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Abstract: A novel synthesis strategy to access 2-alkoxyquinoline derivatives via a palladium-driven
cascade reaction is disclosed. Unlike classic methods based on the alkylation of 2-quinolones with
alkyl halides, the present method benefits from the de novo assembly of the quinoline core starting
from 1,3-butadiynamides. Palladium-catalyzed reaction cascades with N-(2-iodophenyl)-N-tosyl-
1,3-butadiynamides and primary alcohols as external nucleophiles proceed under mild reaction
conditions and selectively deliver a variety of differently functionalized 4-alkenyl 2-alkoxyquinolines
in a single batch transformation.

Keywords: 1,3-diynamides; ynamides; [4]cumulenimines; homogeneous catalysis; heterocycles;
annulation reactions; cascade reactions; quinolines

1. Introduction

The quinoline motif is found in the molecular structure of a large number of drugs,
pharmaceuticals and natural products with relevant biological activities [1–4]. Therefore,
quinolines serve as a privileged molecular platform for the development of new therapeutic
agents. Within these, several differently functionalized 2-alkoxyquinolines have been
reported (Figure 1):
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Figure 1. Examples of biologically relevant 2-alkoxyquinoline derivatives. 
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For instance, bedaquiline I has been approved by the U.S. Food and Drug Administra-
tion for the treatment of drug-resistant tuberculosis [5]. 2-alkoxyquinoline II belongs to a
set of novobiocin analogs where the 2-alkoxyquinoline replaces the original coumarin core.
II displays anticancer activity by targeting the Hsp90 (heat-shock protein 90) C-terminal
region (Figure 1) [6]. A series of 2-alkoxyquinolines bearing a lipophilic group at the
1- or 2-position was tested as new 5-HT3 receptor antagonists, and 2-alkoxyquinoline
III revealed one of the highest affinities (Ki = 0.31 nM) [7]. 2-n-butyloxyquinoline dibucaine
IV is a local anesthetic [8]. Furthermore, 2-alkoxyquinoline V functions as a nonsteroidal
agonist of the farnesoid X receptor (FXR) [9], and 2-alkoxyquinoline VI is an antibacterial
agent [10].

2-Alkoxyquinolines also play a crucial role as ligands in palladium-catalyzed C(sp3)–H
bond functionalization, notably by enabling primary and secondary C(sp3)–H arylation [11,12],
as well as γ-C(sp3)–H acetoxylation of triflyl-protected amines [13].

Typically, the synthesis of 2-alkoxyquinolines relies on the modification of suitable
quinoline derivatives such as 2-chloroquinolines or 2-quinolones. SNAr reactions of
2-chloroquinolines with sodium alkoxides in alcohol deliver 2-alkoxyquinolines after sev-
eral hours of heating under reflux [14]. Shorter reaction times of a few minutes were
reported under microwave irradiation and in polar solvents such as HMPTA (hexam-
ethylphosphortriamide) or NMP (N-methylpyrrolidone) [15]. Another classic synthe-
sis method involves base-mediated O-alkylations of 2-quinolones by alkyl halides [6].
However, 2-quinolones are ambident nucleophiles due to their two tautomeric forms:
2-quinolone and 2-hydroxyquinoline. Here, the control of selectivity of O- versus N-
alkylation is a non-negligible issue. Typically, O-alkylated products are obtained through
the use of a stoichiometric amount of silver salts (Ag2CO3) [16,17]. The preferential interac-
tion of the silver cation with the N atom ensures blocking of the N-site and liberates the O-
nucleophilic site for O-alkylations. Recently, chemoselective Pd-catalyzed O-benzylations of
2-quinolones were achieved without the need of stoichiometric amounts of silver salts [18].
This process relies on the use of XantPhosPdCl2 as the pre-catalyst and the generation of a
phosphine mono-oxide Pd(II) η1-benzyl complex as the key intermediate. However, the
method is not applicable to alkyl halides other than benzyl halides. Whereas a variety of an-
nulation reactions involving nonconventional bond-forming reactions have been developed
for functionalized 2-quinolones [19,20], direct routes to 2-alkoxyquinolines based on the
assembly of the quinoline core are rare. As an example, Brandsma described the synthesis
of 2-O-silylated quinolines resulting from the reaction of phenyl isocyanate with lithi-
ated allenes [21]. More recently, the DMAP-catalyzed synthesis of tert-butylquinolin-2-yl
carbonates from 2-alkenylanilines and di-tert-butyl dicarbonate was reported [22].

Within our research on the chemistry of ynamides [23–28] and 1,3-butadiynamides [29–31],
we recently disclosed a straightforward route to functionalized 2-amino-4-alkenylquinolines
4 from 1,3-butadiynamides 1 based on a palladium-catalyzed reaction cascade with primary
or secondary amines 2 as external nucleophiles (Scheme 1a) [32].

The presence of TBAF (tetrabutylammonium fluoride) and KOH induces the cleavage
of the tosyl group located at the ynamide nitrogen atom and ensures the involvement
of both triple bonds in the annulation reaction cascade via the postulated σ,π-chelated
Pd-species 3 as the key intermediate.

Extending the scope of this Pd-catalyzed cascade reaction is an attractive aim. When us-
ing readily available alcohols as nucleophiles, it would likely lead to a new approach to ver-
satile 2-alkoxyquinolines via straightforward annulation reactions. We report here that pri-
mary alcohols 5 can indeed serve as suitable nucleophiles and reaction partners to convert
readily accessible 1,3-butadiynamides 1 into functionalized 4-alkenyl 2-alkoxyquinolines
6 within a single batch and under mild conditions (Scheme 1b).
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Scheme 1. (a) Pd-catalyzed cascade reaction of 1,3-butadiynamides 1 with primary or sec-
ondary amines 2 leading to 2-amino-4-alkenyl quinolines 4. (b) Pd-catalyzed cascade reaction
of 1,3-butadiynamides 1 with primary alcohols 5 yielding 2-alkoxy-4-alkenyl quinolines 6.

2. Results and Discussion

In our work related to the synthesis of 2-aminoquinolines 4, where primary or sec-
ondary amines served as nucleophiles, TBAF was added to the reaction to improve the
solubility of KOH in THF through anion metathesis. Considering that the solubility of
KOH is enhanced in methanol, the reaction of 1,3-butadiynamide 1a (R1 = n-Pr) was
attempted without TBAF. Fortunately, diynamide 1a was now fully converted into the
expected 4-alkenyl 2-methoxyquinoline 6a in the presence of Pd(PPh3)4 (10 mol%) and
KOH (2.5 equiv) in methanol at 70 ◦C (Scheme 2). The 2-methoxyquinoline 6a was obtained
in 75% yield with an (E)/(Z) ratio of 96:4 after column chromatography. Similarly, the
2-ethoxy analogue 6b was obtained in 79% isolated yield with an (E)/(Z) ratio of 97:3 when
the reaction was carried out in EtOH as the solvent (Scheme 2). Notably, the yield of isolated
6b was not affected when the amount of EtOH was reduced from 165 to 10 equivalents and
using THF as the solvent.

The option for utilizing more sophisticated alcohols was evaluated with 4-methyl-
thiazol-5-yl-ethanol (5c). No reaction occurred between 1a and alcohol 5c (10 equiv) in
THF after 1 h of heating at 70 ◦C and recovering the starting material 1a. This result might
be due to the lack of solubility of KOH in the reaction medium. The addition of EtOH or
MeOH to solubilize KOH could not be considered as these might compete as nucleophiles
in this reaction. Therefore, the use of TBAF/KOH to induce an anion metathesis was again
attempted. The reaction of 1a (0.11 mmol) with alcohol 5c (20 equiv) was performed in
1 mL of a commercially available 1M solution of TBAF in THF (9.5 equiv) in the presence
of 10 mol% of Pd(PPh3)4 and 2.5 equivalents of KOH. Gratifyingly, under these modified
reaction conditions, the expected 2-alkoxyquinoline 6c was obtained in 39% yield of the
isolated material after 1 h at 70 ◦C (Scheme 2). The scope of this new 2-alkoxyquinoline
synthesis was further studied using 10 mol% of Pd(PPh3)4, 2.5 equiv of KOH and 2.5 equiv
of TBAF in THF as the standard reaction conditions. When glycol (5d) was used as the
O-nucleophile, the product of mono-addition 6d was the sole product obtained (45% yield).
The reaction was chemoselective with 1,3-butanediol (5e). Here, the primary alcohol
reacted exclusively to give the corresponding 2-alkoxyquinoline 6e in 63% yield. It is
worthy of note that access to quinolines 6d and 6e is not as straightforward using classic
methods. Reactions with secondary or tertiary alcohols (i.e., cyclopentanol and tert-butanol,
respectively) failed, probably due to steric reasons. On the other hand, alcohols tethered to
an amino group, an olefin or an electron-rich or electron -poor aryl group were successfully
engaged in this new and unprecedented 2-alkoxyquinoline synthesis and yielded a set of
2-alkoxy-4-alkenyl quinolines 6f-i in 40 to 75% yields of the isolated compounds (Scheme 2).
In all cases, the (E) isomer was preferentially formed with an (E)/(Z) ratio higher than
95:5. The reaction of diynamide 1b (R1 = (CH2)2OBn) in EtOH as the solvent selectively
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led to the (E) isomer of the corresponding quinoline 6j in 65% yield of the isolated product.
Interestingly, when the reaction was conducted in the presence of TBAF (2.5 equiv, condition
B), the product was not 6j but 2-ethoxy-4-dienylquinoline 7a—the product resulting from
the elimination of benzyl alcohol. Quinoline 7a was obtained in 30% yield via this extended
reaction cascade, which terminates with the elimination of benzyl alcohol. Similarly, the
reaction of 1b with 4-methyl-thiazol-5-yl-ethanol (5c) in the presence of TBAF yielded
4-dienyl-2-ethoxyquinoline 7b as the major product in 21% yield.
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A deuterium labeling experiment was carried out with diynamide 1a in CD3OD using
t-BuOK as the base instead of KOH to avoid any proton source (Scheme 3).
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The resulting penta-deuterated quinoline 8a was isolated in 58% yield. The comparison
of the 1H NMR spectrum of 8a with that of non-deuterated quinoline 6a provided evidence
of the selective incorporation of deuterium into the C3 and C11 positions (Scheme 4). The
1H NMR signals at δ = 6.93 (s, H-3) and 6.97 (d, H-11) for the non-deuterated quinoline
6a almost disappeared in the 1H NMR spectrum of 8a. Moreover, the multiplicity of the
signal assigned to the olefinic proton H-12 at δ = 6.41 was altered from a doublet of triplets
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with 3JH,H = 15.5 Hz and 3JH,H = 7.0 Hz to a triplet of triplets with 3JH,H = 7.0 Hz and
3JH,D(trans) = 2.0 Hz. The clear loss of the 1H signals at δ = 6.93 and 6.97, as well as the clear
changes in the spin-system of the proton signal at δ = 6.41 in the 1H NMR spectra indicate
an almost complete incorporation of deuterium at those positions.
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The deuterium labelling experiment supports well the proposed mechanism outlined
in Scheme 5. Presumably, the combination of alcohol 5/KOH or 5/TBAF/KOH cleaves
the tosyl group located at the ynamide nitrogen atom (1 → 9A) and initiates the subse-
quent cascade reaction (Scheme 5). The resulting 1,3-butadiynamine 9A is in equilibrium
with the alkynyl ketenimine 9B and the [4]-cumulenimine 9C with formal 1,3- and 1,5-H
shifts, respectively. Selective 1,2-addition of alcohol 5 to either imine 9B or 9C followed by
enamine-imine tautomerization—and isomerization of the propargyl to an allene moiety in
the case of 9B—delivers the allene-derived intermediate 9D after oxidative addition of the
palladium(0) catalyst. Whether the oxidative addition of palladium(0) already occurs with
intermediates 9A–C and therefore facilitates the isomerization sequence or whether oxida-
tive addition takes place after the 1,3-diynamine-to-allenyl-imine isomerization remains an
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open question. However, once the σ,π-chelated palladium intermediate 9D is formed, a
subsequent intramolecular Heck-type reaction furnishes the annulated π-allyl palladium
species 9E, which undergoes β-hydrogen elimination to produce 4-alkenyl quinolines
6 along with the palladium–hydride complex. Reduction of the latter by the base allows
the regeneration of the Pd(0) active catalyst. Interestingly, in the case of 1,3-butadiynamide
1b (R1 = (CH2)2OBn), the reaction conditions indicated by B favor in situ elimination
of benzyl alcohol and yield 2-alkoxy-4-(1,3-dienyl)quinolines 7 as the major products.
Here, the formation of the conjugated 1,3-butadiene moiety is most likely the underlying
driving force.
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Scheme 5. Proposed mechanism for the synthesis of 2-alkoxy-4-alkenylquinolines 6 and 2-alkoxy-4-
(1,3-dienyl)quinolines 7.

3. Materials and Methods

Chromatographic purification steps were performed using Acros Organics silica gel Si
60 (40–60 µm) or Merck aluminum oxide 90 active neutral (60–200 µm, activity stage III).
Thin-layer chromatography (TLC) was developed on Merck silica gel 60 plates (0.20 mm) or
on aluminum oxide 60 neutral plates (0.20 mm) with UV detection (Merck, Kenilworth, NJ,
USA). Nuclear magnetic resonance (NMR) spectra were recorded on a BRUKER AVANCE
III 500 (500 MHz) or a BRUKER NEO 600 (600 MHz) spectrometer (Bruker, Billerica,
Kenilworth, MA, USA). 1H and 13C NMR chemical shifts (δ) are given in ppm (parts per
million) using the TMS signal (0 ppm) and the residual peak of chloroform-D (77.16 ppm),
respectively, as the internal reference (see Supplementary Materials). Coupling constants



Molecules 2024, 29, 3505 7 of 12

are reported in Hertz (Hz). The following abbreviations are used: s = singlet, d = doublet,
t = triplet, q = quartet, qt = quintuplet, sext = sextuplet, m = multiplet, br = broad). The
(E)/(Z) isomer ratio was determined for each quinoline from the 1H NMR spectrum via
integration of the dt signals of the olefin proton of both isomers. High-resolution mass
spectrometry (HRMS) analysis was performed in electron spray ionization (ESI) mode
on an Acquity UPLC H-ClassXevo G2-XS QTof (WATERS) spectrometer (Waters, Milford,
MA, USA). Melting points (Mp) were measured with an electrothermal apparatus and
are not corrected. The procedure for the synthesis of 1,3-butadiynamides 1a,b and their
characterization data were reported [32,33].

3.1. General Procedure for the Synthesis of 2-Alkoxyquinolines 6a–b, f, j (Condition A)

1,3-butadiynamide 1 (0.11 mmol), KOH (15 mg, 0.26 mmol, 2.5 equiv), tetrakis
(triphenylphosphine)palladium(0) (Pd(PPh3)4) (12 mg, 10 mol%) and alcohol 5 (1 mL)
were introduced in a dry Schlenk tube under an argon atmosphere. The Schlenk tube
was immediately placed in an oil bath preheated to 70 ◦C. After 1 h, CH2Cl2 and brine
were added to the reaction mixture. The aqueous phase was extracted with CH2Cl2, and
the combined organic layers were dried (MgSO4), filtered and evaporated under reduced
pressure. The product was purified via silica gel or alumina column chromatography.

2-Methoxy-4-(pent-1-en-1-yl)quinoline (6a). Prepared from N-(2-iodophenyl)-4-methyl-
N-(octa-1,3-diyn-1-yl)benzenesulfonamide (1a) (50 mg, 0.105 mmol) and MeOH (5a) (1 mL).
The product was purified via column chromatography (Al2O3, n-pentane/Et2O 20:1
(v/v)) to yield 6a as an oil (18 mg, 0.08 mmol, yield: 75%, E/Z = 96:4). Rf = 0.53 (n-
pentane/Et2O = 20:1 (v/v)). 1H NMR (500 MHz, CDCl3) δ 7.97 (d, 3J = 7.9 Hz, 1 H), 7.86 (d,
3J = 8.3 Hz, 1 H), 7.61 (ddd, 3J = 8.3 Hz, 3J = 7.0 Hz, 4J = 1.2 Hz, 1 H), 7.38 (ddd, 3J = 8.1 Hz,
3J = 7.0 Hz, 4J = 1.3 Hz, 1 H), 6.97 (d, 3J = 15.7 Hz, 1 H), 6.93 (s, 1 H), 6.41 (dt, 3J = 15.5
Hz, 3J = 7.0 Hz, 1 H), 4.07 (s, 3 H), 2.31 (m, 2 H), 1.57 (sext, 3J = 7.4 Hz, 2 H) and 1.00 (t,
3J = 7.4 Hz, 3 H). Identified 1H NMR signals corresponding to the minor isomer: 6.02 (dt,
3J = 11.6 Hz, 3J = 7.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3) δ 162.7 (C), 147.1 (C), 146.7
(C), 138.0 (CH), 129.4 (CH), 127.8 (CH), 124.9 (CH), 123.89 (CH), 123.85 (C), 123.8 (CH),
108.7 (CH), 53.4 (CH3), 35.6 (CH2), 22.4 (CH2) and 13.9 (CH3). HRMS (ESI+): Calc’d for
C15H18NO [M + H]+: 228.1388; found: 228.1395.

2-Ethoxy-4-(pent-1-en-1-yl)quinoline (6b). Prepared from 1a (50 mg, 0.105 mmol) in
EtOH (5b) (1 mL). The product was purified via column chromatography (Al2O3, n-
pentane/Et2O 20:1 (v/v)) to yield 6b as an oil (20 mg, 0.083 mmol, yield: 79%, E/Z = 97:3).
Rf = 0.62 (n-pentane/Et2O = 20:1 (v/v)). 1H NMR (600 MHz, CDCl3) δ 7.96 (dd, 3J = 8.3 Hz,
4J = 1.1 Hz, 1 H), 7.83 (d, 3J = 8.3 Hz, 1 H), 7.59 (ddd, 3J = 8.3 Hz, 3J = 6.9 Hz, 4J = 1.4 Hz,
1 H), 7.36 (ddd, 3J = 8.2 Hz, 3J = 7.0 Hz, 4J = 1.3 Hz, 1 H), 6.97 (d, 3J = 15.6 Hz, 1 H), 6.93 (s,
1 H), 6.41 (dt, 3J = 15.5 Hz, 3J = 7.0 Hz, 1 H), 4.53 (q, 3J = 7.1 Hz, 2 H), 2.30 (m, 2 H), 1.57
(sext, 3J = 7.4 Hz, 2 H), 1.45 (t, 3J = 7.1 Hz, 3 H) and 1.00 (t, 3J = 7.4 Hz, 3 H). Identified
1H NMR signals corresponding to the minor isomer: 6.01 (dt, 3J = 11.6 Hz, 3J = 7.5 Hz,
1 H). 13C NMR (150 MHz, CDCl3) δ 162.4 (C), 147.2 (C), 146.6 (C), 137.8 (CH), 129.4 (CH),
127.8 (CH), 124.9 (CH), 123.78 (C), 123.76 (CH), 123.7 (CH), 108.9 (CH), 61.7 (CH2), 35.6
(CH2), 22.4 (CH2), 14.8 (CH3) and 13.9 (CH3). HRMS (ESI+): Calc’d for C16H20NO [M +
H]+: 242.1545; found: 242.1547.

N,N-Dimethyl-2-((4-(pent-1-en-1-yl)quinolin-2-yl)oxy)ethanamine (6f). Prepared from 1a
(50 mg, 0.105 mmol) and 3-(dimethylamino)propan-1-ol (5f) (105 µL, 1.1 mmol, 10 equiv) in
dry THF (1 mL). The reaction was complete after 30 min at 70 ◦C. The product was purified
via column chromatography (Al2O3, n-pentane/EtOAc/Et3N 90:10:1 (v/v/v)) to yield 6f
(19 mg, 0.067 mmol, yield: 64%, E/Z = 97:3) as an oil. Rf = 0.37 (n-pentane/EtOAc/Et3N
90:10:1 (v/v/v)). 1H NMR (500 MHz, CDCl3) δ 7.97 (dd, 3J = 8.3 Hz, 4J = 1.0 Hz, 1 H), 7.82
(d, 3J = 8.3 Hz, 1 H), 7.59 (ddd, 3J = 8.4 Hz, 3J = 7.0 Hz, 4J = 1.4 Hz, 1 H), 7.37 (ddd, 3J =
8.2 Hz, 3J = 7.0 Hz, 4J = 1.2 Hz, 1 H), 7.01 (s, 1 H), 6.97 (d, 3J = 15.6 Hz, 1 H), 6.40 (dt, 3J
= 15.6 Hz, 3J = 7.0 Hz, 1 H), 4.59 (t, 3J = 5.6 Hz, 2 H), 2.78 (t, 3J = 5.6 Hz, 2 H), 2.37 (s, 6
H), 2.30 (m, 2 H), 1.56 (sext, 3J = 7.3 Hz, 2 H) and 1.00 (t, 3J = 7.3 Hz, 3 H). Identified 1H
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NMR signals corresponding to the minor isomer: 6.01 (dt, 3J = 11.6 Hz, 3J = 7.4 Hz, 1 H).
13C NMR (125 MHz, CDCl3) δ 162.3 (C), 147.1 (C), 146.5 (C), 137.9 (CH), 129.3 (CH), 127.8
(CH), 124.8 (CH), 123.9 (C), 123.8 (CH), 123.7 (CH), 109.1 (CH), 63.2 (CH2), 58.4 (CH2), 45.9
(CH3), 35.5 (CH2), 22.4 (CH2) and 13.8 (CH3). HRMS (ESI+): Calc’d for C18H25N2O [M +
H]+: 285.1967; found: 285.1968.

(E)-4-(4-(Benzyloxy)but-1-en-1-yl)-2-ethoxyquinoline (6j). Prepared from N-(7-(benzyloxy)
hepta-1,3-diyn-1-yl)-N-(2-iodophenyl)-4-methylbenzenesulfonamide (1b) (50 mg, 0.088 mmol)
in EtOH (1 mL). The reaction was complete after 30 min at 70 ◦C. The product was purified
via column chromatography (SiO2, n-pentane/Et2O 20:1 (v/v)) to yield (E)-6j as an oil
(19 mg, 0.057 mmol, yield: 65%). Rf = 0.25 (n-pentane/Et2O 20:1 (v/v)). 1H NMR (600 MHz,
CDCl3) δ 7.94 (d, 3J = 8.2 Hz, 1 H), 7.82 (d, 3J = 8.3 Hz, 1 H), 7.60 (dd, 3J = 8.0 Hz, 3J = 7.1
Hz, 1 H), 7.36-7.28 (m, 6 H), 7.05 (d, 3J = 15.7 Hz, 1 H), 6.93 (s, 1 H), 6.43 (dt, 3J = 15.6 Hz, 3J
= 7.0 Hz, 1 H), 4.57 (s, 2 H), 4.52 (q, 3J = 7.1 Hz, 2 H), 3.66 (t, 3J = 6.5 Hz, 2 H), 2.65 (m, 2 H)
and 1.45 (t, 3J = 7.1 Hz, 3 H). 13C NMR (150 MHz, CDCl3) δ 162.4 (C), 147.2 (C), 146.2 (C),
138.4 (C), 134.0 (CH), 129.4 (CH), 128.6 (CH), 127.9 (CH), 127.82 (CH), 127.80 (CH), 126.6
(CH), 123.8 (CH), 123.72 (CH), 123.69 (C), 109.1 (CH), 73.2 (CH2), 69.5 (CH2), 61.6 (CH2),
34.0 (CH2) and 14.8 (CH3). HRMS (ESI+): Calc’d for C22H24NO2 [M + H]+: 334.1807; found:
334.1808.

3.2. General Procedure for the Synthesis of 2-Alkoxyquinolines 6c–e, g-i and 7a–b (Condition B)

1,3-butadiynamide 1 (0.11 mmol), KOH (15 mg, 0.26 mmol, 2.5 equiv), Pd(PPh3)4
(12 mg, 10 mol%), alcohol 5 (10–20 equiv), tetra-n-butylammonium fluoride (TBAF) 1M
solution in THF (0.3 mL, 0.3 mmol, 2.5 equiv) and dry THF (1 mL) were introduced in a
Schlenk tube under an argon atmosphere. The Schlenk tube was immediately placed in an
oil bath preheated to 70 ◦C. Upon completion of the reaction (0.5 to 1 h), CH2Cl2 and brine
were added to the reaction mixture. The aqueous phase was extracted with CH2Cl2 and
the combined organic layers were dried (MgSO4), filtered and evaporated under reduced
pressure. The product was purified via silica gel or alumina column chromatography.

4-Methyl-5-(2-((4-(pent-1-en-1-yl)quinolin-2-yl)oxy)ethyl)thiazole (6c). Prepared from 1a
(50 mg, 0.105 mmol) and 2-(4-methylthiazol-5-yl)ethanol (5c) (0.25 mL, 2.1 mmol, 20 equiv)
in 1 mL of 1M tetra-n-butylammonium fluoride (TBAF) solution in THF (1 mmol, 9.5 equiv).
The reaction was complete after 1 h at 70 ◦C. The product was purified via column chro-
matography (SiO2, n-pentane/EtOAc/Et3N 90:10:1 (v/v/v)) to yield 6c as an oil (14 mg,
0.041 mmol, yield: 39%, E/Z = 95:5). Rf = 0.20 (n-pentane/EtOAc/Et3N 90:10:1 (v/v/v)).
1H NMR (600 MHz, CDCl3) δ 8.59 (s, 1 H), 7.98 (dd, 3J = 8.3 Hz, 4J = 1.0 Hz, 1 H), 7.82 (d, 3J
= 8.3 Hz, 1 H), 7.61 (ddd, 3J = 8.3 Hz, 3J = 7.0 Hz, 4J = 1.4 Hz, 1 H), 7.38 (ddd, 3J = 8.2 Hz,
3J = 7.0 Hz, 4J = 1.3 Hz, 1 H), 6.98 (d, 3J = 15.8 Hz, 1 H), 6.93 (s, 1 H), 6.42 (dt, 3J = 15.6 Hz,
3J = 7.0 Hz, 1 H), 4.64 (t, 3J = 6.7 Hz, 2 H), 3.30 (t, 3J = 6.7 Hz, 2 H), 2.48 (s, 3 H), 2.32 (m,
2 H), 1.58 (sext, 3J = 7.3 Hz, 2 H) and 1.01 (t, 3J = 7.4 Hz, 3 H). Identified 1H NMR signals
corresponding to the minor isomer: 6.03 (dt, 3J = 11.6 Hz, 3J = 7.5 Hz, 1 H). 13C NMR
(150 MHz, CDCl3) δ 161.8 (C), 149.9 (C), 149.8 (CH), 147.0 (C), 146.9 (C), 138.1 (CH), 129.5
(CH), 127.8 (CH), 127.7 (C), 124.8 (CH), 124.0 (CH), 123.9 (C), 123.8 (CH), 108.6 (CH), 65.4
(CH2), 35.6 (CH2), 26.3 (CH2), 22.4 (CH2), 15.2 (CH3) and 13.9 (CH3). HRMS (ESI+): Calc’d
for C20H23N2OS [M + H]+: 339.1531; found: 339.1530.

2-((4-(pent-1-en-1-yl)quinolin-2-yl)oxy)ethanol (6d). Prepared from 1a (50 mg, 0.105 mmol)
and ethylene glycol (5d) (120 µL, 2.1 mmol, 20 equiv). The reaction was complete after 1 h at
70 ◦C. The product was purified via column chromatography (SiO2, n-pentane/EtOAc/Et3N
80:20:1 (v/v/v) to 60:40:1 (v/v/v)) to yield 6d as an oil (12 mg, 0.047 mmol, yield: 45%, E/Z
= 98:2). Rf = 0.17 (pentane/EtOAc/Et3N 80:20:1 (v/v/v)). 1H NMR (600 MHz, CDCl3) δ
7.98 (d, 3J = 8.2 Hz, 1 H), 7.80 (d, 3J = 8.2 Hz, 1 H), 7.62 (ddd, 3J = 8.3 Hz, 3J = 7.0 Hz, 4J =
1.3 Hz, 1 H), 7.40 (ddd, 3J = 8.2 Hz, 3J = 7.0 Hz, 4J = 1.1 Hz, 1 H), 6.99 (s, 1 H), 6.98 (d, 3J =
15.4 Hz, 1 H), 6.43 (dt, 3J = 15.4 Hz, 3J = 7.0 Hz, 1 H), 4.74 (br s, 1 H), 4.64 (m, 2 H), 4.00 (m,
2 H), 2.32 (m, 2 H), 1.57 (sext, 3J = 7.4 Hz, 2 H) and 1.00 (t, 3J = 7.4 Hz, 3 H). Identified 1H
NMR signals corresponding to the minor isomer: 6.05 (dt, 3J = 11.6 Hz, 3J = 7.4 Hz, 1 H).
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13C NMR (150 MHz, CDCl3) δ 162.6 (C), 147.5 (C), 146.3 (C), 138.5 (CH), 129.8 (CH), 127.3
(CH), 124.7 (CH), 124.3 (CH), 123.9 (C), 123.8 (CH), 108.8 (CH), 69.6 (CH2), 63.1 (CH2), 35.6
(CH2), 22.3 (CH2) and 13.9 (CH3). HRMS (ESI+): Calc’d for C16H20NO2 [M + H]+: 258.1494;
found: 258.1497.

4-((4-(pent-1-en-1-yl)quinolin-2-yl)oxy)butan-2-ol (6e). Prepared from 1a (50 mg, 0.105 mmol)
and 1,3-butanediol (5e) (190 µL, 2.1 mmol, 20 equiv). The reaction was complete af-
ter 40 min at 70 ◦C. The product was purified via column chromatography (SiO2, n-
pentane/AcOEt/Et3N 90:10:1 (v/v/v) to 80:20:1 (v/v/v)) to yield 6e as an oil (19 mg,
0.067 mmol, yield: 63%, E/Z = 98:2). Rf = 0.65 (n-pentane/AcOEt 6:4 (v/v)). 1H NMR
(600 MHz, CDCl3) δ 7.98 (dd, 3J = 8.3 Hz, 4J = 1.1 Hz, 1 H), 7.80 (d, 3J = 8.2 Hz, 1 H),
7.61 (ddd, 3J = 8.3 Hz, 3J = 7.0 Hz, 4J = 1.4 Hz, 1 H), 7.39 (ddd, 3J = 8.2 Hz, 3J = 7.0 Hz,
4J = 1.3 Hz, 1 H), 6.97 (d, 3J = 15.6 Hz, 1 H), 6.93 (s, 1 H), 6.43 (dt, 3J = 15.5 Hz, 3J = 7.0 Hz,
1 H), 5.09 (m, 1 H), 4.79 (br s, 1 H), 4.34 (m, 1 H), 3.83 (m, 1 H), 2.32 (m, 2 H), 2.01 (m, 1 H),
1.76 (m, 1 H), 1.57 (sext, 3J = 7.4 Hz, 2 H), 1.23 (d, 3J = 6.2 Hz, 3 H) and 1.00 (t, 3J = 7.4 Hz,
3 H). Identified 1H NMR signals corresponding to the minor isomer: 6.03 (dt, 3J = 11.7 Hz,
3J = 7.4 Hz, 1 H). 13C NMR (150 MHz, CDCl3) δ 162.8 (C), 147.4 (C), 146.3 (C), 138.5 (CH),
129.9 (CH), 127.2 (CH), 124.7 (CH), 124.2 (CH), 123.79 (C), 123.78 (CH), 108.8 (CH), 63.7
(CH), 63.0 (CH2), 39.9 (CH2), 35.6 (CH2), 22.9 (CH3), 22.3 (CH2) and 13.9 (CH3). HRMS
(ESI+): Calc’d for C18H24NO2 [M + H]+: 286.1807; found: 286.1806.

2-((3-Methylbut-3-en-1-yl)oxy)-4-(pent-1-en-1-yl)quinoline (6g). Prepared from 1a (50 mg,
0.105 mmol) and 2-methylprop-2-en-1-ol (5g) (215 µL, 2.1 mmol, 20 equiv). The reaction
was complete after 45 min at 70 ◦C. The product was purified via column chromatography
(SiO2, n-pentane/Et2O 20:1 (v/v)) to yield 6g as an oil (22 mg, 0.078 mmol, yield: 75%,
E/Z = 97:3). Rf = 0.65 (n-pentane/Et2O 20:1 (v/v)). 1H NMR (600 MHz, CDCl3) δ 7.97 (dd,
3J = 8.3 Hz, 4J = 1.0 Hz, 1 H), 7.84 (dd, 3J = 8.3 Hz, 4J = 0.8 Hz, 1 H), 7.60 (ddd, 3J = 8.3 Hz,
3J = 6.8 Hz, 4J = 1.4 Hz, 1 H), 7.37 (ddd, 3J = 8.2 Hz, 3J = 7.0 Hz, 4J = 1.3 Hz, 1 H), 6.97 (d, 3J
= 15.8 Hz, 1 H), 6.94 (s, 1 H), 6.42 (dt, 3J = 15.5 Hz, 3J = 7.0 Hz, 1 H), 4.85 (s, 2 H), 4.59 (t, 3J
= 6.8 Hz, 2 H), 2.55 (t, 3J = 6.8 Hz, 2 H), 2.30 (m, 2 H), 1.85 (s, 3 H), 1.56 (sext, 3J = 7.4 Hz,
2 H) and 1.00 (t, 3J = 7.4 Hz, 3 H). Identified 1H NMR signals corresponding to the minor
isomer: 6.01 (dt, 3J = 11.6 Hz, 3J = 7.4 Hz, 1 H). 13C NMR (150 MHz, CDCl3) δ 162.4 (C),
147.2 (C), 146.6 (C), 142.7 (C), 137.8 (CH), 129.3 (CH), 127.8 (CH), 124.9 (CH), 123.83 (C),
123.78 (CH), 123.7 (CH), 112.0 (CH2), 108.9 (CH), 64.1 (CH2), 37.3 (CH2), 35.6 (CH2), 22.9
(CH3), 22.4 (CH2) and 13.9 (CH3). HRMS (ESI+): Calc’d for C19H24NO [M + H]+: 282.1858;
found: 282.1863.

(E)-2-(Benzo[d][1,3]dioxol-5-ylmethoxy)-4-(pent-1-en-1-yl)quinoline (6h). Prepared from
1a (50 mg, 0.105 mmol) and benzo[d][1,3]dioxol-5-ylmethanol (5h) (320 mg, 2.1 mmol,
20 equiv). The reaction was complete after 30 min at 70 ◦C. The product was purified via
column chromatography (SiO2, n-pentane/Et2O 20:1 (v/v)) to yield (E)-6h as an oil (21 mg,
0.06 mmol, yield: 58%). Rf = 0.48 (n-pentane/Et2O 20:1 (v/v)). 1H NMR (600 MHz, CDCl3)
δ 7.98 (dd, 3J = 8.3 Hz, 4J = 1.1 Hz, 1 H), 7.86 (dd, 3J = 8.3 Hz, 4J = 1.0 Hz, 1 H), 7.61 (ddd,
3J = 8.3 Hz, 3J = 6.9 Hz, 4J = 1.4 Hz, 1 H), 7.39 (ddd, 3J = 8.3 Hz, 3J = 6.9 Hz, 4J = 1.3 Hz,
1 H), 7.04 (d, 4J = 1.6 Hz, 1 H), 7.00 (dd, 3J = 7.9 Hz, 4J = 1.6 Hz, 1 H), 6.98 (s, 1 H), 6.97 (d,
3J = 15.6 Hz, 1 H), 6.82 (d, 3J = 7.9 Hz, 1 H), 6.40 (dt, 3J = 15.6 Hz, 3J = 7.0 Hz, 1 H), 5.96 (s,
2 H), 5.44 (s, 2 H), 2.30 (m, 2 H), 1.56 (sext, 3J = 7.4 Hz, 2 H) and 0.99 (t, 3J = 7.4 Hz, 3 H).
13C NMR (150 MHz, CDCl3) δ 162.0 (C), 147.8 (C), 147.4 (C), 147.1 (C), 146.8 (C), 138.0 (CH),
131.3 (C), 129.4 (CH), 127.9 (CH), 124.8 (CH), 124.0 (CH), 123.9 (C), 123.7 (CH), 122.3 (CH),
109.3 (CH), 108.9 (CH), 108.3 (CH), 101.2 (CH2), 67.6 (CH2), 35.6 (CH2), 22.4 (CH2) and 13.9
(CH3). HRMS (ESI+): Calc’d for C22H22NO3 [M + H]+: 348.1600; found: 348.1601.

2-(4-Fluorophenyl)ethoxy)-4-(pent-1-en-1-yl)quinoline (6i). Prepared from 1a (50 mg,
0.105 mmol) and 2-(4-fluorophenyl)ethanol (5i) (130 µL, 1.05 mmol, 10 equiv). The reaction
was complete after 40 min at 70 ◦C. The product was purified via column chromatography
(SiO2, n-pentane/Et2O 98:2 (v/v)) to yield 6i as a white solid (14 mg, 0.04 mmol, yield: 40%,
E/Z = 98:2). Mp 48–49 ◦C. Rf = 0.53 (n-pentane/EtOAc 95:5 (v/v)). 1H NMR (600 MHz,
CDCl3) δ 7.96 (d, 3J = 8.2 Hz, 1 H), 7.81 (d, 3J = 8.4 Hz, 1 H), 7.59 (ddd, 3J = 8.2 Hz,
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3J = 7.0 Hz, 4J = 1.3 Hz, 1 H), 7.37 (ddd, 3J = 8.2 Hz, 3J = 7.0 Hz, 4J = 1.1 Hz, 1 H), 7.29-7.27
(m, 2 H), 7.00 (m, 2 H), 6.96 (d, 3J = 15.6 Hz, 1 H), 6.91 (s, 1 H), 6.40 (dt, 3J = 15.6 Hz,
3J = 7.0 Hz, 1 H), 4.66 (t, 3J = 7.0 Hz, 2 H), 3.11 (t, 3J = 7.0 Hz, 2 H), 2.30 (m, 2 H), 1.56 (sext,
3J = 7.4 Hz, 2 H) and 1.00 (t, 3J = 7.4 Hz, 3 H). Identified 1H NMR signals corresponding to
the minor isomer: 6.02 (dt, 3J = 11.7 Hz, 3J = 7.4 Hz, 1 H). 13C NMR (150 MHz, CDCl3) δ
161.7 (d, 1JC-F = 242 Hz, C), 162.2 (C), 147.2 (C), 146.7 (C), 137.9 (CH), 134.5 (d, 4JC-F = 3 Hz,
C), 130.6 (d, 3JC-F = 8 Hz, CH), 129.4 (CH), 127.8 (CH), 124.8 (CH), 123.9 (CH), 123.8 (C),
123.7 (CH), 115.3 (d, 2JC-F = 21 Hz, CH), 108.8 (CH), 66.3 (CH2), 35.6 (CH2), 34.8 (CH2), 22.4
(CH2) and 13.9 (CH3). 19F{H} NMR (470 MHz, CDCl3) δ -117.0. HRMS (ESI+): Calc’d for
C22H23NOF [M + H]+: 336.1764; found: 336.1761.

(E)-2-Ethoxy-4-(buta-1,3-dien-1-yl)quinoline (7a). Prepared from N-(7-(benzyloxy)hepta-
1,3-diyn-1-yl)-N-(2-iodophenyl)-4-methylbenzenesulfonamide (1b) (57 mg, 0.1 mmol) and
EtOH (5b) (120 µL, 2.0 mmol, 20 equiv). The reaction was complete after 50 min at
70 ◦C. The product was purified via column chromatography (SiO2, n-pentane/EtOAc
98:2 (v/v)) to yield (E)-7a as a white solid (7 mg, 0.03 mmol, yield: 30%). Mp 64–65 ◦C. Rf
= 0.4 (n-pentane/EtOAc 98:2 (v/v)). 1H NMR (600 MHz, CDCl3) δ 7.97 (dd, 3J = 8.3 Hz,
4J = 1.1 Hz, 1 H), 7.83 (dd, 3J = 8.3 Hz, 4J = 0.7 Hz, 1 H), 7.61 (ddd, 3J = 8.3 Hz, 3J = 6.9
Hz, 4J = 1.4 Hz, 1 H), 7.38 (ddd, 3J = 8.3 Hz, 3J = 6.9 Hz, 4J = 1.3 Hz, 1 H), 7.17 (br d, 3J
= 15.4 Hz, 1 H), 7.01 (s, 1 H), 6.95 (ddt, 3J = 15.4 Hz, 3J = 10.5 Hz, 4J = 0.7 Hz, 1 H), 6.64
(dddd, 3J = 16.9 Hz, 3J = 10.6 Hz, 3J = 10.0 Hz, 4J = 0.7 Hz, 1 H), 5.47 (dddd, 3J = 16.9 Hz,
2J = 1.4 Hz, 4J = 0.7 Hz, 5J = 0.7 Hz, 1 H), 5.34 (dddd, 3J = 10.0 Hz, 2J = 1.4 Hz, 4J = 0.7 Hz,
5J = 0.7 Hz, 1 H), 4.53 (q, 3J = 7.1 Hz, 2 H) and 1.45 (t, 3J = 7.1 Hz, 3 H). 13C NMR (150 MHz,
CDCl3) δ 162.3 (C), 147.4 (C), 145.3 (C), 136.8 (CH), 135.5 (CH), 129.5 (CH), 128.0 (CH), 127.0
(CH), 123.9 (CH), 123.6 (C), 123.4 (CH), 120.6 (CH2), 108.7 (CH), 61.7 (CH2) and 14.8 (CH3).
HRMS (ESI+): Calc’d for C15H16NO [M + H]+: 226.1232; found: 226.1233.

(E)-5-(2-((4-(buta-1,3-dien-1-yl)quinolin-2-yl)oxy)ethyl)-4-methylthiazole (7b). Prepared
from 1b (50 mg, 0.088 mmol) and 2-(4-methylthiazol-5-yl)ethanol (5c) (210 µL, 1.8 mmol,
20 equiv). The reaction was complete after 50 min at 70 ◦C. The product was purified via
column chromatography (SiO2, n-pentane/EtOAc/Et3N 90:10:1 (v/v/v)) to yield (E)-7b
(6 mg, 0.019 mmol, yield: 21%) as an oil. Rf = 0.19 (n-pentane/EtOAc 90:10 (v/v)). 1H
NMR (600 MHz, CDCl3) δ 8.60 (s, 1 H), 7.99 (dd, 3J = 8.3 Hz, 4J = 0.9 Hz, 1 H), 7.83 (dd,
3J = 8.3 Hz, 4J = 0.7 Hz, 1 H), 7.62 (ddd, 3J = 8.3 Hz, 3J = 6.9 Hz, 4J = 1.3 Hz, 1 H), 7.41 (ddd,
3J = 8.2 Hz, 3J = 7.0 Hz, 4J = 1.2 Hz, 1 H), 7.18 (d, 3J = 15.5 Hz, 1 H), 7.02 (s, 1 H), 6.96 (dd, 3J
= 15.4 Hz, 3J = 10.6 Hz, 1 H), 6.65 (ddd, 3J = 16.9 Hz, 3J = 10.4 Hz, 3J = 10.1 Hz, 1 H), 5.50
(d, 3J = 16.9 Hz, 1 H), 5.36 (d, 3J = 10.0 Hz, 1 H), 4.65 (t, 3J = 6.7 Hz, 2 H), 3.31 (t, 3J = 6.7
Hz, 2 H) and 2.49 (s, 3 H). 13C NMR (150 MHz, CDCl3) δ 161.8 (C), 149.94 (C), 149.88 (CH),
147.2 (C), 145.6 (C), 136.8 (CH), 135.7 (CH), 129.7 (CH), 128.0 (CH), 127.7 (C), 126.8 (CH),
124.2 (CH), 123.7 (C), 123.5 (CH), 120.8 (CH2), 108.4 (CH), 65.5 (CH2), 26.3 (CH2) and 15.2
(CH3). HRMS (ESI+): Calc’d for C19H19N2OS [M + H]+: 323.1218; found: 323.1218.

3.3. Deuterium Labeling Experiments

1,3-butadiynamide 1a (48 mg, 0.10 mmol), tetrakis(triphenylphosphine)palladium(0)
(12 mg, 0.01 mmol, 10 mol%) and t-BuOK (28 mg, 0.25 mmol, 2.5 equiv) were introduced in a
dry Schlenk tube under argon atmosphere. Then CD3OD (0.75 mL) was added. The Schlenk
tube was sealed and immediately placed in an oil bath preheated to 70 ◦C. After 30 min, the
reaction mixture was diluted with EtOAc and washed with brine. After drying (MgSO4),
the organic layer was filtered and evaporated under reduced pressure. The product was
purified via column chromatography (SiO2 pretreated with n-pentane/Et2O/Et3N 94:2:2
(v/v/v), n-pentane/Et2O 98:2 to 95:5 (v/v)) to yield 8a as an oil (13.5 mg, 0.058 mmol, yield:
58%). Rf = 0.72 (n-pentane/Et2O 10:1 (v/v)).

D5-2-Methoxy-4-(pent-1-en-1-yl)quinoline (8a). 1H NMR (500 MHz, CDCl3) δ 7.98 (dd,
3J = 8.3 Hz, 4J = 1.0 Hz, 1 H, H5), 7.90 (m, 1 H, H8), 7.62 (ddd, 3J = 8.3 Hz, 3J = 7.0 Hz,
4J = 1.2 Hz, 1 H, H7), 7.39 (ddd, 3J = 8.1 Hz, 3J = 7.0 Hz, 4J = 1.0 Hz, 1 H, H6), 6.42 (tt,
3J = 7.0 Hz, 3J = 2 Hz, 1 H, H12), 2.32 (qapp, 3J = 7.2 Hz, 2 H, H13), 1.57 (sext, 3J = 7.4 Hz, 2 H,
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H14) and 1.00 (t, 3J = 7.4 Hz, 3 H, H15). HRMS (ESI+): Calc’d for C15H13D5NO [M + H]+:
233.1702; found: 233.1704.

4. Conclusions

In conclusion, we have developed a straightforward Pd-catalyzed route to 2-alkoxy
4-alkenylquinolines starting from readily accessible 1,3-butadiynamides. Classic synthetic
methods for 2-alkoxyquinolines rely on modifications of the quinoline core and usually
yield quinolines with simple alkoxy moieties at the 2-position. By contrast, the presented
synthesis strategy is based on the de novo assembly of the 2-alkoxyquinoline core from
acyclic precursors—1,3-butadiynamides and primary alcohols as external nucleophiles—to
access a highly varied set of 2-alkoxyquinoline derivatives that are otherwise difficult to
obtain. The removal of the ynamide tosyl group occurs under defined reaction conditions,
which include the use of TBAF/KOH in THF. This initiates the in situ generation of
highly reactive and sensitive ketenimine and/or [4]cumulenimine species, which trigger
a palladium-catalyzed cascade reaction involving bond formation and cleavage as well
as several tautomeric isomerization steps, ultimately leading to highly functionalized
2-alkoxyquinolines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29153505/s1, Experimental procedures and characteri-
zation data of 1,3-butadiynamides 1a,b [32,33] and NMR spectra for all new compounds.
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