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Abstract

In geosciences, kriging is leading spatial interpolation, and co-kriging is the
most commonly used method for accomplishing spatial interpolation of a target
variable by incorporating information from a secondary variable. Co-kriging
relies on the assumption of spatial stationarity, which may not hold true in all
geospatial contexts, leading to potential inaccuracies in interpolation. The effec-
tiveness of co-kriging can be compromised in areas with sparse data, impacting
the reliability of interpolated results. Moreover, it can be resource-intensive
when used for interpolation with a substantial volume of data, especially in
the case of 3D interpolation. In this paper, we introduce a new method for
spatial interpolation that considers two variables using a generative deep neural
network. This approach utilizes a convolutional neural network with an encoder-
decoder architecture, featuring a single encoder and two decoders to handle the
two variables. Additionally, we introduce a loss function that facilitates the con-
trol over the relationships between the two variables. Traditional Deep Learning
methods require prior training and labeled data, whereas the proposed approach
eliminates this requirement and simplifies the interpolation process. In order to
assess the performance of our method, we use two real-world datasets. The first
one is a 2D dataset of total soil organic carbon combined with the Normalized
Difference Vegetation Index. The second one is a 3D dataset that combines con-
centrations of Hydrocarbon and Fluoride obtained from hyperspectral analysis
of soil cores with very limited number of boreholes. The experimental results
demonstrate that the proposed method outperforms ordinary kriging and co-
kriging, showing a significant improvement when both variables are used. We
also demonstrate how the inclusion of the auxiliary variable serves as a means
to mitigate the overfitting of the model.

Keywords: Co-kriging, Kriging, Deep Learning, Environmental data, Soil
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1. Introduction

Spatial interpolation is central in geosciences, aiming to estimate and map a
variable of interest based on discrete data points. This process is fundamental to
creating comprehensive and accurate representations of spatial phenomena. By
converting point data into a continuous surface, spatial interpolation allows us
to visualize and understand the distribution of a variable across a geographical
area. This is particularly crucial in geosciences, where such understanding can
inform everything from resource management to environmental conservation ef-
forts. There are various spatial interpolation methods, but kriging remains par-
ticularly prominent in geosciences, especially for soil mapping (Bangroo et al.,
2020; Gia Pham et al., 2019; Ouabo et al., 2020). Co-kriging is a variant of
kriging that takes into account an auxiliary variable to improve the interpola-
tion of the main variable (Matheron, 1963; Journel and Huijbregts, 1976). This
auxiliary variable contributes valuable additional spatial information, improv-
ing the overall accuracy of predictions in geostatistical analyses. Although the
use of co-kriging does not require the presence of the second variable at all
prediction locations, it does rely on a correlation between the main variable
and the auxiliary variable. For a recent survey on co-kriging, see (Dowd and
Pardo-Igúzquiza, 2023).

Co-kriging can be employed for characterizing hydrocarbon reservoir de-
posits in rocks (Ochie and Rotimi, 2018). It is also used for mapping the dis-
tribution of soil chemical and physical properties such as arsenic, lead, heavy
metals, pH, hydraulic acidity, porosity, and permeability (Kim et al., 2019;
Leenaers et al., 2020; Milillo et al., 2012; Tziachris et al., 2017). The scope
of co-kriging applications extends beyond geosciences. For instance, Liu et al.
(2022) use it to optimize ship hull forms, Elsayed (2015) for optimizing the geo-
metric separator of a cyclone, and Koziel et al. (2014) for the rapid optimization
of multi-objective antennas.

Co-kriging is built upon certain assumptions that may pose challenges in
real-world applications, particularly in contexts such as soil pollution assess-
ment.The main assumptions are spatial stationarity (consistent statistical prop-
erties across the study area), isotropy (directional independence of these prop-
erties), and linearity (linear relationship between variables). These assumptions
may not always hold true in real-world environmental contexts, potentially lead-
ing to inaccuracies in spatial interpolation, particularly in areas with varying
spatial characteristics or nonlinear relationships. Similar to traditional kriging,
co-kriging requires variographic analysis to model value evolution based on dis-
tance. This process requires defining prior parameters, which requires domain
expertise and may not be universally applicable across different environmental
datasets. Co-kriging may face challenges in scenarios with sparse data, such
as soil pollution assessment, where data samples are limited and may not suffi-
ciently support the assumptions and modeling requirements of co-kriging.
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The scope of Deep Learning applications for environmental data has ex-
panded significantly in recent years. For instance, it includes forest zone clas-
sification as mentioned in (Haq et al., 2021) and weed classification in (Haq,
2022). Additionally, Yuan et al. (2020) conducted a review of the potential
uses of remote sensing with Deep Learning in environmental science.New Deep
Learning methods have been proposed to address the limitations of co-kriging.
Kirkwood et al. (2022) use a Bayesian neural network to perform spatial in-
terpolation, while offering the possibility of adding auxiliary information even
outside the interpolation grid. Wadoux et al. (2019) utilize a Convolutional
Neural Network (CNN) for digital soil mapping, considering uncertain measure-
ments of the soil property. However, these methods use a CNN to handle the
auxiliary variable, which is defined across the entire grid. Other hybrid methods
exist where kriging is combined with other existing techniques. For instance,
Tao et al. (2019) suggest combining backpropagation neural networks, the Ne-
merow pollution index, and 3D kriging for the delineation of soil contaminant
plumes. However, since the method utilizes kriging, it cannot entirely free itself
from the constraints associated with its use. In certain cases, such as soil pol-
lution, chemical analyses involve significant costs, resulting in a limited number
of observed data points. This constraint restricts the use of supervised machine
learning methods for spatial interpolation.

In this paper, we present a novel Deep Learning architecture for spatial in-
terpolation involving an auxiliary variable. This architecture builds upon our
prior work on 2D spatial interpolation and map generation, denoted DIP-SI
(Rakotonirina et al., 2024), where we adapted the inpainting approach of Deep
Image Prior (Ulyanov et al., 2018). This method entails reconstructing an im-
age from the remaining pixels without prior training or labeled data. The core
idea of the method proposed in the present paper involves employing a CNN
of an encoder-decoder type, generating from a random vector two maps: one
for the variable of interest and another one for the auxiliary variable. The neu-
ral network is fine-tuned based on the difference between the output maps and
the observed values for both variables. Diverging from conventional encoder-
decoder architectures, our approach incorporates two decoders to accommodate
both variables. Recognizing that the correlation links between the main and
secondary variables may vary in importance, we introduce a parameter in the
loss function to control the impact of the auxiliary variable on the main vari-
able. The method we propose does not require prior assumptions like kriging
and co-kriging methods, nor does it need substantial training data as with Deep
Learning generation methods. This offers a new perspective in spatial inter-
polation with an auxiliary variable when the available data are very limited or
when spatial variabilities are significant.

In order to demonstrate the effectiveness of the proposed method, we evalu-
ate the model on two datasets. The first dataset is a 2D dataset of Soil Organic
Carbon (SOC) with 469 surface soil samples collected in the United States
(Ahmed et al., 2018). For this dataset, the auxiliary variable we use is the Nor-
malized Difference Vegetation Index (NDVI). We compare our method to ordi-
nary kriging, co-kriging and also DIP-SI with one variable. The second dataset
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is a 3D dataset from a site contaminated with hydrocarbons and Fluoride in
France. The data are soil core samples obtained from hyperspectral analysis
using the Tellux method. This method provides the concentrations at every
point in the soil cores, by inferring the hyperspectral model trained on some
samples with ground-truth being laboratory chemical analysis (Dhaini et al.,
2021; Exem et al., 2023; Feray et al., 2023). To assess the proposed method
and the influence of the auxiliary variable, we operate a validation protocol as
follows: we exclude portions of certain boreholes and utilize these sections for
evaluation.

The main contributions of this study can be summarized as follows:

1. Introduction of a Novel Generative Neural Network Architec-
ture:
We propose a new architecture for generative neural networks that does
not require prior training. This architecture is designed to handle two con-
tinuous variables, showcasing its versatility in both 2D and 3D contexts.
In our case, we use the architecture to incorporate additional statistical
and spatial information into the interpolation of the main variable using
the secondary variable.

2. Loss Function Parameter to Manage Auxiliary Variable:
We propose a parameter, denoted as θ, to balance the influence between
the primary and auxiliary variables within the loss function. This param-
eter is strategically included to accommodate the variability observed in
spatial and statistical correlation.

3. Extension from 2D to 3D Interpolation:
By nullifying the parameter θ, we get a 3D interpolation method, which is
an extension of the 2D interpolation of our previous work (Rakotonirina
et al., 2024). Experimental results on the 3D dataset confirms its ca-
pability to consider spatial information comprehensively, including both
vertical and horizontal dimensions.

4. Mitigation of Overfitting with Second Variable:
Our observations indicate that the inclusion of the second variable plays a
crucial role in mitigating overfitting issues commonly associated with DIP
methods as corroborated for instance in (Wang et al., 2023).

The remainder of this paper is organized as follows. The proposed method
is introduced in Section 2, which is divided into two subsections: the learning
process with the loss function and the architecture of the proposed method. The
two datasets are presented in Section 3, and we discuss the experimental results
in Section 4. Finally, Section 5 concludes this paper.

2. Proposed Method

In this section, we elaborate in detail on the different components of the
proposed method. Firstly, we outline how both variables, namely the variable
of interest and the auxiliary variable, are considered in the learning process.
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Figure 1: Representation of the proposed method for (3D) spatial interpolation with 2 vari-
ables.

We also explain how we can adjust the impact of the auxiliary variable on the
main variable by introducing the parameter θ into the loss function. Following
that, we provide a detailed exposition of the architecture we propose. This
architecture is designed to enable the neural network to learn effectively from
both variables.

2.1. Overview of the proposed method

An overview of the proposed method is depicted in Figure 1, and can be
briefly described as follows.

As a generative method, we aim to determine a function f that generates,
from a randomly generated data Z, the maps of the 2 variables, namely the main
and the auxiliary variables. To this end, the function f is defined by a neural
network with an architecture of encoder-decoder. Subsequently, the decoder
section splits into two parts: Decoder 1 for the main variable and Decoder 2 for
the secondary variable. The outputs of these two decoders are the maps X̂var1

and X̂var2, respectively. To adjust the parameters of the generative neural
network f , the output maps of both decoders are multiplied by two binary
masks, mvar1 and mvar2. This allows us to compute the mean squared error
with the maps of the observed values Xvar1 and Xvar2. This process yields two
loss functions, Lvar1 and Lvar2, which are combined with the parameter θ to
have the total Loss Ltotal. θ enables us to adjust the influence of the auxiliary
variable in the interpolation of the main variable.

2.2. Detail on the Learning Process

The proposed approach builds upon our previous work on DIP for spatial
interpolation (DIP-SI) (Rakotonirina et al., 2024), which accomplishes spatial
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interpolation using a CNN without pre-training. We aim to revisit this work in
order to propose a method that incorporates spatial and statistical information
from an auxiliary variable. Thus, this method aims to provide a Deep Learning
alternative to co-kriging.

The main part of the process is the function f , with its input Z and outputs
X̂var1 and X̂var2, described as follows. The function f operates as a generative
neural network, where it is a common practice for the neural network f to take
a random vector Z. The randomness of the input can act as a form of regu-
larization during training, as investigated in Generative Adversarial Networks
(Goodfellow et al., 2020).

This helps stabilize learning by introducing some unpredictability and pre-
venting the generator from learning overly rigid representation. The network’s
output comprises two distinct maps: X̂var1 for the main variable and X̂var2

for the auxiliary variable. Therefore, the function can be expressed as f(Z) =(
X̂var1, X̂var2

)
. The two maps for the main and auxiliary variables are there-

fore derived from the same neural network f . While the encoder is similar to
the encoder of the single-variable DIP-SI, it is in the decoder part that each
map has its own decoder. The proposed deep neural architecture is described
in detail in Section 2.3.

For the generative neural networks f to learn from the observed values of
both variables, denoted as Xvar1 and Xvar2, it is essential to quantify the esti-
mation errors for each. To do this, as illustrated in Figure 1, we have two loss
functions defined by:

Lvar1 =
∥∥∥(Xvar1 − X̂var1)⊗mvar1

∥∥∥2 , (1)

Lvar2 =
∥∥∥(Xvar2 − X̂var2)⊗mvar2

∥∥∥2 . (2)

where mvar1 and mvar2 are binary masks of both variables, with values 1
when the point is part of the observed points and 0 otherwise. These masks
serve to filter the output maps using the Hadamard Product ⊗, i.e., element-
wise multiplication, ensuring that the loss functions only consider the observed
values. In other terms, the loss functions are the squared Euclidean distance
between the original data and the reconstructed data, where the contribution
of each element is weighted by the corresponding element in the masks. It is
worth noting that the mvar1 and mvar2 need not to be the same, namely the
two variables can be sampled differently. Moreover, Z, Xvar1, and Xvar2 need
not to have the same dimensions in general, even though we set their dimensions
to D in this paper.

These two loss functions are specific to each variable. We propose to simul-
taneously minimize Lvar1 and Lvar2 so that the neural network can learn from
both variables. To achieve this, we combine the two loss functions and intro-
duce the parameter θ for Lvar2 to balance the influence of the secondary vari-
able during training. The use of such a parameter is common in many Machine
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Learning paradigms where bi-objective optimization may rise (or more gener-
ally multi-objective optimization), such as in multimodal models (Ma et al.,
2023), in physics-informed models (Heldmann et al., 2023) and in combining
physics-induced and data-driven models (Zhu and Honeine, 2016; Zhu et al.,
2020). We introduce this parameter because we are aware that the statistical
and spatial links between the two variables can vary from case to case. The
total loss function is expressed as follows:

Ltotal = Lvar1 + θLvar2. (3)

Setting the parameter θ to 0 leads to a single-variable DIP-SI. By minimizing
Ltotal, the network f can learn the spatial and statistical configurations of both
variables.

In this paper, the value of the parameter θ is fixed. To determine its value,
we adopt the optimization method used by Liu et al. (2023), which leverages
DIP for electrical impedance tomography reconstruction. This method involves
varying the value of θ between 0, where the loss function Lvar2 has no impact
on the total loss function Ltotal, and 1, where the auxiliary variable has the
same influence as the primary variable. Following the approach outlined in
studies such as (Feurer and Hutter, 2019; Yang and Shami, 2020), we evaluate
the performance of each θ value using validation data and select the one that
yields the best results. It is important to note that this parameter does not
affect the execution time of a training step.

For training, the optimization algorithm operates iteratively a gradient de-
scent that adjusts the parameters of the model f to minimize the value of the
loss function Ltotal considering both the main variable and the auxiliary vari-
able. This process aims to ensure that the predictions closely align with the
ground truth values. In order to obtain a model that generalizes well to unob-
served data, it is crucial to monitor model performance to prevent overfitting,
where the model excessively adjusts to the observed data, capturing even noise
or insignificant variations. This issue is common in learning processes like DIP.
Recently, Wang et al. (2023) studied four different stopping criteria for DIP:
(i) inspect visually, which is a subjective approach, (ii) monitor the learning
curve’s evolution, (iii) tune the number of iterations, which is limited as the
number of iterations varies based on the data, and (iv) use validation data for
stopping training. In our case, we opted for the last method, following the
work of Yaman et al. (2021) and Ding et al. (2022), ensuring the selection of
representative validation samples.

2.3. Proposed Architecture of the Neural Network

The proposed architecture is divided into two distinct parts: the encoder
(dimension reduction part) and the decoder (dimension augmentation part).
CNNs are used to build this encoder-decoder neural network. The choice of
CNNs is corroborated by several studies demonstrating that CNNs are well-
suited for capturing spatial configuration; For instance, Jo and Pyrcz (2022)
recently proposed a CNN-based method that automates variographic analysis
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Figure 2: Proposed deep neural network architecture for interpolation with a auxiliary vari-
able.

for capturing spatial configuration. More recently, we have demonstrated the
relevance of CNNs for spatial interpolation using DIP in (Rakotonirina et al.,
2024). In the current paper, we take advantage of this previous work, by using
an encoder similar to the one of the single-variable DIP-SI (Rakotonirina et al.,
2024), while each of the two variables has its own decoder, as illustrated in
Figure 2.

The model takes a random value map Z of dimension D as input and trans-
forms it into an encoded representation through several convolutional layers.
The first two layers, conv1 and conv2, are convolutional layers followed by a
rectified linear unit (ReLU) function to introduce non-linearities and enhance
the model’s learning capacity. From the conv3 layer onwards, pooling functions
are introduced to reduce the dimension of the layers down to conv6. We use an
average pooling function. The final step of the encoder involves transforming
the conv6 layer into an encoding vector.

In the second part, the decoder, the encoded representation is transformed
into a 2D or 3D representation, depending on the case that we have. Unlike the
encoder, we employ two decoders to generate two maps, one for the main variable
and one for the auxiliary variable. This approach of having dual decoders is quite
common in Deep Learning literature. It finds applications in image segmentation
(Tomar et al., 2021; Bougourzi et al., 2023), as well as in speech recognition and
translation (Inaguma et al., 2021; Le et al., 2020). Despite having two decoders,
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the operations performed in both are exactly the same. Firstly, the encoded
representation is transformed by the first convolutional layer. Then, in contrast
to the encoder, we perform upsampling operations. We use the same function as
in our previous work Rakotonirina et al. (2024), namely the bicubic function for
the 2D case. Concerning the 3D case, the bicubic function is not feasible, and
in this context, computational costs can be significant. Therefore, we opted for
the Nearest upsampling function. We also retain the skip connections, as shown
in Figure 2. These connections help maintain information from both variables
since they share the same encoder, and also help preserve information that may
have been perturbed by the various nonlinear functions in our model as recently
corroborated by Tran and Yang (2022). Wang et al. (2022) demonstrated that
using a dual decoder in a U-net with skip connections allows for more detailed
features. After all these operations, we reach the model’s output with the two
maps for the main and auxiliary variables.

3. Datasets and Case Studies

In this section, we present the case studies used to demonstrate the benefits
of the proposed method. Firstly, we employ a 2D dataset with Soil Organic
Carbon (SOC) as the main variable and NDVI as the auxiliary variable. Sec-
ondly, we utilize a 3D dataset from a contaminated site, combining hydrocar-
bon concentration as variable of interest and Fluoride concentration as auxiliary
variable.

3.1. 2D Dataset: SOC + NDVI

The dataset, sourced from the North American Carbon Program, provides
estimates of SOC, pyrogenic carbon, particulate organic carbon, and other soil
organic carbon fractions in 469 surface soil samples collected in the Colorado,
Kansas, New Mexico, and Wyoming regions of the United States. The data
was obtained using Fourier-transform infrared spectroscopy (FTIR) and partial
least squares regression (PLSR) to predict SOC fractions in 650 soil samples
collected by the United States Geological Survey (USGS) as part of the Geo-
chemical Landscapes project. They validated and reduced the dataset to 469
representative samples. Regarding NDVI, as specified by Ahmed et al. (2017),
it represents the NDVI for the months of June and July from 2000 to 2011,
derived from bands 1 (red) and 2 (near-infrared) of the Moderate Resolution
Imaging Spectroradiometer. An R script was used to download the data, and
the ”raster” package (Hijmans and Van Etten, 2012) was employed to compute
the mean NDVI.

As shown in Figure 3, we randomly divided the soil samples into two sets,
one comprising 368 samples and the other 101 samples. The first set was utilized
for conducting interpolations, while the second one was reserved for evaluating
the models’ performance. We have randomly divided the evaluation set into two
parts: one for validating the model and the other for testing its performance.
We ensured that the test datasets are representative. These datasets comprise
exactly the same points for both SOC and NDVI variables.
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Figure 3: Representation of the spatial and statistical distribution of the data for spatial
interpolation, along with validation data to assess the models’ performance.

Figure 4: Representation of correlation coefficient ρ between SOC and NDVI, transformed
SOC and NDVI, and distribution of transformed SOC.

To measure the links between the two variables, we use the correlation co-
efficient, which can be defined as follows:

ρ(X,Y ) =
cov(X,Y )

σXσY
, (4)

where ρ(X,Y ) represents the correlation coefficient between two variablesX and
Y , cov(X,Y ) is the covariance between X and Y ,σX is the standard deviation
of X, and σY is the standard deviation of Y .

We compare the proposed method with ordinary kriging (OK) and co-kriging
(COK). However, as depicted in Figure 3, the distribution of SOC does not
align with the assumptions of kriging for optimal results. To address this, a
Box-Cox transformation (Sakia, 1992) was applied to normalize the variable;
The obtained variable is denoted “SOC.bc”. Additionally, this improves the
correlation coefficient between SOC and NDVI with ρ(SOC.bc, NDVI) = 0.63
compared to ρ(SOC, NDVI) = 0.59 for the original variable, as shown in Fig-
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Table 1: Statistical summary of variables SOC, transformed SOC (SOC.bc) and NDVI.

Variable Count Mean Std Min 25% Max
SOC 368 6.37 5.06 0.15 2.74 30.47
SOC.bc 368 1.98 1.29 -1.50 1.15 5.42
NDVI 368 0.44 0.16 0.15 0.31 0.80

Table 2: Descriptive statistics for TPH and Fluoride concentrations.

Variable Count Mean Std Min 25% 50% 75% Max
TPH (mg/kg) 245 443.81 398.02 0.49 84.82 353.93 721.40 1916.89
Fluoride (mg/kg) 278 37.83 17.51 6.16 22.74 39.44 50.05 82.73

ure 4. Table 1 represents the statistical summary of the SOC, transformed SOC
and NDVI variables.

3.2. 3D Dataset: Hydrocarbon + Fluoride

The second dataset is from a site contaminated with Total Petroleum Hy-
drocarbons and Fluoride. The site is located in France, and six boreholes with
a depth of 5m each were conducted. The interpolation grid covers an area of
2612m² with a resolution of 2m for the x and y axes and a resolution of 0.1m
for the z-axis. This dataset is quite specific as we have very few boreholes,
resulting in limited data along the x and y axis. The performance of kriging
might be affected by this limitation due to the variographic analysis relying on
the variation of values as a function of distances between points.

The datasets come from hyperspectral imagery (HSI) analysis conducted by
Tellux. Tellux offers Machine Learning algorithms that correlate indexes from
hyperspectral imagery, as demonstrated by Achard and Elin (2019) and Kühn
et al. (2004), with Total Petroleum Hydrocarbons (TPH) concentrations ob-
tained from chemical analysis in the laboratory. In this case study, Fluoride
also exhibited a correlation between images and concentration analyses con-
ducted in a chemistry laboratory. This provides us with the concentrations of
total hydrocarbons and Fluoride at all points along the z-axis of the boreholes.

To evaluate the performance of our model, we proceeded as with the 2D
SOC dataset by selecting validation data. However, unlike the 2D dataset,
we did not randomly select the validation data. Since we have a significant
resolution in the z-axis, randomly selecting validation data would validate the
vertical interpolation between the points of each borehole. However, our goal
is to demonstrate that the model can capture both the vertical and horizontal
spatial and statistical information of the boreholes. Therefore, we selected the
validation data in such a way that a purely vertical interpolation of the borehole
cannot estimate the removed values. As shown in Figure 5, we removed points
from boreholes B5 and B6 based on a change in TPH concentration values that
cannot be explained vertically.
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Figure 5: Representation in space of the hydrocarbon concentrations for the 6 boreholes with
the selection of test data for total hydrocarbons indicated by the black markers for B3 and
B5.

The correlation coefficient between hydrocarbon and Fluoride for our study
site is ρ = 0.76. Since both data variables are derived from the same hyperspec-
tral image analysis, we verified that the correlation between the two variables
is not solely due to this fact. To do this, we analyzed the correlation coefficient
between the laboratory analysis results of soil core samples. The correlation
coefficient between these two chemical analysis variables is 0.70, confirming a
significant link between the two in our study case. Table 2 summarizes the
statistical descriptions of the two variables.

4. Results and Discussion

In this section, we delve into the results of our method on the two presented
datasets. Similar to the previous section, this part is divided into two sections.
First, we compare our proposed two-variable method with the single-variable
DIP-SI method, as well as with OK and COK. We use three metrics to compare
the results of our models: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and R-squared (R2) score. For each pair of observations yi (the
actual value) and ŷi (the predicted value), the formulas are defined as follows:

• Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi|
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Figure 6: SOC and NDVI variograms and the SOC.NDVI co-variogram for co-kriging.

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

• R-squared (R2) Score:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

In these formulas, n represents the number of observations, and ȳ is the mean of
the actual values. These metrics are commonly used to assess the performance
of predictive models.

4.1. 2D Dataset: SOC + NDVI

OK and COK for the SOC and NDVI variables were performed based on
the methods outlined in this source1. To ensure the optimal results of OK and
COK, we use the transformed data and then perform a back transformation
afterward.

Figure 6 shows the variograms of SOC and NDVI and co-variogram for both.

1https://zia207.github.io/geospatial-r-github.io/cokriging.html
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Table 3: erformance metrics of DIP-SI and proposed method, evaluated on the validation
data.

Method RMSE MAE R2

DIP-SI 3.67 2.68 0.42
This Paper 3.58 2.63 0.45

Table 4: Performance metrics of several methods, SOC for OK and SOC + NDVI for others,
evaluated on test data

Method RMSE MAE R2

OK 4.27 2.78 0.33
COK 4.07 2.55 0.39
DIP-SI 4.13 2.89 0.38
This Paper 3.79 2.56 0.47

For the proposed method, we do not need to perform a variographic analysis
before interpolation. In this case study, we use the same parameters as in our
previous work, namely the bicubic function as the upsampling function and an
encoding size of 10. This demonstrates the flexibility of the DIP-SI method.
However, in this paper, we introduce a new parameter that can be adjusted
in our model. This parameter is denoted as θ, and it manages the interaction
between the two variables during training. We conducted tuning parameters to
select the optimal value for θ. It is important to note that there are several
methods to determine the value of θ. It is even possible to use a value that
varies during training. The choice of whether θ should be a fixed or trainable
parameter remains an open problem. In this paper, we chose to fix the value of θ.
To compare the proposed method with DIP-SI, we performed an interpolation
with the value of θ set to 0. Indeed, if the value is 0, it means that the auxiliary
variable does not contribute to the learning process, which is equivalent to
spatial interpolation with a single variable. The value of θ obtained using the
method described in Section 2.2 in this case study for interpolation with two
variables is 0.03. Table 3 presents the performances of DIP-SI and proposed
method CO-DIP-SI on validation data.

Table 4 presents the performance metrics for different methods, including
Ordinary Kriging (OK), Co-Kriging (COK), DIP-SI, and the proposed method.
The results suggest that the proposed method outperforms the other methods,
achieving the lowest RMSE and the highest R2 Score. Co-Kriging and DIP-
SI exhibit comparable performance on R2 score, while Ordinary Kriging shows
slightly lower performance across the metrics. However, there seems to be a
disparity in the MAE values for different methods compared to other metrics.
Since MAE is less sensitive to extreme values than other measures, it provides
an average estimation of errors that does not take into account very high values.

Figure 3 illustrates the spatial distribution of SOC soil samples used for in-
terpolation, as well as the distribution of validation data and test data. Figure 7
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Figure 7: Spatial representation of the SOC interpolation result for the different methods.

Table 5: Performance metrics of several methods, TPH + Fluoride for OK, COK, DIP-SI and
the proposed method

Method RMSE MAE R2

OK 321.44 261.92 0.35
COK 320.10 258.79 0.34
DIP-SI 252.51 175.04 0.50
This Paper 206.12 134.12 0.67

demonstrates that kriging-based techniques, namely OK and COK, exhibit less
variability in the estimates than Deep Learning-based techniques. This could
be attributed to the smoothing effect of kriging on interpolation results. It is
also noteworthy that the DIP-SI method shows more variability than the pro-
posed method. However, referring to the metrics, we can suggest that this might
be associated with overestimation. In the next dataset, we demonstrate that
the two-variable method helps control overfitting of the neural network in our
case. Even though the used dataset aligns with the expectations of kriging,
the proposed method shows interesting performances. Notably, no prior spatial
analysis or pre-training is required for interpolation.

4.2. 3D Dataset: Hydrocarbons + Fluoride

In this section, we delve into a 3D case study by interpolating the hydrocar-
bon concentration data from boreholes combined with Fluoride concentration
data. We do not use the bicubic upsample function, as in the 2D case, due
to the need to employ the tricubic function and the potentially significant as-
sociated computation time. Therefore, we employ the Nearest function, which
is less computationally demanding and easier to implement. And similar to
the first case study, we compare our approach with θ = 0, which is equiva-
lent to single-variable interpolation. We also compare the proposed method
with kriging methods, namely OK and COK. The target variable TPH has a
highly skewed distribution, as is common in cases of hydrocarbon contamina-
tion. Consequently, we performed a log-normal transformation of the variable
before conduction kriging. The optimal value of θ obtained using the method
described in Section 2.2 for this case study is 0.3.

According to the results in Table 5, the Deep Learning methods outperform
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Figure 8: TPH log concentration on the validation data for boreholes B3 and B5, comparing
various methods against the Hyperspectral Imaging (HSI) data, which is our ground truth.

the kriging methods, likely attributed to the fact that Deep Learning methods
do not require transforming the variable to achieve a normal distribution. The
limited number of points on the x and y axis of this dataset also has an impact
on the results of kriging methods, due to the difficulty of variographic modelling.
We also observe that the addition of the auxiliary variable does not provide a
significant improvement to the co-kriging method. The proposed method out-
performs the single variable method DIP-SI on all metrics, with a lower RMSE
and MAE and a higher R2. This suggests that the model is capable of cap-
turing spatial and statistical information from the auxiliary variable to enhance
the interpolation of the variable of interest. However, it is important to note
that we only excluded validation data for the TPH, and therefore, the presence
of Fluoride values may have contributed to the improvement in interpolation.

It is also important to note that despite the fact that the DIP-SI method
yields less favorable results than the proposed method, it is still capable of
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Figure 9: Spatial interpolated maps of univariate methods OK, DIP-SI and multivariate
methods COK and proposed method CO-DIP-SI for TPH concentrations.

Ltotal MAE RMSE R2

Figure 10: Evolution of the metrics on the validation data based on the model iterations

capturing the spatial and statistical information from the different boreholes.
Considering that we excluded validation data so that a vertical interpolation
cannot determine the values, we still observe an increase in concentration val-
ues, whether for borehole B3 or B5. This is evident in Figure 8. This figure also
illustrates that the interpolation from DIP-SI is smoother compared to the pro-
posed method, as seen in the concentration peak at 5.1m, where the proposed
method adheres more closely to the actual data.

Figure 9 shows the spatial distribution maps of univariate methods OK and
DIP-SI, and multivariate methods COK and the proposed CO-DIP-SI. These
maps suggest that the Deep Learning-based methods can capture the vertical
variations of boreholes, as shown in Figure 5. On the other hand, geostatistical
methods tend to smooth the results, which is also due to the variographic mod-
eling that faces challenges with the limited number of boreholes. Comparing
the results of DIP-SI and the proposed method, it is evident that the proposed
method presents even more detail than DIP-SI. This seems to indicate that the
model effectively retrieves auxiliary information from the Fluoride variable.

Not only do the results show that the two-variable method is much more
effective than the DIP-SI method, but we have also observed that the use of
the second variable helps control model overfitting. As noted by Wang et al.
(2023), DIP-based methods tend to overfit, and this is evident in the case of the
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Table 6: Number of trainable parameters for different configurations of the proposed neural
network f

Dataset Output Shape # Parameters
2D (SOC+NDVI) 136× 160 14× 106

3D (TPH+Fluoride) 28× 40× 60 25× 106

3D 1000× 1000× 100 8× 109

DIP-SI method where the model’s performance decreases after a certain number
of iterations. Figure 10 illustrates this, as from around the 400th iteration, the
model’s performance decreases for all metrics (RMSE, MAE, or R2), while the
proposed method continues to learn and improves its performance. However, it
is important to note that, due to the very limited number of data points we have,
we were unable to allocate separate validation and test data for our model. It
is therefore crucial to consider this in cases like ours, and it is beneficial to seek
the opinion of a domain expert regarding the interpolated maps for additional
validation.

Regarding the complexity of the model and computational capacity, the
application of this method in a real-time setting depends on the size of the grid
to be interpolated. Table 6 shows us that in the two case studies we have, the
number of trainable parameters is manageable. In a scenario where we have a
grid of 1000 × 1000 × 100 to interpolate, we estimate that it would involve 8
billion parameters. This may be limiting for real-time applications but is still
feasible and at the same scale as the most-used deep neural networks, such as
ResNet-50, U-net, VGG-16, and their 3D variants. For reference, ResNet-50 has
approximately 25× 106 parameters (He et al., 2016), while U-net has 31× 106

parameters (Ronneberger et al., 2015), and VGG-16 has 138 × 106 parameters
(Simonyan and Zisserman, 2014). Moreover, implementations of convolution
layers using memory-efficient cuDNN have been also investigated with success
for 3D neural networks, such as in (Çiçek et al., 2016).

5. Summary and conclusions

In this paper, we proposed a spatial interpolation method that can serve as
an alternative to co-kriging. As a spatial interpolation method with a generative
neural network, the proposed method allowed for the inclusion of an auxiliary
variable. To achieve this, we introduced a CNN with an encoder-decoder archi-
tecture but with the distinctive feature of having two decoders to produce two
output maps. Additionally, we introduced a loss function with a parameter to
control the relationships between the two variables, and this parameter can be
adjusted according to specific cases.

We tested our method on two datasets. The first was a 2D dataset of SOC
from the North American Carbon Program, coupled with NDVI data. De-
spite SOC data aligning with the expectations of kriging, the proposed method
demonstrated superior performance in terms of RMSE and R2 compared to
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other methods. The second dataset involved a contaminated site in France,
featuring Hydrocarbons and Fluoride concentrations. Results indicated better
performance with our proposed method despite the limited number of points on
the x and y axis with only 6 boreholes, and importantly, the addition of the sec-
ond variable helped mitigate overfitting issues often associated with DIP-based
approaches. We have also shown that real-time application for substantial inter-
polation grids requires significant computational capacity. And in cases where
we have a very limited number of observed values, validation with a domain
expert can be useful to avoid over-interpretation.

There are several avenues for improving our method. One potential enhance-
ment could involve the parameter θ. The value of θ can be considered dynamic,
allowing it to evolve during training rather than remaining fixed. Addition-
ally, the proposed method can serve as a foundation for conditional generation.
Given that neural networks are initialized randomly, model outputs can vary
between executions. This variability can be harnessed for conditional generation
tasks.
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