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A B S T R A C T

Introduction: New radiotherapy machines such as Halcyon are capable of delivering dose-rate of 600 monitor- 
units per minute, allowing large numbers of patients treated per day. However, patient-specific quality assur-
ance (QA) is still required, which dramatically decrease machine availability. Innovative artificial intelligence 
(AI) algorithms could predict QA result based on complexity metrics. However, no AI solution exists for Halcyon 
machines and the complexity metrics to be used have not been definitively determined. The aim of this study was 
to develop an AI solution capable of firstly determining the complexity indices to be obtained and secondly 
predicting patient-specific QA in a routine clinical setting.
Methods: Three hundred and eighteen beams from 56 patients with breast cancer were used. The seven 
complexity indices named Modulation-Complexity-Score (MCS), Small-Aperture-Score (SAS10), Beam-Area (BA), 
Beam-Irregularity (BI), Beam-Modulation (BM), Gantry and Collimator angles were used as input to the AI 
model. Machine learning (ML) and deep learning (DL) models using tensorflow were set up to predict DreamDose 
QA conformance.
Results: MCS, BI, gantry and collimator angle are not correlated with QA compliance. Therefore, ML and DL 
models were trained using SAS10, BA and BM complexity indices. ROC analyses enabled to find best predicted 
probability threshold to increase specificity and sensitivity. ML models did not show satisfactory performance 
with an area under-the-curve (AUC) of 0.75 and specificity and sensitivity of 0.88 and 0.86. However, optimised 
DL model showed better performance with an AUC of 0.95 and specificity and sensitivity of 0.98 and 0.97.
Conclusion: The DL model demonstrated a high degree of accuracy in its predictions of the quality assurance (QA) 
results. Our online predictive QA-platform offers significant time savings in terms of accelerator occupancy and 
working time.

Introduction

Over the last decade, various technological advancements have led 
to improved radiotherapy techniques and methods. In the case of breast 
cancer radiotherapy, Intensity-Modulated-Radiation-Therapy (IMRT) 
and Volumetric-Modulated-Arc-Therapy (VMAT) were common treat-
ment techniques. IMRT has significantly improved target coverage while 
sparing normal tissue compared to 3D conformal radiotherapy. The 
IMRT treatment plan is very complex due to numerous variables 
including the position of the multi-leaf-collimator (MLC), speeds, gantry 

rotation and beam stability [1]. As treatment plans become more com-
plex, the challenge is to take into account patient anatomy, dosimetry 
constraints, optimization algorithms, and machine capabilities to ensure 
that the treatment delivered is consistent with the parameters originally 
planned in the treatment-planning-system (TPS). The introduction of 
Halcyon machines to the radiotherapy market has provided robust ac-
cess to advanced IMRT techniques for patient treatment. It is necessary 
to conduct patient-specific quality assurance (QA) for each treatment 
plan before the administering of actual patient treatment takes place. 
However, although these machines allow for technically sophisticated 
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treatments to be delivered quickly, the mandatory pre-treatment checks 
can quickly become a constraint in terms of machine downtime [2]. 
Nowadays, research groups are using artificial intelligence (AI) to 
delineate tumours and automate dosimetry. This will allow to reduce 
time before treatment of the disease with less anatomical change, less 
tumor progression, and fewer repeated treatment plans. The prediction 
of the QA is a very important aspect in the revision of the treatment 
plans. We previously published [3] an AI solution aiming to predict QA 
of VMAT treatment using complexity indices. However, due to the 
novelty of Halcyon machine, new type of complexity indices must be 
developed to base AI model on them. Tamura and colleagues [4] have 
proposed new complexity indices but, to the best of our knowledge, no 
AI model using these indices have been developed.

Furthermore, in our center as others, for Halcyon’s QA, zero percent 
of the treatment plans are non-compliant. It is therefore crucial to 
implement a patient quality control strategy that is adapted to these new 
machines in order to validate the treatment process.

Nowadays, the clinically available solution for patient QA is the one 
offered by Varian with its Portal Dosimetry option. An MV image is 
acquired as each beam is delivered and compared to a predicted image 
calculated by the TPS. While this integrated solution may seem very 
attractive in terms of efficiency, solutions based on dose prediction are 
not considered to be fully reliable. For this study, pre-processing checks 
using a new DreamDose application based on a patented technology to 
convert the acquired image into a planar dose in water under the 
reference calibration conditions of the machine (SSD and depth) have 
been developed [5 6]. In this study, DreamDose measurement was 
consider as ground truth as it was shown to be more sensitive than portal 
dosimetry in the literature [7,8].

The objectives of this study were firstly to evaluate the pertinence of 
new complexity indices in a Halcyon patient-specific QA prediction 
purpose and secondly to developed AI solutions based on these selected 
complexity indices able to predict patient-specific QA conformance in 
Halcyon machine.

Materials and methods

Patients

This retrospective study was approved by the local institutional re-
view board. Fifty-six patients with breast cancer referred to our 
oncology centre between June-2023 and September-2023 were 
included. The Declaration of Helsinki, which defines guidelines for the 
conduct of health research, was used for this study. The characteristics 
of the study population are described in Supplementary Table 1.

Radiotherapy plans

IMRT was delivered using a Halcyon (Varian®) machine. Patient 
received breast alone treatment. The controlled beams are derived from 
treatment plans based mainly on four IMRT − sliding window beams 
with incidences close to the tangential ballistics defined in conformal 
radiotherapy. Optimisation in the TPS is carried out on several sets of CT 
images simulating movements of the patient’s external anatomy, and the 
IMRT technique allows a default margin of 5 mm to be applied to all the 
MLC leafs when the final dose distribution is calculated. IMRT plans 
were calculated using Raystation®-TPS. Each IMRT plan contained 
multiple beams, resulting in a total of 318 beams used to calculate the 
prediction model. Complexity indices were obtained from the RT plans 
using Raystation® TPS and an in-house Python code available at: htt 
ps://github.com/AurelienCD/DeepLearning_Patient-HalcyonQA_Pre 
diction [9] and “Get_MCSV_index.py”, “Get_SAS10_index.py” or “Get_-
PA_PI_PM_index.py”. In order to achieve a simple solution applicable to 
routine clinical settings, only seven complexity indices were used: 
Modulation-complexity-score (MCS), Small-aperture-score (SAS10) and 
Beam-Area (BA), Beam-Irregularity (BI) and Beam-Modulation (BM), 

which are the averaged field area, the averaged degree of difference 
from the circular field and the averaged proportion of the field area to 
the union area at the beam level. These complexity indices were ob-
tained from the application of Tamura and colleagues founding [4]. 
Finally, gantry and collimator angles were also used in this study. 
Complexity indices were extracted from each beam and not from each 
plan.

Patient specific quality assurance

In this study, 2D controls were performed on the basis of integrated 
images automatically acquired by the EPID (Varian-AS1200). These 
images were acquired for each irradiation beam of the treatment plans 
and were exported in DICOM format. The DreamDose application uses a 
patented model to convert the grey level into a calculated dose to water 
under the machine’s reference conditions.

The application then compares this measured planar dose to the 
calculated planar dose exported from the TPS using a gamma index 
analysis. In the literature, thresholds of gamma index metrics with dose- 
difference (%) and distance-to-agreement (mm) are used to establish QA 
compliance. However, as mentioned by the Task-Group-218 of the 
American Association of Physicist in Medicine, even if 3 %/3mm is most 
commonly used, there is no real consensus on the values of the thresh-
olds for each variable to be used [10]. For this reason, in this study, we 
choose to develop an AI model capable of predicting QA conformity in 
several cases of dose-difference/distance-to-agreement: 2.5 %/2.5 mm, 
3 %/3mm, 3 %/2mm, 2 %/3mm, 2 %/2.5 mm. As presented in the re-
sults section, firstly, ML and DL models were developed to predict QA 
conformity of the balanced 2 %/2.5 mm class. Specific class of 2 %/2.5 
mm because of the balanced proportion of this class and because one of 
the aims of the study was to determine the minimum gamma-index 
criterion enabling more than 95 % of favourable points to be ob-
tained. With this in mind, we chose 2 %/2.5 mm as the minimum value 
for this criterion, as a criterion of 2 %/2mm did not allow us to differ-
entiate the DoseDream methodology from the Portal Dosimetry meth-
odology. Subsequently, a second DL model was developed to provide the 
probabilities of QA conformity for the 2.5 %/2.5 mm, 3 %/3mm, 3 
%/2mm, 2 %/3mm and 2 %/2.5 mm classes in a single instance (called 
“Multiclass prediction” in the results section). Finally, QA was defined as 
non-compliant if the local gamma index is below than 0.95 %. Propor-
tion of compliant and non-compliant QA for each dose-difference/ 
distance-to-agreement was details in the Supplementary Table 2.

Artificial intelligence algorithms

Machine learning (ML)
The input data of the ML models were seven quantitative items ob-

tained from the RT beam representing the complexity of the radio-
therapy treatment. SAS10, MCSV, BA, BI, BM, and gantry and collimator 
angles (Gantry-α and Colli-α, respectively). The goal of the ML models 
was to predict the two classes of compliant and non-compliant QA (0 and 
1, respectively) from these seven complexity indices as inputs. The 
models were developed with hyperparameter optimization and cross- 
validation using the Sklearn Python library [11]. Training and testing 
were allocated proportionally to 80 % and 20 %, respectively. Several 
ML models were tested and compared by evaluating their prediction 
scores: Linear Discriminant, Ridge, KNeighbors, Gaussian-NB, Decision- 
Tree, Support-Vector-Classifier, Stochastic-Gradient-Descent and 
Random-Forest-Classifier. ML model hyperparameters were tuned to 
obtain higher validation score and area under-the-curve (AUC). After 
model optimization, receiver-operating-characteristic (ROC) curves and 
confusion matrices were computed for the best models. This was done to 
find the optimal probability threshold to minimize false positives. All ML 
codes are available at https://github.com/AurelienCD/DeepLearning 
_Patient-HalcyonQA_Prediction and “Machine_Learning.ipynb”.
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Deep learning (DL)
Deep learning (DL) methods enable more complex algorithms that 

can improve performance in certain cases [12]. For this reason, we also 
develop DL algorithms that use the same data input and output as the ML 
model. The DL model consists of a multilayer-deep-learning (artificial- 
neural-network) model to obtain probabilities of compliant and non- 
compliant QA. The model is computed using Tensorflow/Keras library 
[13]. Optimization of hyperparameters such as activation-function, 
number of layers, number of neurons in each layer, loss-function, reg-
ularizer-function, learning-rate, metrics, and percentage of dropout was 
performed using KerasTuner.

This optimization resulted in three dense layers of 2048, 4096, and 
512 neurons, respectively, and an output layer of five neurons (for the 
five dose difference/distance classes) with the Adam optimizer at a 
learning rate of 0.001. Activation functions were relu, elu, and gelu for 
the three dense layers. The sigmoid final function was used to obtain the 
prediction of QA compliance for the five classes. The model was built 
with a binary cross-entropy loss function and validation binary accuracy 
optimization metrics on 4000 epochs.

The final version of the DL model predicting the five classes of dose 
difference/distance to agreement is shown in Fig. 1.

As with the majority of medical datasets, our data were imbalanced 
for certain classes of dose difference/distance to agreement (mainly 
classes 2 %/3mm and 3 %/3mm with almost all cases in agreement). To 
avoid the negative impact of this characteristic, Imblearn-Python-library 
and Keras-class-weighting were used [14]. In addition, the weights of 
the model were adjusted with respect to the proportion of classes to 
handle the unbalanced data. Performance of the DL model was evalu-
ated considering the accuracy score of the test dataset, the AUC of the 
ROC curves, specificity, sensitivity and finally the number of false pos-
itives. ML and DL models have been trained using A6000 GPU obtained 
with the "Booster IA" grant of the Région Normandie.

DL codes are available at https://github.com/AurelienCD/DeepLear 
ning_Patient-HalcyonQA_Prediction and “Deep_Learning.ipynb”.

Statistical analyses

All data are expressed as mean ± SD. Student’s t-test was used to 
compare the different quantitative metrics in the 2 %/2.5 mm class 

which was a balanced class allowing to performed t-test analysis. All 
statistical analyses were performed using SciPy-Python-library [15]. 
Data visualization used Seaborn library [16,17]. All Python code used in 
the analysis is available at https://github.com/AurelienCD/DeepLear 
ning_Patient-HalcyonQA_Prediction and “Statistical_Analysis.ipynb”.

Results

The validity of SAS10, MCSV, BA, BI, BM, and gantry and collimator 
angles (Gantry-α and Colli-α, respectively) for predicting QA compliance 
was first evaluated. As shown in Fig. 2, only the SAS10, BA and Bi 
variables showed significant differences between the compliant and 
non-compliant groups (p < 0.001, p < 0.001 and p < 0.001 for SAS10, 
BA and BI, respectively and p = 0.07, p = 0.26, 0.48 and p = 0.90 for 
MCSV, BM, Gantry-α and Colli-α, respectively). The other complexity 
indices did not appear to be correlated with the conformance status of 
the beam, so we decided to develop ML and DL models using only the 
SAS10, BA and BI complexity indices as input data.

We first developed an ML model capable of predicting only one class 
of dose difference/distance (2 %/2.5 mm). As shown in Fig. 3, the 
performance of the different models is around 0.7 for training and 0.6 
for validation. The Random-Forest-Classifier (RFC) seems to be the most 
promising with a training score of 0.94 and a validation score of 0.72. 
The RFC model gave a percentage of predictions of conformity QA be-
tween zero and one. The optimal threshold to apply to this percentage to 
allow higher true positive (TP) and true negative (TN), and lower false 
positive (FP) and false negative (FN) was determined using the ROC 
curve as shown in Fig. 3C. The performance of the RFC model resulted in 
the confusion matrix shown in Fig. 3D. Among the 318 beams, 120 and 
155 were correctly predicted as TP and TN, respectively (Fig. 3D). 
However, 20 and 23 QA results were incorrectly identified as compliant 
and non-compliant QA, respectively which resulted in an AUC of 0.87. 
The sensitivity and specificity of the ML model were 0.84 and 0.89, 
respectively. These results were not sufficient enough, so a more com-
plex AI model was developed using deep learning approaches.

As for the ML model, the DL model was first developed for the 2 
%/2.5 mm class. Better results were observed compared to the ML model 
with a validation binary accuracy of 0.86. As shown in Fig. 4A, the 
optimal probabilistic threshold was determined using the ROC curve, 

Fig. 1. Deep Learning model for Halcyon QA prediction. Complexity indices were obtained from RT plan and used as input of a deep learning model which predict 
five probabilities of conformance QA for different dose-difference (%) and distance-to-agreement (mm) cases.
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which resulted in an AUC of 0.97. Using this threshold, the number of FN 
and FP was low with only 18 among the 318 beams (TP and TN were 134 
and 166, respectively, Fig. 4B). Sensitivity and specificity of the unique 
class DL model were 0.94 and 0.95, respectively. In the literature, there 
is no consensus for dose difference/distance-to-agreement class that can 
be used. For this reason, we decided to develop a multiclass DL pre-
diction model that is capable of predicting five different classes of dose 
difference/distance-to-agreement.

The multiclass DL model took as input data the three best complexity 

indices (SAS10, BA and Bi) and gave as output data five values between 
zero and one as percentage of QA agreement for the five different dose 
difference/distance to agreement classes. The multiclass DL model gave 
an interesting performance with a validation binary accuracy of 0.84. As 
for the previous models, the ROC curve gave the optimal threshold to 
apply to the different classes (Fig. 4C). The predictive performance of 
the final model is shown in the confusion matrix in Fig. 4D. Of the 318 
beams in the five different classes, only 26 and 31 QAs were mis-
classified, but 335 and 1198 control results were correctly predicted. 

Fig. 2. Complexity indices differences in conformance (C-CQ) and non-conformance QC (NC-QC) in the 2 %/2.5 mm class. ***p < 0.001.

Fig. 3. ML models performance for single QA conformity class prediction. Several ML algorithms were evaluate and the training score and validation score are report 
in (A) and (B). (C) and (D) show the ROC curve and confusion matrix of the best ML algorithms (RandomForestClassifier) to predict single QA conformity class.
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These results presented a sensitivity and specificity of 0.92 and 0.98, 
respectively, which are similar to the DL single class model, but with the 
direct prediction of five different dose difference/distance-to-agreement 
classes.

As shown in Table 1, the DL models show better results than the ML 
model and allow the prediction of five different dose difference/distance 
to agreement classes.

One important requirement of this study was to develop a simple 
approach that could be easily implemented in clinical practice. To 
achieve this, an application programming interface (API) was developed 
that can be used in a clinical setting. The interface requires the input of 
three selected complexity indices (SAS10, BA, BM) and then the DL 
model predicts patient-specific QA compliance. The API can be freely 
accessed at https://aureliencd-halcyonqualitycontrolapi-ba47xul4uka 
xjrwn4vxp5s.streamlit.app. On average, it takes less than two minutes 
to predict conformance with the platform per beam. By performing the 
QA measuring only for the plans with a non-conformance prediction, we 
can save approximately 65 min per week compared to the usual 210 min 
required for patient-specific QA for Halcyon. This allows us to treat an 
additional four patients. Please refer to Supplementary Fig. 1 for the 
complete workflow we have proposed for implementing this solution in 
our center.

Discussion

Patient-specific QA is mandatory in RT, but it can be time-consuming 

and affect the availability of RT machines to treat patients [18]. To 
address this issue, it has been proposed to use models that use RT plan 
complexity indices as input to predict QA outcomes while ensuring 
treatment safety [19]. In this context, we previously proposed an AI 
solution able to predict QA outcomes for VMAT single-layered MLC [3]. 
However, even if single-layered MLC still represent the majority of RT 
machine, new dual-layered MLC linac are not proposed and complexity 
indices as well as AI prediction models are not valid in that context. 
Tamura and colleagues [4], have proposed new complexity indices 
adapted to dual-layered MLC linac and shown that eight indices (MSC, 
total number of monitor-units (MU), averaged-field-area (PA), average- 
degree-of-difference-from-the-circular (PI), average-proportion-of-the- 
field-area-against-the-union-area (PM), leaf-sequence-variability (LSV), 
SAS, effective-distal-MLC-score (EDS)) are able to characterize the 
complexity of Halcyon (a dual-layered MLC linac) treatment plans. 
However, based on our analysis of the relevance of the compliancy 
indices for QA prediction purpose, only three variables (SAS10, BA and 
BI) were interesting with significant differences between the compliant 
and non-compliant groups.

A recent study by Zhu and colleagues [20] proposed ML model for 
QA outcome prediction in dual-layered MLC linac using 213 IMRT 
treatment-plans, including 1383 beams from head and neck, chest, 
abdominal and pelvic cancers. Criteria of 1 %/1mm, 2 %/2mm and 3 
%/2mm with a 10 % threshold were used for gamma analysis. As input 
data for the training models, 33 complexity indices were extracted for 
each beam. The gradient-boosting-decision-tree was the model with the 

Fig. 4. ROC curve and Confusion matrix show the accuracy of the DL models with low number of false positive and negative to predict single QA conformity class (A 
and B) and multiclass QA conformity class (C and D).

Table 1 
Machine learning and deep learning performances.

AUC Sensitivity Specificity Accuracy TP TN FP FN

ML single class (2.5 %/2.5 mm) 0.87 0.84 0.89 0.86 120 155 20 23
DL single class (2.5 %/2.5 mm) 0.97 0.94 0.95 0.94 134 166 9 9
DL multiclass 0.96 0.92 0.98 0.96 335 1198 26 31
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best performance. In validation set, the minimal mean prediction error 
was 1.93 % for 1 %/mm, 1.16 % for 2 %/2mm and 0.78 % for 3 %/3mm. 
In our study, ML model resulted in an AUC of 0.87 and sensitivity and 
specificity of 0.84 and 0.89, respectively. These results were not suffi-
cient enough, so a more complex AI model was developed using deep 
learning approaches. Concerning the DL model, firstly, in comparison to 
Zhu and colleagues study, our study showed an AUC of 0.95 and spec-
ificity and sensitivity of 0.98 and 0.97 with the DL models, which 
showed better performance with only three complexity indices. Sec-
ondly, authors use portal dosimetry which could be not sensitive enough 
to assess plan conformance. In our clinical routine, using portal dosim-
etry means 100 % of the beams which pass the criteria 2.5 %/2.5 mm. 
This result question the utility of this type of control in clinical routine. 
In comparison, for the 100 % beams conform using portal dosimetry, 31 
% were no conform with the DreamDose solution. Finally, our study 
proposed QA prediction for breast cancer which is not proposed by the 
precedent study whereas breast cancer treatment plans are known to be 
most complicated one [21]. Concerning the DreamDose solution: the 
prediction solutions are based on a complete modelling of the mea-
surement chain (accelerator and EPID) combined with a calculation 
including all the mechanical and dosimetric parameters of the treatment 
plans. This leads to a new dose calculation algorithm in the EPID, not a 
dose measurement solution. Our solution is based on a calibration of 
delivered dose by framing the detector response as a function of beam 
energy, independently of other irradiation conditions. The measurement 
of the interactions taking place in the detector is therefore directly and 
simply converted into a dose in water, in a similar way to a measurement 
carried out with an ionisation chamber or a solid detector. Although 2D 
patient QA solutions, unlike 3D solutions, make it easier to consider pre- 
treatment checks for each patient, the large number of patients treated 
on a Halcyon-type machine means that the time spent on these checks is 
too high. This study shows that it is possible to consider reducing the 
number of beams checked and thus saving machine time for patient 
treatment but also allow physicists to focus their attention and reflection 
on the beams to be inspected. It would then be possible to carry out a 
more in-depth analysis of these beams and possibly define new in-
structions to be followed when optimizing treatment plans, which would 
generate beams that no longer require QA. This predictive process can 
therefore be used to optimize patient management. In medicine it is 
necessary to have as low as possible false negatives. In our case if the 
wrong estimation is a false positive it means that we will performed 
manually the QA according to the Supplementary Fig. 1 and then 
discover that the QA was correct. False negative case means that the 
prediction will be “conformed” but reality will be non-conformed which 
is an important problem for clinical routine. For this reason we have 
optimised the algorithms to maintain as low as possible the false nega-
tives accepting some false positives.

To speed up the process of patient QA in RT, a significant number of 
studies have developed AI models. However, the number of studies with 
clinical implementation of the models has been very small. In one study, 
a clinical implementation was performed, but the results obtained for 
the AUC were at best 0.869 [22]. Our first goal in this study was to 
develop an AI solution for QA in IMRT that can be easy to use for 
everyone and can be implemented in clinical routine. For this reason, we 
used only three complexity indices in the modelling, which can be easily 
obtained during the RT plan preparation step. At the same time, we 
packaged the solution in an API to make it easy for everyone to use. The 
reproducibility of the AI models in different clinical settings and at 
different centers is a key factor for their implementation into clinical 
practice. Using centralized (due to the fact that complexity indices are 
non-patient specific) and then a federated learning approach can lead to 
the development of a global model based on data from different centers 
[23]. The next step is to use federated learning with volunteer centers to 
improve our model and make it more relevant for other centers.

Conclusion

Patient-specific QA requires time on the treatment machine, during 
which time it is impossible to treat patients. Therefore, the objective of 
this study was to develop an alternative solution for patient-specific QA 
that would make treatment machines more available to patients. To 
predict patient-specific QA compliance for treatments, we developed AI 
models based on complexity indices. In a busy RT department, the AI 
solution was used to automate patient-specific assurance. The results 
were conclusive for the IMRT in Halycon machine. To implement this 
study in clinical routine, API was developed.
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