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Abstract
Background  Radiotherapy has both immunostimulant and immunosuppressive effects, particularly in radiation-
induced lymphopenia. Proton therapy has demonstrated potential in mitigating this lymphopenia, yet the 
mechanisms by which different types of radiation affect the immune system function are not fully characterized. 
The Circulating Immunes Cells, Cytokines and Brain Radiotherapy (CYRAD) trial aims to compare the effects of 
postoperative X-ray and proton radiotherapy on circulating leukocyte subpopulations and cytokine levels in patients 
with head and neck (CNS and ear nose throat) cancer.

Methods  CYRAD is a prospective, non-randomized, single-center non interventional study assessing changes in 
the circulating leukocyte subpopulations and cytokine levels in head and neck cancer patients receiving X-ray or 
proton radiotherapy following tumor resection. Dosimetry parameters, including dose deposited to organs-at-risk 
such as the blood and cervical lymph nodes, are computed. Participants undergo 29 to 35 radiotherapy sessions over 
40 to 50 days, followed by a 3-month follow-up. Blood samples are collected before starting radiotherapy (baseline), 
before the 11th (D15) and 30th sessions (D40), and three months after completing radiotherapy. The study will be 
conducted with 40 patients, in 2 groups of 20 patients per modality of radiotherapy (proton therapy and photon 
therapy). Statistical analyses will assess the absolute and relative relationship between variations (depletion, recovery) 
in immune cells, biomarkers, dosimetry parameters and early outcomes.

Discussion  Previous research has primarily focused on radiation-induced lymphopenia, paying less attention to the 
specific impacts of radiation on different lymphoid and myeloid cell types. Early studies indicate that X-ray and proton 
irradiation may lead to divergent outcomes in leukocyte subpopulations within the bloodstream. Based on these 
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Background
Radiotherapy is a crucial component in the manage-
ment of numerous cancers, utilized in about 60% of 
patients at some time of their treatment [1, 2]. While 
traditionally viewed as having localized impact only, 
emerging evidence suggests that radiotherapy may 
exert systemic influences as well. This interest has been 
rekindled by observations of the abscopal effect, wherein 
tumor regression is noted outside the immediate treat-
ment zones [3]. However, this phenomenon is rare and 
appears to vary with the type of cancer tissue [4, 5]. In 
addition, radiotherapy is associated with immunosup-
pressive effects, notably a severe and persistent reduction 
in peripheral blood lymphocytes, i.e., radiation-induced 
lymphopenia (RIL) [2] that occurs even when irradiated 
organs contain low number lymphoid organs. Beyond 
lymphopenia, research from animal studies revealed 
that radiotherapy can selectively affect certain leukocyte 
subpopulations, which affects the immune anti-cancer 
responses [6–10].

Radiotherapy modalities—including the particles used, 
treatment fields, particle energy, dose rate, total dose, 
and fractionation—play a crucial role in its effects. The 
size of the irradiated volume affects circulating lympho-
cytes and those in primary (e.g., bone marrow, thymus) 
and secondary (e.g., lymph nodes) lymphoid organs, 
with a strong correlation between the extent of healthy 
tissue irradiation and the incidence of lymphopenia [11, 
12]. A third component also appears, which is related 
to immune cell infiltration of the tumor site and corre-
sponding irradiation.

At present, around 90% of external beam radiotherapy 
protocols use beams from linear accelerators [13]. Alter-
natives include external beams of charged particles such 
as protons, carbon ions, helium ions. Intensity-modu-
lated radiotherapy (IMRT) with photons is designed to 
create steep dose gradients to spare adjacent organs at 
risk from high doses but may expose large volumes of 
healthy tissue to low doses [14]. A 4D physical simula-
tion model has suggested that the ballistic properties of 
proton therapy might better preserve circulating lym-
phocytes [15]. Proton therapy has shown to lower the 
incidence of RIL in multiple types of cancers compared 
to photon radiotherapy [16–19].

Despite technological advances, the specific processes 
by which lymphocytes are destroyed under different 
types of radiation remain unclear. Preliminary data sug-
gest that necrosis may be more prevalent than apoptosis 
in proton irradiation, possibly due to the higher relative 
biological effectiveness (RBE) of protons compared to 
photons [20]. A 4D physical simulation model suggests 
that the ballistic properties of proton therapy might bet-
ter preserve circulating lymphocytes [21].

In the Circulating Immunes Cells, Cytokines and Brain 
Radiotherapy (CYRAD) study, we examine the circulat-
ing cell and cytokine response following X-ray or proton 
radiotherapy in the postoperative context of head and 
neck (CNS and ear nose throat) cancer.

Methods/design
The CYRAD study is a prospective, non-randomized, 
single-center translational non-therapeutic study with 
a parallel assignment interventional model, conducted 
at the Comprehensive Cancer Centre François Baclesse 
(https://www.clinicaltrials.gov/study/NCT05082961). It 
aims to assess the impact of postoperative proton therapy 
as opposed to conventional X-ray irradiation on immune 
lymphoid and myeloid cells (such as lymphocytes and 
monocytes) and immune chemical messengers (cyto-
kines/chemokines) in patients with resected tumors.

The study and this manuscript have been written in 
accordance with standard protocol items, namely recom-
mendations for interventional trials (SPIRIT).

Study objectives
The primary endpoint of this research is to assess CD8+ 
T-cell kinetics during and up to 3 months of radiother-
apy by photons or protons in comparison with baseline 
pre-radiotherapy counts. Secondary endpoints include 
counts of other leukocyte subpopulation counts (e.g., 
CD4+ T cells, regulatory T cells, B cells, NK cells, neutro-
phils, monocytes, and myeloid-derived suppressive cells) 
as well as circulating cytokine/chemokine levels.

Study population
As this study is designed to exclusively focus on the 
effects of radiation on healthy tissues, including the brain 
and blood, it addresses operated head and neck / CNS 

preliminary findings, this study aims to refine our understanding of how proton therapy can better preserve immune 
function in postoperative (macroscopic tumor-free) head and neck cancer patients, potentially improving treatment 
outcomes.

Protocol version  Version 2.1 dated from January 18, 2023.

Trial registration  The CYRAD trial is registered from October 19, 2021, at the US National Library of Medicine, 
ClinicalTrials.gov ID NCT05082961.
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patients without residual macroscopic disease. Eligibil-
ity criteria are listed in Table 1. More precisely, to isolate 
the effects of irradiation from other influences like the 
tumor itself or systemic treatments such as chemother-
apy, patients without macroscopic tumors in place are 
eligible: patients have to have undergo surgery for head 
and neck, including pharyngeal, sinonasal, salivary gland 
and CNS tumors, which typically require postoperative 
irradiation to prevent locoregional recurrence. Patients 
candidate to a treatment with either conventional X-ray 
(arm 1) or protons (arm 2) to better spare healthy tissues 
and reduce side effects are eligible.

Study experimental plan
The study will be proposed by physicians, either sur-
geons, medical or radiation oncologists to eligible 
patients. An explanation of the study and an information 
note will be given to them. Patients will be enrolled in the 
study once provided their written informed consent. An 
identification number will be assigned to each patient to 
be used throughout the study. All patients participating 
may object at any time, leading to the prompt disposal of 
their biological material, as well as the cessation of data 
collection. The inclusion period of the study is planned 

over three years. The participation of patients will last up 
to three months after the completion of radiotherapy.

Blood sampling and analysis
Sampling
The blood sampling procedures outlined for the study 
at the Comprehensive Cancer Centre François Baclesse 
involve collecting blood samples from patients at specific 
intervals during and after their radiotherapy treatment. 
These samples are critical for documenting the changes 
in circulating levels of various blood cells and biological 
parameters (cytokines, chemokines), and assessing the 
immunological impacts of radiotherapy at various stages 
of treatment.

Patients are required to provide blood samples at four 
timepoints: before starting radiotherapy to establish 
a baseline (0  Gy, Day 0); before the 11th session (18 to 
20  Gy, Day 15) to assess early treatment effects; before 
the 30th session (54 to 58 Gy, Day 40) to monitor ongo-
ing immune responses; and three months after complet-
ing radiotherapy to evaluate longer-term effects on the 
immune system (Fig. 1).

At each of these time points, the following samples are 
collected: a 5 mL sample in an ethylenediaminetetraace-
tic acid (EDTA) tube for a complete blood count (CBC), 

Table 1  Eligibility criteria in the CYRAD study
Inclusion criteria Non-inclusion criteria
• Patient aged 18 or over
• Head and neck cancer (upper aerodigestive tract / pharyngeal, sinonasal, 
salivary gland, base of the skull, brain tumors) operated on
• Complete tumor resection surgery or with microscopic tumor residue R1
• All possible histologies, such as squamous cell carcinoma, adenocarcinoma, 
adenoid cystic carcinoma, chordoma, chondrosarcoma, meningioma, etc.
• Patient candidate for exclusive post-operative radiotherapy at the minimum 
total dose of 54 Gy to limit effect of heterogeneous total doses in X-ray or 
equivalent biological dose in proton irradiation
• Patients affiliated to the national social security system
• Signed informed consent before any specific procedure related to the study

• Macroscopic postoperative tumor residue R2
• History of cancer within 5 years (except for treated basal cell 
carcinoma of the skin and treated cervical cancer).
• History of radiotherapy (except brachytherapy of the cervix or 
prostate)
• Chemotherapy or any other systemic oncological treatment (such 
as cetuximab or immunotherapy) concomitant with radiotherapy
• Long-term immunosuppressive treatment or corticosteroid 
therapy
• Patients deprived of liberty or under guardianship, protected adult
• Patients unable to undergo trial monitoring for geographical, 
social or psychopathological reasons
• Pregnant or breastfeeding women
• Emergency and palliative situations

Fig. 1  Blood sampling workflow of the study
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which helps to assess overall health and detect disorders 
like anemia and infection; a 5 mL heparinized tube sam-
ple for C-reactive protein (CRP), a marker of inflamma-
tion; an 8 mL sample in a dry tube for serum cytokine 
assay, important for evaluating the immune system’s sig-
naling and response; and a 25 mL EDTA tube with Ficoll 
for the purification of peripheral blood mononuclear 
cells (PBMCs), which are critical immune cells including 
lymphocytes and monocytes.

Flow cytometry
Sample processing for PBMCs and cytokine levels 
involves different routes. These samples are sent to the 
Caen Basse-Normandie tumor library (TCBN), where 
they undergo a preparatory stage. There, PBMCs are 
isolated using a centrifugation technique with stan-
dard Ficoll method for separating these cells from other 
blood components. Both the PBMC and serum samples 
are then frozen to preserve their integrity until further 
analysis.

The analysis of the PBMCs involves advanced single-
cell techniques like flow cytometry, performed on the 
ISOCELL cytometry platform (PLATON unit, Compre-
hensive Cancer Centre François Baclesse). This process 
is used to characterize and quantify various circulating 
immune cell populations, including different subtypes of 
lymphoid cells (CD45+CD3+ T cells, CD45+CD3+CD8+ 
cytotoxic T cells, CD45+CD3+CD4+ helper T cells, 
and CD45+CD4+CD25+FoxP3+ regulatory T cells), 
NK cells (CD45+CD3−CD56+), and B lymphocytes 
(CD45+CD3−CD19+). Additionally, detail assessments 
are conducted on CD45+CD33+ myeloid cells, including 
CD45+CD33+HLA-DRhigh myeloid-derived suppressor 
cells and CD45+CD33+HLA-DRlow monocytes. Further, 
it evaluates the expression of inhibitory receptors (PD-1, 
TIM-3, LAG-3, CTLA4) on these cells, and their capabil-
ity to produce cytokines following ex-vivo restimulation.

Parallel to these cellular analyses, cytokines and che-
mokines in the serum are quantified using multiplex 
immunoassays, providing a broad view of the inflamma-
tory and immune status of the patients.

Clinical outcomes assessment
At inclusion, before the 11th session, before the 30th 
session, and again 3 to 4 months after the end of radio-
therapy, clinical examination is conducted for each par-
ticipating patient. This includes assessing the patient’s 
physical condition and recording any side effects or com-
plications related to the treatment. Specific aspects cov-
ered include the WHO performance status to evaluate 
general health and daily activity levels, weight monitoring 
to check for significant weight loss or gain, documenta-
tion of concomitant treatments such as anti-inflamma-
tories and corticosteroids, and observation of symptoms 

like asthenia (generalized weakness) and specific radio-
therapy-related side effects such as radiodermatitis and 
edema. As part of usual clinical practice, patient also 
realizes a tumoral evaluation with computed tomography 
(CT) or magnetic resonance imaging (MRI) at baseline 
and 3 months after the end of radiotherapy.

Standard radiotherapy treatment
The radiotherapy technique uses MRT, preferably using a 
simultaneous integrated boost, or IMPT by a pencil beam 
scanning. A Monte Carlo dose calculation algorithm is 
encouraged to account for heterogeneities at tissue inter-
faces. The IMPT technique preferably uses a sequential 
boost technique for the different clinical target volume 
(CTV) dose prescription levels to avoid very low fraction 
dose to distant tissues that might result in a (controver-
sial) higher proton RBE [22]. In CNS and ear nose throat 
cancers, doses and structures (healthy tissues/organs and 
tumor volume) are defined per standard practice at the 
institution.

Dosing regimen
In brain tumors, one or two dose-risk levels are defined. 
In ear nose throat cancers, the dose regimen consists of 
high-risk PTV receiving 60–66 Gy in 30–33 fractions and 
low-risk PTV receiving 54.45 Gy in fractions of 1.65 Gy, 
depending on tumor type and whether the surgical resec-
tion is complete or leaves microscopic residue.

Organ-at-risk
The minimal data set for organs at risk that must be 
delineated includes a comprehensive list: brachial plexus, 
brainstem, cerebellum, chiasma, constrictor muscles of 
the pharynx, eyes, larynx, lenses, lips, mandible, middle 
and inner ears, optic nerves, oral cavity, parotids, pitu-
itary gland, spinal cord, submandibular glands, temporo-
mandibular joints, large vessels (arteries and veins of 
the neck and at the skull base), nodal areas, and thyroid. 
These organs are critical for ensuring precise and safe 
radiation targeting, minimizing damage to non-target tis-
sues. Dosimetric criteria for each of these organs include 
assessments of the maximum dose delivered to 2% of the 
organ volume and the average dose. These evaluations 
are made using DICOM RT data and by observing tis-
sue effects on imaging. This process involves a compari-
son between the initial multimodal image planning and 
follow-up images to track any changes or impacts from 
the treatment. The dose-volume relationships for these 
structures can be assessed with respect to trial outcomes.

Treatment planning
The planning computed tomography (CT) scan for the 
study is conducted with contiguous slices ranging from 
1 to 2 millimeters in thickness, covering from the vertex 
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of the head to at least the apex of the lungs. The delin-
eation of tumor volumes is performed by a radiation 
oncologist, with validation by a referring ear, nose, and 
throat (ENT) surgeon based on operative and histological 
reports.

For example, in ear, nose throat tumors, the definition 
of target volumes for subclinical disease involvement, or 
CTV, follows a geo-anatomical approach. This involves 
using preoperative imaging and perioperative findings to 
identify the gross or macroscopic tumor, supplemented 
by information from the operative and histological 
reports. A high-risk CTV involves a geometric expansion 
of 5 mm around the macroscopic tumor fragments. The 
low-risk CTV is then defined by expanding an additional 
5 mm around the high-risk CTV, and further extended as 
necessary to account for potential routes of dissemina-
tion and anatomical barriers.

For the purposes of intensity modulated radiation 
therapy (IMRT), isotropic margins of 5 mm from CTV to 
planning target volume (PTV) are applied. These margins 
may be adapted depending on the performance of image-
guided radiation therapy (IGRT), which includes reposi-
tioning techniques and on-board accelerator imaging. In 
cases using intensity modulated proton therapy (IMPT), 
the range and setup uncertainties are considered at 3–5% 
and 3  mm respectively for robust optimization and a 
5  mm-isotropic PTV is generated for comparisons with 
the photon arm.

Imaging (including CT scans and MRIs) performed on 
patients is centralized and stored in pseudonymized for-
mat, to ensure confidentiality and data integrity. Imaging 
analyses are conducted to assess the correlation between 
observed tissue effects on follow-up imaging and any tox-
icities experienced by the patients.

Dosimetric data
In the course of routine healthcare for patients, clinical 
data are gathered and logged into the electronic health 
record system during pre-radiotherapy consultations, 
as well as throughout the monitoring phases during and 
after the treatment. Dosimetric data are prospectively 
collected on the Raystation software [23]. This set of data 
includes information on retrospectively contoured, blind 
to referring physicians by JT/TPN, blood volumes in the 
neck / skull base, as well as both target and non-target 
lymph node areas that have been exposed to various radi-
ation dose levels.

Statistical considerations
Sample size
The main criterion is the variation of circulating CD8+ 
T-cell counts between inclusion prior to radiotherapy 
and completion of radiotherapy by photons or protons. 
No power calculation was performed to determine 

the sample size. The study will be conducted with 40 
patients, in 2 groups of 20 patients per modality of radio-
therapy (proton therapy and photon therapy). Statistical 
analysis will be mainly descriptive, based on both quan-
titative and qualitative methods. In particular, the levels 
of various circulating biomarkers of immunity, and their 
evolution before, during and after radiotherapy will be 
described.

Dose to leukocyte-related organs
High blood perfusion organs including the brain and 
lungs, were identified as being related to the risk of radia-
tion-induced lymphopenia [24]. The cervical lymph node 
areas are a critical site for T-cell activation and lympho-
cyte storage and may therefore also be related to the risk 
of lymphopenia. Mean dose delivered to the brain, lung, 
and cervical neck areas are extracted. The mean dose 
delivered to the blood is calculated via the effective dose 
to immune cells (EDIC) [25, 26], which is the sum of 
the blood equivalent uniform doses contributed by each 
blood-containing organ, assuming that these vessels are 
uniformly distributed throughout the body.

Statistical analysis and modeling
The initial analytical approach involves comparing results 
from flow cytometry with clinical and the dose to leu-
kocyte-related organs using a linear regression model. 
This model aims to identify any potential correlations 
between the radiation dose delivered to the blood, lymph 
node regions, and relative organs at risk, and variations 
in blood cell counts. Subsequently, the model is being 
refined to predict changes in blood cell counts based on 
the doses administered to associated organs. In the final 
step, the efficacy of proton therapy over photon ther-
apy in modulating the immune system will be assessed 
through simulations derived from the developed model 
(referred to as a digital twin). In addition, interplay 
between leukocyte subpopulations is analyzed using cor-
relations and principal component analysis.

Data management
A Web Based Data Capture (WBDC) system is used for 
data collection and query handling. The investigator 
ensures that data are recorded on the eCRFs as specified 
in the study protocol and in accordance with the instruc-
tions provided.

The investigator ensures the accuracy, completeness, 
and timeliness of the data recorded and of the provision 
of answers to data queries according to the Clinical Study 
Agreement. The investigator will sign the completed 
eCRFs. A copy of the completed eCRFs will be archived 
at the study site.
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Withdrawal from study
The reasons for why a patient may discontinue to partici-
pate to the study include the following circumstances:

 	• Radiotherapy break lasting more than 3 open days.
 	• Patient’s decision (the data already collected during 

the search can be kept and exploited unless the 
patient opposes it).

 	• Investigator’s decision.

Discussion
This project aims to investigate the differential impact 
of proton therapy compared to traditional X-ray irradia-
tion on circulating immune cells and on immune signal-
ing molecules, including cytokines and chemokines, 
in patients with head and neck (CNS / ear nose throat) 
cancer.

While prior research has extensively documented radi-
ation-induced lymphopenia, less attention has been given 
to the specific effects of radiation on various lymphoid 
and myeloid subtypes [9]. Preclinical studies have shown 
that X-ray and proton irradiation of the brain lead to dif-
ferent outcomes in leukocyte subpopulations within the 
bloodstream [8, 27]. Proton therapy offers the advantage 
of precisely targeting tumors while minimizing damage 
to surrounding healthy tissues [28]. This precision not 
only helps in preserving immune function but could also 
potentially enhance the effectiveness of the antitumor 
response by maintaining a healthy population of immune 
cells capable of combating cancer. In head and neck can-
cer, this preservation is increasingly seen as key to pro-
moting sustained and effective immune surveillance, 
potentially preventing tumor recurrence and metastasis 
[29].

Given these insights, the study is designed to refine 
treatment strategies that aim not only for immediate 
tumor control but also for improved long-term out-
comes and quality of life by protecting immune health. 
New modeling approaches are also developed to accu-
rately recapitulate and predict circulating cell counts, 
and establish accurate predictions of patient’s outcomes. 
This research is integral in advancing our understanding 
of how different radiation therapies can be optimized to 
bolster the immune system while effectively combating 
cancer.
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