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ARTICLE INFO ABSTRACT

Keywords: ORCh is a set of C++ routines to analyze the response of detailed chemical kinetics and determine the most
Chemistry reduction influential species and elementary reactions for given operating conditions. The objective is to reduce the
Combustion

number of degrees of freedom to be solved in fluid mechanics simulations while still capturing most of the
reactive flow physics. From a detailed chemical kinetics, ORCh returns a set of reduced chemical schemes of
decreasing complexity. ORCh operates either from canonical laminar diffusion-reaction problems, such as one-
dimensional premixed and diffusion flames, or turbulent/chemistry interaction models through the evolution
of stochastic particles. The initial conditions of these canonical problems are representative of the inlets of
the reactive flow system under study. In case of a significant reduction of the number of degrees of freedom,
the control parameters of the reduced chemistry can be further optimized from a genetic algorithm to still
match the reference detailed chemistry response. An illustrative application to tetrafluoromethane oxidation
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1. Background and objectives

The theoretical and experimental procedures to construct and val-
idate detailed chemical kinetics have benefited from significant and
constant progress, leading to a large variety of accurate and reliable
detailed schemes [1-6]. These latters incorporate the complexity of
the numerous molecules and elementary reactions involved in gaseous
reactive flows. Thereby, the resulting number of degrees of freedom
can be very large, typically above many hundreds. The most advanced
numerical simulations of reactive flows must benefit from the valu-
able thermochemical information available in these chemical schemes.
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However, in practice, it is not possible to incorporate all the available
details of the chemical information in the computational fluid dynamics
(CFD) tools, because of the large number of variables that would need
to be solved for and stored on every node of the mesh. Moreover,
these chemical schemes are driven by large ranges of characteristic
times, imposing the solving of stiff differential equations that require
CPU-expensive numerical methods.

Many strategies have been developed to reduce the size of chemical
problems for their introduction in flow simulations [7], such as reduced
global schemes [8], analytically reduced schemes [9], low-dimensional
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Fig. 1. Flowchart of ORCh.

manifolds and tabulated chemistry [10-12], in-situ tabulated chem-
istry [13], and the training of neural networks [14] (non-exhaustive
list). The set of routines discussed in this paper generates reduced
kinetics from well-established automated methods, combining graph
analysis and genetic algorithms [15,16], with canonical combustion
problems [17].

There are two major steps in the process of reducing a chemical
scheme involving a number rf of chemical species and a number 5
of elementary reactions. The first step consists of selecting the n; < n§
degrees of freedom that must appear in the reduced problem. In this
ensemble of ', chemical species, are those whose concentration knowl-
edge is mandatory for the problem analysis (for instance the reactants,
major products, and pollutants). To these ng target species, a number
" — ng of additional intermediate species are required to preserve the
skeleton of the complex chemical paths securing a reasonable level of
accuracy. If the ng target species are easily defined, the choice of the
intermediate ones requires a careful analysis of the dynamics of the
non-linear system, and this is one of the outputs of the ORCh package.

Once the r'; species are selected, the elementary reactions involv-
ing the species that have been removed systematically disappear. In
many cases, more reactions can be removed in a second step, without
affecting too much the accuracy in the prediction of the target species,
leading to a number ny < n% of elementary reactions.

From this point, three options exist for dealing with the obtained
reduced scheme of size (', ) () The reduction gained in terms
of CPU is sufficient and the scheme is ready to be used; (ii) More
intermediate species must be removed to render the scheme tractable
for computational fluid mechanics (CFD). Then, a quasi-steady state
assumption can be invoked for some species whose net rate of variation
is small compared to their rate of production or consumption. The net
rate of these species is set to zero and the corresponding combination
of reactions in which they are present provides algebraic relations to
express these species from the kept ones; (iii) Sometimes, to comply
with CPU constraints, the number of species has been seriously reduced
and a departure is observed between the species response given by the
reduced scheme and the detailed one. In most cases, this deviation can
be overcome by slightly adjusting the rate parameters of the elementary
reactions that have been kept. A genetic algorithm is then applied to
adjust the parameter rates so that the response of the reduced scheme
matches the detailed one.

The routines available in ORCh are designed to perform these
various steps automatically.

2. ORCh description
The inputs (@ in Fig. 1) are a detailed chemical scheme and the

corresponding thermochemical database in the format of the open-
source software Cantera (https://cantera.org), whose C++ routines

are used to generate and manipulate chemical species properties and
perform the time integration of stiff systems of differential equations.

A choice of target chemical species whose concentrations must be
predicted with accuracy from the reduced scheme is enforced by the
user (@ Fig. 1). Typically, they are the molecules that are important in
the calibration of the reactive flow problem under study. The reactants
and the major products are obviously among those targets along with
some intermediates essential radicals and eventually pollutants, for hy-
drocarbon combustion CO, NO, N,O, NO,, and soot precursors can be
selected as additional targets. Also, if an intermediate species prediction
fails after reduction, adding this species to the target list may help. All
these target chemical species are fixed at the start of the process and
modifying their list means restarting the reduction from scratch.

The chemical reduction is performed for a range of given operat-
ing conditions (i.e., temperature levels, concentrations in the feeding
streams, and mass flow rates). Ideally, these conditions are those of the
reactive flow system to which CFD will be applied. They are prescribed
by the user and unchanged during all the reduction and optimization
procedures.

For the retained detailed description of the chemical kinetics and
the chosen operating conditions, reference evolutions of the chemistry
from fresh reactants up to a given level of reaction progress (for
instance chemical equilibrium or fully burnt products) are computed.
These evolutions are obtained by solving for canonical reactive flow
problems, such as reactors subjected to turbulent micro-mixing, and
one-dimensional premixed and diffusion flames, the results are stored
in the form of thermochemical trajectories, i.e. species and temperature
evolutions versus time or a spatial coordinate (@ Fig. 1).

In the case of turbulent micro-mixing, an unlimited number of inlets
can be considered, including some corresponding to the recirculation of
non-adiabatic reaction products. In every one of these inlets, stochastic
particles carrying the vector of species mass fractions and temperature
are injected, whose number is proportional to the relative contribution
of this inlet to the total mass flow rate of the real system to be simulated
afterward. Both the pairwise interaction Curl [18] and the Euclidean
minimum spanning trees (EMST) [19] mixing models are available.
(For combustion systems with nonpremixed inlets, it is advised to use
EMST to better mimic the flame structure in composition space.) In
addition to the stochastic particles, a single deterministic particle is
also introduced in every inlet whose evolution is solved following the
interaction with the mean (IEM) mixing model [20,21], also called the
linear mean square estimation (LMSE) closure [22,23], to which the
chemical source is added. These trajectories (@) are useful to visualize
in a compact form the response of chemistry versus time (see for
instance Fig. 2).

The selection of turbulent micro-mixing as a canonical problem
offers the possibility to study the concentration evolutions with various
levels of turbulence/chemistry interactions. This may be very helpful
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Fig. 2. Temperature, CF,, HF, CH,. Time evolutions from CF, inlet. Red: reduced mechanism Skeleton-3 (Table 1). Black: reference mechanism. (The shown fitness values
correspond to a high level of accuracy.). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
List of reduced and optimized schemes. In skeleton-1, 2, and 3, all chemical rates are
also optimized by GA.

Scheme type Conditions #Species #Reactions
Skeleton-1 Case 1 & 2 30 76
Skeleton-2 Case 1 24 60
Skeleton-3 Case 2 30 55
Skeleton-4 Case 1 & 3 27 82

when applying reduced schemes to the simulation of turbulent flames.
For instance, staged combustion with a secondary injection of air dilu-
tion can easily be mimicked by timing the introduction of additional
air stochastic particles. Liquid fuel in the form of atomized spherical
droplets can also be injected, the liquid fuel will heat-up and evap-
orate according to the prescribed liquid fuel properties. A formalism
which can be extended to solid fuel particles with devolatilization and
eventually char burning stages.

For one-dimensional flames, the fresh gas composition, temperature,
and strain rate must be provided. Conditions for a set of flames covering
a range of equivalence ratios or/and strain rates can be imposed.

The response collected over the trajectories is analyzed for the user-
defined species target (@) with the well-established Directed Relation
Graph with Error Propagation method [15,16] (@). The details on
the exact implementation of DRGEP in ORCh, in terms of choices
made to calibrate the criteria to rank species and reactions, and to
measure the deviation from the detailed chemical kinetics, are given
in [17]. The output of this step is a set of chemical schemes with a
decreasing number of species and reactions involved (®). Quasi-steady
state assumption (QSS) can be tested and an algebraic system ready
to be implemented in a CFD code is provided to deal with the species
assigned to QSS.

Chemical trajectories are recomputed for every one of these schemes
(@) and global measures of the errors between detailed and reduced
kinetics are returned [17]. Plots are also provided (@) to compare with
the reference detailed scheme so that the user can decide in fine which
of the reduced schemes to select.

At this point, the reduced chemistry that provides satisfactory ac-
curacy may require too many degrees of freedom to be useable in
CFD. A more reduced scheme can then be selected to enter the rate
optimization loop (@, ©, ©, @) in which a genetic algorithm (GA) is
cast to adjust (only a few % of variation is allowed) the pre-exponential
constant, the temperature exponent, and the activation energy of every
elementary reaction, so that the deviation to the reference response
becomes minimum [17]. The trajectories are then recomputed for every
member (set of parameters) of the population undergoing the evolution
through the GA. The code is ready for parallel computing for this part.
The output of the optimization loop is the scheme providing the best
fit to the detailed chemistry response (®). The deviation to the optimal
parameters of the reference detailed scheme should be kept to very
few % to preserve the thermochemical major properties of the kinetics.
If significant variations of the parameters would be needed to reach
convergence of the genetic algorithm, it is mandatory to return to the
DRGEP step (@) to add more species as targets.

Numerous chemical responses are generated during the computa-
tion of chemical trajectories. The database (Fig. 1) can also serve for
the training of neural networks, as a substitute for the integration of
stiff-chemical systems in CFD, examples of artificial neural networks
trained by ORCh may be found in [14,24,25].

3. Illustrative example

So far the application of ORCh has been reported for various hy-
drocarbon combustion problems. This include laminar premixed and
diffusion flames [17], flames propagating in channels with wall heat-
loss [26], high Karlovitz number liquid kerosene turbulent combus-
tion [27], selective non-catalytic reduction (SNCR) of nitrogen ox-
ide emissions [28], sodium emission by solid fuel combustion [29],
potassium emission during biomass combustion [30], high-pressure
methane-oxygen combustion [31], and flameless combustion of resid-
ual steel gases [25].

The illustrative example given below is in a slightly different context
that concerns the neutralization of tetrafluoromethane, CF,. From the
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Table 2

Left: Hydro-oxygenated elementary reactions. Right: CH, oxydation. Black: Common to
cases 1, 2, and 3. Violet: Cases 1 and 2. Brown: Cases 1 and 3. Red: Case 1.

Case 2. Blue: Case 3.

H+O0, — O+ OH
O+H, — H+ OH
OH +H, — H+H,0
20H — 0+H,0
H, +0, — HO, +H
H+0,(*M) — HO,(*M)
20H("M) — H,0,("™M)
HO, +0 — OH+0,
HO, +H —_ 0+H,0
HO, +H — 20H
2HO, —_— 0, +H,0,
OH + HO, —_ H,0+0,
H,0, + OH —_ HO, + H,0
H,0, +H _— HO, +H,
H,0, +H —_ OH +H,0
CO +0(*M) — CO,(*M)

CO + OH —_— €O, +H

CO + HO, — CO, + OH
HCO+M —_— CO+H+M
HCO +H,0 —_— CO +H +H,0
HCO +0, —_— CO +HO,
CH,O +H("™M) _ CH,O0("M)
CH,0+H —_— HCO +H,
CH,0 + 0 — HCO + OH
CH,0 + OH _ HCO + H,0
CH,0 + HO, — HCO + H,0,
CH, +H(™M) —_ CH,("M)
CH; +0 — CH,0+H
CH, +0, — 0+CH,0
CH, + 0, _ OH + CH,0
CH, + HO, —_— CH, +0,
CH, + HO, — CH,0 + OH
CH, +H,0, —_ CH, +HO,
CH, + CH,0 —_— CH, +HCO
2CH,("M) —_— C,H ("M)
CH,0 +H — CH, + OH
CH,0+0, —_— CH,0 + HO,
CH, +H — CH, +H,
CH, +0 —_ CH, + OH
CH, + OH — CH, +H,0

detailed mechanism by Burgess et al. [32] (188 species and 1489 re-
actions), reduced schemes specialized to different operating conditions
are obtained (Table 1).

At room temperature, the free decomposition of fluorinated gases
(or F-gases: perfluorocarbons PFCs, hydrofluorocarbons HFCs, and sul-
fur hexafluoride SFy) is extremely slow due to their tetrahedral struc-
ture and strong C-F bond [33], especially the tetrafluoromethane (CF,),
featuring about 50000 years of atmospheric lifetime. These F-gases,
such as CF,, CyFg, and C3Fg, possess an intense global warming po-
tential (GWP), which is several thousand times higher than the GWP
of CO,, mostly because of this long atmospheric lifetime and strong
absorption coefficient in the infrared spectrum.

Injecting CF, in burning natural gas is a well-established process
to secure its transformation with a removal efficiency reaching up to
90% [34]. The numerical simulation of these specialized combustion
systems implies accounting for the complexity of the simultaneous
oxidation chemistry of methane (CH,) and CF,. These systems operate
in the nonpremixed combustion regime, usually with a swirling flame,
the reduction is then performed in the non-premixed context, with the
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Table 3
Fluorocarbon elementary reactions. Black: Common to cases 1, 2, and 3. Violet: Cases
1 and 2. Brown: Cases 1 and 3. Red: Case 1. : Case 2. Blue: Case 3.

CHF, +H ~— CF,+H,
CF;+0 — CF,-O+F

CF, + OH —_ CF,-O + HF

HF +M - H+F+M
H,+F _ H + HF

OH +F — O + HF

HO, +F —_ 0, +HF
H,0+F - OH + HF

H,0, +F —_— HO, + HF

CF, +M — CF;+F+M
CH,F +H — CH, + HF

CF, +H ~—  CF,+HF

CHF, + 0O _— CF, + OH

CHF, + OH ~—  CF,+H,0

CF, +H,0, — CHF, + HO,

CF, + CH, - CHF, + CH,
CH, O + CF, ~—=  HCO +CHF,
HCO + CF, ~—  CO+CHF,

HCO + CF, —_ CF,CO + HF

CF, +0, ~—  CF,0+0

CF, + HO, —_ CF,0 + OH

CF, + HO, ~  CHF,+0,
CF,0+M ~= CF,-0+F+M
CF,0+H —_— CF,-O +HF
CF,0 +H, —  CF,~O+HF+H
CF,0+H,0 - CF,—0 + HF + OH
CF,0 + CH, ~=  CF,-O+HF+CH,
CF,-0 +H,0 — CO, + HF + HF
CF,—0 + OH [N CO,, +F + HF

CF, +CF,("M) == CF,-CF,(‘M)

CF,C0+0 ~=  CF,-0+CO
CH, +F - CH, + HF
CF,CHO(*M) ~—  CF,CO+HF("M)
CF,0 +CO _ CO, +CF,
CH,0+F — HCO + HF

CF, +CH, —  CH,F+CF,

EMST [19] stochastic micro-mixing to mimic the effect of turbulence
on the reacting mixture.

Chemical schemes of decreasing complexity are derived and opti-
mized for three cases featuring a variety of gas compositions that will
mix and react:

+ In case 1, a CF, effluent is studied and the reaction zones are
fed by three fluxes containing respectively: (i) Air enriched in
O, and carrying CF, at 300 K for 88.98% of the total mass flow
rate Q,,, and with the mass fractions Yo, = 0.4080, Yy, = 0.5822
and Y¢g, = 0.0098. (i) Pure CH,4 at 300 K for 5.85% of 0,,. (ii)
Pilot flame gases at the equilibrium temperature of the fully burnt
composition of a stoichiometric CH,/Air flame for 5.17% of O,,.
Case 2, is similar to case 1 but with different concentrations and
mass flow rates: (i) 300 K for 86.21% of Qm with Yo = 0.3441,
Yy, = 0.6432 and Y, = 0.0127. (ii) CHy for 3.79% of Q,,. (iii)
Pilot flame for 10% of O,,.

Case 3 is representative of a four fluxes composition: (i) Air
enriched in O, with Hy0, Yy, = 04157, Yy, = 04908, Yy,0 =
0.0935 at 373 K for 64.38% of 0,,. (ii) CH, at 300 K for 3.43% of
0, (iii) Pilot flame for 10.71% of Q,,,. (iv) C,F, flux at 300 K for
21.48% of 0,,, with Yy, = 0.0234, Ycg, o = 0.0606, Y¢ g, = 0.6034,
Yer, = 0.1386, Yoy, = 0.0040 and Yeq = 0.1700.
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Fig. 3. 0,, CO,, CO, H,0. Time evolutions from CF, inlet. Red: reduced mechanism Skeleton-3 (Table 1). Black: reference mechanism. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Table 1 summarizes the obtained chemical schemes available in the
supplementary material.

In the building of the skeleton schemes, the dominant paths as re-
turned by ORCh are organized into three groups: (a) hydro-oxygenated
(H,,0,) and (b) hydrocarbon (CXHy,OZ) shown in Table 2; (c) fluoro-
carbon (C,F,,C,H,,0,) in Table 3. To illustrate the automated schemes
adaptation to given operating conditions, the elementary reactions in
black are those common to Case 1, 2 and 3; in violet those specific to
Case 1 and 2, and in brown to case 1 and 3. The elementary reactions
in red are specific to Case 1 (synthetic effluent), the reactions in orange
are specific to Case 2 (synthetic effluent), and the reactions in blue are
specific to Case 3 (representative industrial composition).

Fig. 2 and Fig. 3 illustrate results obtained with the Skeleton-3
mechanism of Table 1. The deterministic trajectory (IEM/LMSE model
plus reaction) issued from the CF, inlet is shown. The mixing with burnt
gases, CH, (Fig. 2(d)) and O, (Fig. 3(a)) promotes ignition of the mix-
ture at about 50 ms (Fig. 2(a)), that is followed by the decomposition
of CF, (Fig. 2(b)) into HF (Fig. 2(c)). The results obtained with the
reduced mechanism are quite close to those of the reference detailed
one, also for CO, CO, and H,O (Fig. 3).

The careful reproduction of the ignition delay observed here is
mandatory in many combustion systems, as it also opens perspectives
on the modeling of related phenomena, such as the minimum spark
ignition energy. Then, the generated skeletal mechanisms are likely to
perform well in other combustion configurations/scenarios. The precise
reproduction of the ignition delay is secured after applying the genetic
algorithm for optimization of the kinetics parameters. The genetic
algorithm is in particular useful to match multiple canonical problems
with a single reduced chemical scheme [17].

4. Conclusion

C++ routines are proposed to analyze the response of detailed
chemical kinetics through various canonical flow problems. The ob-
jective is to determine the most influential species and elementary
reactions for given operating conditions, to reduce the chemistry for
its subsequent use in Computational Fluid Dynamics. The code returns

a set of chemical schemes of decreasing complexity, optionally with
quasi-steady state analytical relations for some intermediate species.
If needed, a genetic algorithm optimizes the rates of the elementary
reactions of the reduced scheme.
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