Scale-free graphs, which are used to model many social networks or web networks.554

Graphstream Barabasi-Albert generator is used. This generator adds a vertex to the555

graph and connects it to one or several vertices randomly chosen using Barabasi-Albert’s556

[1] preferential attachment rule. This operation is repeated for each vertex added.557

Once the underlying graph is generated, the dynamic is introduced through a Markov558

model (edge-Markovian dynamic graphs, introduced by [8]): edges appear and disappear559

independently, and from the model two parameters are derived. The presence is equal to560

the stationary probability of edge presence, often noted π1 (π1 ∈ [0, 1]). The stability of561

the dynamic graph may be defined as the average number of steps during which one edge562

remains present. A presence of 0.9 was chosen in our experiments (each edge is present 90%563

of the time), for a stability equal to 9.564

Once the dynamic graph is generated, the terminal vertices are selected randomly in the565

vertex set.566

Two experiments were run on randomly generated graphs. The first one aims at567

analyzing the behavior of the algorithm (both through the number of solutions found568

and the computation time) as it is computing time step by time step. The second experiment569

aims at analyzing the outcome of the algorithm depending on the number of vertices of the570

graph. Table 1 presents the parameters of the generated graphs for each experiment, where571

n is the number of vertices, k the size of the Steiner set, s the number of terminals and L572

the lifetime of the dynamic graph.573

5.1.2 Experiment on the behavior of the algorithm with regard to the574

number of iterations575

The curves are only presented for s = 3, but the results for other values are summarized in576

table 2.577

Figure 7 presents the evolution of the number of solutions when the number of iterations578

(time steps) increases. The decrease is very fast for grids, and to a lesser extend for random579

2 http://graphstream-project.org

Balev et al. 17

First experiment Second experiment
Graph type Random, Scale-free, Regular Random, Scale-free, Regular

n 49 36 ; 49 ; 64 ; 81 ; 100
k 10 10
S 3 ; 4 ; 5 ; 6 4

Presence 0.9 0.9
Stability 9 9

Average degree 4 4
T 50 50

Table 1 Graphs generation settings

0 10 20 30 40 50
Time Step

0

100

101

102

103

104

105

106

Nu
m

be
r o

f S
ol

ut
io

ns

Scale-Free
Random
Regular

Figure 7 Evolution of the median number of Steiner sets with regard to the number of time
steps, with 3 terminal vertices.

18 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

0 10 20 30 40 50
Time Step

0

2000

4000

6000

8000

10000

12000
Co

m
pu

ta
tio

n
Ti

m
e

(s
ec

on
ds

)
Scale-Free
Random
Regular

Figure 8 Evolution of the median computation time as it is being computed, with 3 terminal
vertices.

graphs. Indeed, it is very difficult to keep large persistent connected components (vertex sets580

than remain connected) for these two classes of graphs, see[20]. So the number of Steiner581

sets rapidly reaches 0. For scale free graphs however, the number of Steiner sets decreases582

but much slower, and remains around 100 even for nearly 50 iterations. In these graphs,583

there are some hubs with large degree that are very good candidates for the Steiner set.584

Figure 8 provides the evolution of the total computation time. It is quite logically a585

concave function that is constant as soon as the number of solution is 0. The theoretical586

results on the algorithm complexity are confirmed by figure 9 that shows the computation587

time per iteration varies linearly with the number of tested solutions.588

5.1.3 Experiment on the runtime depending on the number of vertices589

of the graph590

Figure 10 shows that the complexity curve fits well with the regression function nk−s, as591

predicted by the algorithm analysis.592

The main conclusion from this experimental study is that the algorithm can be applied593

with medium size instances despite the high theoretical complexity. Another conclusion594

concerns the number of possible Steiner sets. This number is highly dependent on the type595

of underlying graph (footprint) and might decrease very fast with the number of iterations if596

the graph is not scale free. These results were obtained for a moderate dynamic: a present597

edge has a probability 0.9 to remain present from one iteration to the next.598

Balev et al. 19

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Number of Solutions 1e7

0

5000

10000

15000

20000

25000
Co

m
pu

ta
tio

n
Ti

m
e

(s
ec

on
ds

)

Scale-Free
Random
Regular

Figure 9 Median computation time per iteration according to the number of tested vertex subsets,
with 3 terminal vertices.

Table 2 Number of solutions

Graph Type S Maximum Value Minimum Value First snapshot with
(date t = 0) Minimum Value

Scale-free

3 1 867 447,5 65,5 47
4 256 030,0 5,0 47
5 2 626,5 0,0 13
6 2 405,5 0.0 17

Random

3 435 853,5 0.0 32
4 33 258,5 0.0 17
5 1 373,5 0.0 8
6 85,0 0.0 3

Regular

3 42 909,5 0.0 11
4 7 587,5 0.0 9
5 10.0 0.0 4
6 0.0 0.0 0

Scale-Free 0,976
Random 0,999
Regular 0,998

Table 3 R2 values of the regression functions from Figure 10.

20 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

40 50 60 70 80 90 100
Number of Vertices

0

2000

4000

6000

8000

10000

12000

14000

16000
Co

m
pu

ta
tio

n
Ti

m
e

(s
ec

on
ds

)
Scale-Free
Regression Function: nk s

Random
Regression Function: nk s

Regular
Regression Function: nk s

Figure 10 Median computation time according to the number of vertices in the graph, compared
with a regression function of the form nk−S , which is n6 here.

5.2 Real graphs599

5.2.1 Experimental settings600

The CRAWDAD VT/MANIAC dataset[13], accessible through the IEEE Dataport comes601

from the CRAWDAD collection. This dataset encompasses routing and topology traces602

gathered during the Mobile Ad hoc Networks Interoperability And Cooperation (MANIAC)603

Challenges that took place in 2007 and 2009 in conjunction with the IEEE Globecom IEEE604

and PerCom conferences. These traces provide insights into the communication patterns,605

node mobility, and network structure characteristic of MANETs (Mobile Adhoc Networks)606

in real-world scenarios.607

The dataset comprises log files providing information for each monitored device. These608

files can be interpreted as routing tables for each device on a per-second basis. Based on this609

information, a dynamic graph has been constructed, where nodes represent mobile stations610

and edges depict connections between two mobile stations. The edges are labeled with a list611

of timestamps indicating the dates when these connections are effective. In the presented612

results, the experiment involves 14 mobile stations for a duration of about 20 minutes. It613

translates into a graph with 14 nodes, 74 edges (for the footprint), and 1244 timesteps. On614

average, edges are present for 592 seconds (less than 10 minutes) during the experiment,615

which is 48% of the time. When present, edges remain up for 114 seconds (less than 2616

minutes) on average (9.1% of the time). In comparison to the artificial graphs used in the617

previous experiment, the presence is lower here (48%) than before (90%).618

If for some snapshot, the terminals can not be connected, the number of Steiner sets is619

of course 0. Hence it is useful to verify this first. An efficient algorithm to compute open620

Eternal Connected Components oECC is available, see[20]. After running this algorithm,621

Balev et al. 21

4 6 8 10 12 14
k

0%

20%

40%

60%

80%

100%

Va
lid

 V
er

te
x

Su
bs

et

Mean

Figure 11 Real dataset: percentage of Steiner sets found for different values of k (s = 4).

an oECC with 9 vertices has been found. If all terminal vertices are inside this ECC, it622

guarantees the existence of at least one Steiner set (of size n− s). Conversely, no Steiner set623

exists if the terminal set is not included into an oECC. Note however that a vertex outside624

the oECC may still belong to some Steiner set, due to the open nature of the component.625

We decided to look only for vertices of the oECC to build the terminal set, whereas the626

Steiner set candidates are included into V .627

5.2.2 Results and discussion628

Figure 11 shows the percentage of Steiner sets among all possible vertex sets of same size,629

for all possible terminal sets of size s = 3 (one line may represent different terminal sets,630

with the same behavior). The same kind of "banana" curve has been obtained for s = 4, 5, 6.631

Note the large value of the mean, hence the large number of cases where the terminal set is632

already connected (x-axis = 3, y-axis = 100%), due to the nature of the graph: a bit less633

than 50%. Conversely, there is almost always at least one solution (except in some cases634

when k = s + 1 = 4). The results are similar for larger values of s.635

So it is nearly always possible to find a Steiner set in this example, for any value of s and636

k except specific cases with k− s = 1 or k− s = 0. The finding is very fast (a few seconds at637

most) even if the time horizon is very large.638

6 Conclusion639

In this paper, we presented several possible extensions of the Steiner Tree problem to the640

case of dynamic (or temporal) graphs. The goal is to maintain instantaneous connectivity641

between all terminal vertices for all snapshots. The chosen extension minimizes the size of642

22 The Dynamic Steiner Tree problem: definitions, complexity, algorithms

the Steiner set. It can be further extended to minimize the sum of the costs of the edges used643

at each time step as a the second criterion. We proved that the associated decision problem644

is NP-Complete even when the costs are not considered, and there are only two terminals.645

The proof is rather straightforward thanks to a reduction to Vertex Cover. However, we also646

prove that this remains true even when the lifetime is 2, through another and a bit more647

complicated reduction from SAT.648

This paper proposed an exact algorithm that computes all Steiner sets of a given size,649

studied its complexity, and provided some experimental tests. The algorithm may be used650

on-line. First, randomly generated dynamic graphs of different types have been used. The651

algorithm was able to solve small to medium size instances. The number of solutions, hence652

the computation time, is highly dependent on the type of graphs. The results confirmed653

Steiner sets are much more numerous on scale free graphs. Second, the algorithm has been654

applied to a dynamic graph obtained from real data considering MANET’s. The underlying655

graph is small, but the time horizon is large. The algorithm was able to find rapidly all656

Steiner sets, for different parameter values. Of course the efficiency will be very versatile657

according to the type of applications, that use graphs of very different kinds and very different658

sizes.659

References660

1 Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews661

of modern physics, 74(1):47–97, 2002.662

2 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum663

temporally connected subgraphs. In 43rd International Colloquium on Automata, Languages,664

and Programming (ICALP 2016), 2016. arXiv preprint arXiv:1602.06411.665

3 Stefan Balev, Eric Sanlaville, and Jason Schoeters. Temporally connected components.666

Theoretical Computer Science, 1013:114757, 2024.667

4 Sandeep Bhadra and Afonso Ferreira. Computing multicast trees in dynamic networks and668

the complexity of connected components in evolving graphs. Journal of Internet Services and669

Applications, 3:269–275, 2012.670

5 Robert Bredereck, Christian Komusiewicz, Stefan Kratsch, Hendrik Molter, Rolf Niedermeier,671

and Manuel Sorge. Assessing the computational complexity of multilayer subgraph detection.672

Network Science, 7(2):215–241, 2019.673

6 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying674

graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed675

Systems, 27(5):387–408, 2012.676

7 Arnaud Casteigts, Joseph G Peters, and Jason Schoeters. Temporal cliques admit sparse677

spanners. Journal of Computer and System Sciences, 121:1–17, 2021.678

8 Andrea EF Clementi, Claudio Macci, Angelo Monti, Francesco Pasquale, and Riccardo Silvestri.679

Flooding time in edge-markovian dynamic graphs. In Proceedings of the twenty-seventh ACM680

symposium on Principles of distributed computing, pages 213–222, 2008.681

9 Antoine Dutot, Frédéric Guinand, Damien Olivier, and Yoann Pigné. Graphstream: A tool682

for bridging the gap between complex systems and dynamic graphs. In Emergent Properties683

in Natural and Artificial Complex Systems. Satellite Conference within the 4th European684

Conference on Complex Systems (ECCS’2007), 2007.685

10 Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.686

Acad. Sci, 5(1):17–60, 1960.687

11 Lester R. Ford and Delbert R. Fulkerson. Constructing maximal dynamic flows from static688

flows. Operations Research, 6(3):419–433, 1958.689

12 Michael R Garey and David S Johnson. Computers and intractability, volume 174. Freeman690

San Francisco, 1979.691

Balev et al. 23

13 Amr Hilal, Jawwad N Chattha, Vivek Srivastava, Michael S Thompson, Allen B MacKenzie,692

Luiz A DaSilva, and Pallavi Saraswati. Crawdad vt/maniac, 2022. URL: https://dx.doi.693

org/10.15783/C7WG6T, doi:10.15783/C7WG6T.694

14 Mark Jones, Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Ondřej Suchý.695

Parameterized complexity of directed steiner tree on sparse graphs, 2012. arXiv:1210.0260.696

15 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,697

Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.698

16 Nina Klobas, George B Mertzios, Hendrik Molter, and Paul G Spirakis. The complexity of699

computing optimum labelings for temporal connectivity. Journal of Computer and System700

Sciences, 146:103564, 2024.701

17 Othon Michail and Paul G Spirakis. Traveling salesman problems in temporal graphs.702

Theoretical Computer Science, 634:1–23, 2016.703

18 Martin Skutella. An introduction to network flows over time. In Research Trends in704

Combinatorial Optimization, pages 451–482. Springer, 2009.705

19 Mathilde Vernet, Maciej Drozdowski, Yoann Pigné, and Eric Sanlaville. A theoretical and706

experimental study of a new algorithm for minimum cost flow in dynamic graphs. Discrete707

Applied Mathematics, 296:203–216, 2021.708

20 Mathilde Vernet, Yoann Pigne, and Eric Sanlaville. A study of connectivity on dynamic709

graphs: computing persistent connected components. 4OR, 21(2):205–233, 2023.710

21 Kevin White, Martin Farber, and William Pulleyblank. Steiner trees, connected domination711

and strongly chordal graphs. Networks, 15(1):109–124, 1985.712

22 B Bui Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and foremost713

journeys in dynamic networks. International Journal of Foundations of Computer Science,714

14(02):267–285, 2003.715

https://dx.doi.org/10.15783/C7WG6T
https://dx.doi.org/10.15783/C7WG6T
https://dx.doi.org/10.15783/C7WG6T
https://doi.org/10.15783/C7WG6T
https://arxiv.org/abs/1210.0260
https://doi.org/10.1007/978-1-4684-2001-2_9

	1 Introduction and contributions of this work
	2 The Dynamic Steiner Set problem
	2.1 Direct extension: allowing a varying Steiner set
	2.2 Second model: Fully Connected Minimum Steiner Set
	2.2.1 Definition
	2.2.2 Remarks
	2.2.3 Example
	2.2.4 Issues

	2.3 Third model: The terminal set is connected, not the Steiner set
	2.3.1 Definition
	2.3.2 Remarks and complexity issues

	3 Partially Connected Dynamic Minimum Steiner Set with 2 Terminals
	3.1 Definition
	3.2 Remarks
	3.3 NP-Completeness for DMSS2 decision problem
	3.4 NP-Completeness for two time-steps

	4 Algorithmic issues
	4.1 Basic ideas
	4.2 Algorithm details and complexity
	4.3 Some additional remarks on the algorithms

	5 Experimental study
	5.1 Generated graphs
	5.1.1 Experimental settings
	5.1.2 Experiment on the behavior of the algorithm with regard to the number of iterations
	5.1.3 Experiment on the runtime depending on the number of vertices of the graph

	5.2 Real graphs
	5.2.1 Experimental settings
	5.2.2 Results and discussion

	6 Conclusion

