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Abstract

So far, flamelet theory has treated curvature as an independent parameter requiring spe-

cific means for closure. In this work, it is shown how, when two-dimensional flames in physical

space are considered, the adoption of an orthogonal flamelet coordinate system allows ob-

taining formal mathematical relations between the flame curvatures and the gradients of the

conditioning scalars (also called flamelet coordinates). With these, both curvatures become

a flame response to the underlying flow, which conveniently allows removing them from the

corresponding set of flamelet equations. While the demonstration is performed in the context

of partially premixed flames, the approach is general and applicable to any two-dimensional

orthogonal coordinate system.

Novelty and significance

This work illustrates a yet unexplored, newly discovered advantage of the adoption of

orthogonal coordinate systems in flamelet theory in the context of two-dimensional flames in

physical space: The possibility of formally relating the flame curvatures with the gradients

of the conditioning scalars (flamelet coordinates). With this, the two curvatures associated

with a two-dimensional composition space flame description can be removed as parameters

of the corresponding set of flamelet equations, which eliminates the need of closure models

for these quantities.
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1. Introduction

Two-dimensional orthogonal coordinate systems have been recently proposed as an ideal

framework for the derivation of flamelet equations for partially premixed flames: Their adop-

tion avoids the need of closure means for the cross scalar dissipation rate and leads to a

formulation allowing for a direct recovery of the asymptotic limits of non-premixed and pre-

mixed combustion [1, 2]. In this context, it has been shown how, after introducing the

mixture fraction, Z, as main coordinate, a modified reaction progress variable, φ, can be

defined in such a way that it satisfies the orthogonality condition, ∇Z · ∇φ = 0 [2]. Based

on the (Z, φ)-space, flamelet equations for the chemical species mass fraction, temperature,

and both conditioning scalar gradients, gZ = |∇Z| and gφ = |∇φ|, have been obtained in

terms of four parameters: Two strain rates and two curvatures.

Classical combustion theory naturally contains strain and curvature components, such

that the latter is often considered a parameter, rather than a flame response (see for ex-

ample [3–5]). Similarly, flamelet theory has so far treated flame curvatures as independent

parameters [6–9]. However, it will be shown now that, when two-dimensional flames in phys-

ical space are considered, the adoption of an orthogonal flamelet coordinate system has an

additional yet unexplored advantage, namely the fact that it allows connecting the curvatures

with the derivatives of the scalar gradients, gZ and gφ. With this, the two strain rates are

the only parameters remaining in the formulation proposed in [2], while curvature becomes

a flame response to the underlying flow.

2. The relation between the curvatures and the conditioning scalar gradients

We start the derivation considering a flamelet-like transformation from a two-dimensional

physical space, (t, x, y), into a corresponding composition space, (τ, Z, φ). Here, τ is a time-

like variable and the mixture fraction, Z, and the modified reaction progress variable, φ, are
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formally defined through their respective governing equations

∂Z

∂t
+ u · ∇Z =

1

ρ
∇ · (ρD∇Z) (1)

and
∂φ

∂t
+ u · ∇φ =

1

ρ
∇ · (ρD∇φ) +

ω̇φ

ρ
, (2)

where u is the flow velocity, ρ denotes the gas density and D corresponds to a diffusion

coefficient. Moreover, the source term in Eq. (2) is defined as

ω̇φ = ω̇c + ρD|∇Z|2∂
2Yc

∂Z2
, (3)

where the conventional reaction progress variable, Yc, is defined as a suitable combination of

(product) species mass fractions. With Eq. (3), it is ensured that the orthogonality condition,

∇Z · ∇φ = 0, is satisfied (see formal derivation in [2]).

Based on Z and φ, two unit vectors can be introduced now as

nZ =
∇Z

|∇Z|
and nφ =

∇φ

|∇φ|
, (4)

which allows defining the two associated curvatures

κZ = −∇ · nZ and κφ = −∇ · nφ. (5)

For simplicity, in the rest of this section we will focus on κφ and its relation with gZ = |∇Z|,

but the analysis can be replicated to study the relation between κZ and gφ = |∇φ|.

Now, the orthogonality between nZ and nφ allows relating the components of these two

vectors. For example, expressing them in the following generic form

nZ = nxex + nyey and nφ = mxex +myey, (6)

where ex = (1, 0)T and ey = (0, 1)T , it is clear that the required orthogonality can be satisfied

setting mx = ny and my = −nx, since

(nZ · nφ) = nxny − nynx = 0. (7)

With this, κφ can be rewritten as

κφ = −∂ny

∂x
+

∂nx

∂y
, (8)
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where the derivatives at the RHS correspond to different components of the curvature tensor,

∇nZ . These can be further worked out in terms of Z by means of the following identity [10]

(a detailed derivation is provided in the supplementary material)

∂ni

∂xj

=
1

gZ

[
∂2Z

∂xi∂xj

− nink
∂2Z

∂xjxk

]
, (9)

which yields
∂ny

∂x
=

1

gZ

[
∂2Z

∂x∂y
− nxny

∂2Z

∂x2
− n2

y

∂2Z

∂x∂y

]
(10)

and
∂nx

∂y
=

1

gZ

[
∂2Z

∂x∂y
− n2

x

∂2Z

∂x∂y
− nxny

∂2Z

∂y2

]
, (11)

respectively. Replacing back in Eq. (8), we obtain

κφ =
1

gZ

[
nxny

(
∂2Z

∂x2
− ∂2Z

∂y2

)
+
(
n2
y − n2

x

) ∂2Z

∂x∂y

]
, (12)

where the term in brackets at the RHS of this equation corresponds to ∂gZ/∂nφ = gφ∂gZ/∂φ,

as it will be shown next.

Based on the definition of the directional derivative, we can write

∂gZ
∂nφ

= nφ · ∇gZ = ny
∂gZ
∂x

− nx
∂gZ
∂y

, (13)

where the derivatives at the RHS can be further worked out by means of the following

mathematical identity (see the supplementary material for a detailed derivation)

∂gZ
∂xj

= ni
∂2Z

∂xi∂xj

, (14)

which yields
∂gZ
∂x

= nx
∂2Z

∂x2
+ ny

∂2Z

∂x∂y
(15)

and
∂gZ
∂y

= nx
∂2Z

∂x∂y
+ ny

∂2Z

∂y2
, (16)

respectively. Replacing in Eq. (13), we have

∂gZ
∂nφ

= nxny

(
∂2Z

∂x2
− ∂2Z

∂y2

)
+
(
n2
y − n2

x

) ∂2Z

∂x∂y
, (17)

which can be inserted in Eq. (12) to obtain

κφ =
gφ
gZ

∂gZ
∂φ

. (18)
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This equation, together with its equivalent expression for κZ , will allow removing both curva-

tures as parameters in the corresponding flamelet equations, as it will be shown in Section 4.

At this point, two important aspects must be highlighted. First, the derivation shown

in this section is not the only possible path to obtain Eq. (18) (see for example Section

2 in the supplementary material for an alternative derivation). Secondly, it is interesting

that Eq. (18) can be recast as one of the terms appearing in the multi-dimensional flamelet

equation obtained in [11] (see Eq. (92), page 77). This yields

κφ =
gφ
gZ

∂gZ
∂φ

= gφ
∂ ln gZ
∂φ

= ∇T ln gZ , (19)

where ∇T (·) corresponds to Williams’ notation for the above-defined directional derivative

∂(·)/∂nφ. Thus, the current approach also provides new physical insights into the classical

flamelet formulation presented in [11].

3. Numerical validation for a triple flame

For the verification of Eq. (18), we analyze a methane-air triple flame previously studied

in [1]. This flame is established by the consideration of an inflow of premixed fresh gases

at atmospheric conditions (300 K and 1 atm) with a mixture stratification in the cross-

flow direction. The minimum and maximum mixture fractions at the inlet are 0 and 0.42,

respectively, while the imposed mixture fraction gradient is 50 m−1. For more details on this

flame, the reader is referred to [1].

Figure 1 displays the κφ field associated with the chosen flame (obtained by direct evalua-

tion of Eq. (5)), where three different horizontal slices are identified as representative regions

Figure 1: κφ scalar field evaluated for the methane-air triple flame.
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Figure 2: Profiles of κφ along the slices shown in Fig. 1.

for the aimed validation. In Fig. 2, the corresponding comparison between Eq. (5) and (18)

along the selected slices is shown, where a perfect match is observed. In this way, the validity

of the analysis presented in Section 2 is numerically confirmed.

4. Two-dimensional flamelet equations with aZ and aφ as only parameters

Making use of the obtained relations between the curvatures and the gradients of the

conditioning scalars, the two-dimensional flamelet equations derived in [2] for the chemical

species mass fractions, Yk, and the temperature, T , can be rewritten as

ρ
∂Yk

∂τ
= −∂Yk

∂φ
ω̇φ + ρDg2Z

∂2Yk

∂Z2
+ ρDg2φ

∂2Yk

∂φ2
+ ω̇k (20)

and

ρ
∂T

∂τ
= −∂T

∂φ
ω̇φ + ρDg2Z

∂2T

∂Z2
+ ρDg2φ

∂2T

∂φ2
+ ω̇T

+
ρD

cp

[
g2Z

∂T

∂Z

∂cp
∂Z

+ g2φ
∂T

∂φ

∂cp
∂φ

]
(21)

+
N∑
k=1

cp,k
cp

[
ρDg2Z

∂Yk

∂Z

∂T

∂Z
+ ρDg2φ

∂Yk

∂φ

∂T

∂φ

]
,

respectively. Similarly, the corresponding equations for gZ and gφ become

∂gZ
∂τ

= −
[
gφ
ρ

∂

∂φ
(ρDgφ)−D

g2φ
gZ

∂gZ
∂φ

+
ω̇φ

ρ

]
∂gZ
∂φ

+
g2Z
ρ

∂2

∂Z2
(ρDgZ)−

g2Z
ρ2

∂ρ

∂Z

∂

∂Z
(ρDgZ)

− g2Z
∂

∂Z

(
D
gZ
gφ

∂gφ
∂Z

)
+ gZaZ (22)
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and

∂gφ
∂τ

= −
[
gZ
ρ

∂

∂Z
(ρDgZ)−D

g2Z
gφ

∂gφ
∂Z

]
∂gφ
∂Z

+
g2φ
ρ

∂2

∂φ2
(ρDgφ)−

g2φ
ρ2

∂ρ

∂φ

∂

∂φ
(ρDgφ)

− g2φ
∂

∂φ

(
D
gφ
gZ

∂gZ
∂φ

)
+ g2φ

∂

∂φ

(
ω̇φ

ρgφ

)
+ gφaφ. (23)

As highlighted before, in these equations the only parameters to be imposed are the strain

rates aZ = −nZ ·∇u ·nZ and aφ = −nφ ·∇u ·nφ, while both curvatures can be now calculated

as a flame response.

5. Conclusions

In this work, the recently proposed (Z, φ) flamelet space has been used to illustrate a

so far unnoticed feature common to any orthogonal composition space coordinate system.

More specifically, it has been shown how, in the context of 2D flames in physical space, this

orthogonality allows deriving explicit relations between the curvatures, κZ and κφ, and the

gradients of the conditioning scalars, gZ and gφ. Making use of these relations, both curva-

tures can be conveniently removed from the corresponding set of two-dimensional orthogonal

flamelet equations derived in [2], avoiding in this way the need of closure models for these

quantities. With this, the only parameters remaining in the formulation are the two strain

rates, aZ and aφ. In future work, efforts must be focused on the extension of the approach

to more complex situations.
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