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Abstract: Given the constant pressure to increase patient throughput while respecting radiation
protection, global body PET image quality (IQ) is not satisfactory in all patients. We first studied
the association between IQ and other variables, in particular body habitus, on a digital PET/CT.
Second, to improve and homogenize IQ, we evaluated a deep learning PET denoising solution
(Subtle PETTM) using convolutional neural networks. We analysed retrospectively in 113 patients
visual IQ (by a 5-point Likert score in two readers) and semi-quantitative IQ (by the coefficient of
variation in the liver, CVliv) as well as lesion detection and quantification in native and denoised
PET. In native PET, visual and semi-quantitative IQ were lower in patients with larger body habitus
(p < 0.0001 for both) and in men vs. women (p ≤ 0.03 for CVliv). After PET denoising, visual IQ
scores increased and became more homogeneous between patients (4.8 ± 0.3 in denoised vs. 3.6 ± 0.6
in native PET; p < 0.0001). CVliv were lower in denoised PET than in native PET, 6.9 ± 0.9% vs.
12.2 ± 1.6%; p < 0.0001. The slope calculated by linear regression of CVliv according to weight was
significantly lower in denoised than in native PET (p = 0.0002), demonstrating more uniform CVliv.
Lesion concordance rate between both PET series was 369/371 (99.5%), with two lesions exclusively
detected in native PET. SUVmax and SUVpeak of up to the five most intense native PET lesions per
patient were lower in denoised PET (p < 0.001), with an average relative bias of −7.7% and −2.8%,
respectively. DL-based PET denoising by Subtle PETTM allowed [18F]FDG PET global image quality
to be improved and homogenized, while maintaining satisfactory lesion detection and quantification.
DL-based denoising may render body habitus adaptive PET protocols unnecessary, and pave the way
for the improvement and homogenization of PET modalities.

Keywords: artificial intelligence; deep learning; CNN; [18F]FDG; PET; denoising; image quality;
body habitus

1. Introduction

In recent years, the emergence of digital PET/CT with silicon photomultiplier (SiPM)
detectors has been a leap forward in PET image quality (IQ) and lesion detectability,
particularly for small lesions [1–6]. It has led to a decrease in injected activity and/or PET
acquisition time. However, given the constantly increasing need for PET/CT examinations,
patient throughput needs to be further optimized. During periods of high demand, we use
an in-house PET protocol that has led to an 11% reduction in the time x activity product
with a 33% reduction in the PET acquisition time compared to our standard PET protocol.

In this perpetual search to optimize PET procedures, image noise and degraded IQ
may hamper interpretation, especially in patients with large body habitus. However, there
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is no consensus and very few reports on the relation between PET IQ and body habitus in
the latest state-of-the-art PET with optimized time-of-flight (TOF) [7]. Yet efforts towards
optimizing imaging in patients with larger body habitus are important in the light of the
increasing prevalence of overweight and obesity worldwide [8].

Deep learning (DL), a subdivision of artificial intelligence (AI), has several applications
in medical imaging including PET denoising [9–13]. Convolutional neural networks (CNN)
are a suitable DL architecture [14]. Their use in other domains of medicine and in the
environmental sciences is becoming widespread [15–17]. CNN may enhance PET image
quality while reducing noise [18–23]. Two pilot studies have demonstrated the potential of
CNN to improve and homogenize liver noise levels between patients [24,25].

Subtle PETTM (Subtle Medical, Stanford, USA; provided in France by Incepto) is a
CNN-based post-reconstruction PET denoising software for several radiopharmaceuticals
including [18F]FDG, and has been approved by the Food and Drug Association (FDA) and
accredited with European Conformity (CE) [26]. It uses a multi-slice 2.5D encoder-decoder
U-Net as deep CNN architecture. Subtle PETTM has shown promise for maintaining PET
IQ when reducing significantly PET counts (ranging from −33% up to −75%), with very
little impact on lesion detectability and quantitation [13,27–29]. Most [18F]FDG PET lesion
radiomics features were found to be stable when applying Subtle PETTM [30]. However,
its use for improving IQ, in particular in patients with enlarged body habitus, and for
homogenizing IQ between patients has received little attention until now. In a small
group of 20 obese patients IQ scores were improved and became ‘good’ instead of ‘insuffi-
cient’ in 4/20 (20%) of patients by applying Subtle PETTM on native PET without count
reduction [27].

The present study had two aims: to investigate the relationship between native PET
IQ and patient body habitus by a multivariable analysis; and to study the effect of Subtle
PETTM denoising on IQ. Subtle PETTM was applied to native PET in the whole study
population in an attempt to improve IQ and homogenize data between patients.

2. Materials and Methods
2.1. Patient Population

One hundred thirteen patients referred to our oncological institution for initial or
follow-up [18F]FDG PET/CT between January and February 2020 were retrospectively
included. Exclusion criteria were diabetes; major image motion artefacts; acquisition
with arms beside the body; at least one hepatic metastasis in the past or present. The
following patient body habitus data (i.e., weight, body mass index (BMI), and fat mass
(FM)) were collected.

Body weight (kg) and height (m) were extracted from PET DICOM data and verified
in the PET report. BMI was calculated as BMI (kg/m2) = weight/(height)2 [31] and fat mass
(FM) as FM (kg) = weight (kg)—lean body mass (LBM, kg). LBM was estimated with the
Janma formula, which is also suitable for very obese women [32,33]. Patient BMI categories
were as follows: normal or underweight with BMI < 25 (n = 41; 36%); overweight with
BMI ≥ 25 (n = 34; 30%); obesity with BMI ≥ 30 (n = 38; 34%), including 4 patients (4%) with
severe obesity (BMI ≥ 40). These and other variables collected are shown in Table 1.

The study was approved by the institutional review board at the François Baclesse
Comprehensive Cancer Centre and registered with the French Health Data Hub under
reference I00160702202020. It was conducted in compliance with the French Research
Standard MR-004 (Compliance commitment to MR-004 for the Centre François Baclesse
No. 2,214,228 v.0, dated 3 July 2019). All patients received information and none expressed
opposition to the use of their data.

2.2. Image Protocol

[18F]FDG PET/CT scans were performed in accordance with the EANM imaging
guidelines [34]. Patients fasted for at least 6h before the intravenous [18F]FDG (4 MBq/kg)
injection. Their weight was checked on a calibrated scale [35].
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PET images from skull or skull base to mid-thigh were acquired between 55 and 65 min
post-injection for 60 s per bed position on a digital PET/CT (VEREOS, Philips Healthcare,
2017). A 3D-ordered subset expectation maximization (OSEM) PET reconstruction was
performed with time-of-flight (TOF) and Point Spread Function (PSF), using four iterations
and four subsets, a 288 × 288 matrix and 2 × 2 × 2 mm3 voxel size. Scatter and attenuation
corrections were applied. This ‘native PET’ protocol with a relatively low time × activity
product of 4 (4 MBq/kg; 1 min/bed position) instead of 4.5 (3 MBq/kg; 1.5 min/bed
position) in our regular clinical routine was implemented during periods when additional
PET/CT exams needed to be performed for technical and/or organizational reasons.

Before each PET scan, a low-dose non-contrast-enhanced CT scan was acquired for
attenuation correction and anatomical reference.

Denoising of native PET (‘denoised PET’) was performed by SubtlePETTM software
(version 1.0) on a local in-house server [26]. Blinded denoised images were returned
automatically within two minutes to the viewing server (Syngo.via version VB30A, Siemens
Healthineers, Erlangen, Germany).

2.3. Image Analysis
2.3.1. Global Image Quality in Native and Denoised PET

• Visual image quality

A 5-point visual global IQ score (Likert score) of all blinded native and denoised PET
examinations, displayed side-by-side in Syngo.via, was attributed by two experienced
readers. Scoring was defined as 5 = excellent, 4 = good, 3 = moderate, 2 = poor, 1 = very
poor, where scores of 1 and 2 were considered unacceptable. This global score was based
on PET liver heterogeneity, global image noise, normal structure contrast including the
correct visualization of regions with no or little uptake (evaluated at intervertebral spaces).

• Semi-quantitative image quality: analysis of the reference liver

A standard spherical volume of interest (VOI) with a 3cm radius was placed manually
in the right liver lobe on native PET and automatically copied at the same position on
denoised PET using ‘’3D Slicer” as software [36]. We avoided the upper hepatic region,
main hepatic vessels, tissue boundaries and additional focal abnormalities (mostly cysts)
on CT or PET. The VOI was adapted to a minimal 2.2 cm radius in 3% of patients with a
small or narrow liver.

CVliv as a semi-quantitative IQ parameter was measured in each liver VOI using the
following formula:

CV (%) = 100 × Standard Deviation (SD)/SUVmean. (1)

2.3.2. Lesion Analysis in Native and Denoised PET

• Visual lesion detectability

One reader classified each PET exam as pathologic or normal by the presence or not
of [18F]FDG avid lesions. The number and ease of detection (related to visual contrast-to-
background ratio) of all lesions with increased [18F]FDG uptake was compared side-by-side
between native and denoised PET.

• Semi-quantitative lesion analysis

In each patient, up to the five most intense [18F]FDG avid, malignant lesions in
native PET were segmented semi-automatically, and the same lesions were segmented
in denoised PET with PETTumorsSegmentation in 3D Slicer by an experienced nuclear
medicine physician. SUVmax and SUVpeak in lesion VOI were extracted automatically with
in-house software based on ITK [37].
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2.4. Statistical Analysis

Variables are expressed as the mean +/− Standard Deviation (SD), and frequencies of
visual IQ scores.

Visual IQ scores, CVliv, liver SUVmean and lesion SUV were compared between native
and denoised PET by the Wilcoxon signed ranked test. Inter-reader agreement on IQ scores
was evaluated by linearly weighted kappa [38]. Spearman’s rho (ρ) was used to analyse
the correlation between visual IQ scores and other variables, in particular body habitus
and CVliv. The association between CVliv and separately weight, BMI and fat mass was
tested by uni- and multivariable linear regression analysis in both native and denoised PET,
comparing linear goodness of fit to exponential and quadratic transformations. Differences
in Pearson correlation coefficients of CVliv according to weight were analyzed using Fisher’s
r to z transformation, and differences in slope coefficients by t-testing. For lesion detection,
the rate of concordance between native and denoised PET was used. All tests were two-
sided, with p < 0.05 considered to be statistically significant. STATA version 15 was used
for analyses.

3. Results
3.1. Patient Population

In Table 1 we showed the characteristics of the 113 included patients.

Table 1. Patient and PET protocol data.

Gender n (%)

female 77 (68%)
male 36 (32%)

Age (y) mean ± SD [range] 61.5 ± 13.5 (24–89)

Weight (kg) 74 ± 16 (35–110)

Height (m) 1.66 ± 0.10 (1.51–1.85)

BMI (kg/m2) 27 ± 6 (15–42)

Fat mass (kg) 26 ± 11 (5–55)

Glycemia (g/L) 1.01 ± 0.13 (0.70–1.38)

Injected ponderal activity (MBq/kg) 4.0 ± 0.2 (3.70–4.28)

Scan delay p.i. 1 (min) 58.3 ± 3.0 (55–65)

Bedposition scan duration (s) 60

PET indication n (%)
Oncology (staging or follow-up) 95 (84%)

Breast 36 (32%)
Lung 17 (15%)

Other Gynecologic 14 (12%)
Other

(lymphoma, anal, colorectal, bladder, thyroid, head
and neck cancer, melanoma, myeloma or mixed)

28 (25%)

Characterization (benign vs. malignant): SPN 2 14 (12%)
Miscellaneous 4 (4%)

1 p.i.: post injection. 2 SPN: solitary pulmonary nodule.

3.2. Image Analysis
3.2.1. Global Image Quality in Native PET

• Visual image quality

In native PET, average IQ score by both readers was 3.6 ± 0.6, with scores of 2 (by at
least one reader) in 4%, 3 in 43%, 4 in 46% and 5 in 7%. There was a significant negative
correlation between IQ score and body habitus for both readers (p < 0.0001; Spearman ρ
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between −0.59 and −0.74 for each reader). This negative correlation was not significantly
different for weight, BMI, and fat mass.

As shown in Figure 1A, in patients weighing at least 90 kg, 72.2% of native PET IQ
scores attributed by at least one reader were moderate (3) and 11.1% poor or insufficient
(2). IQ scores were better in lower weight categories. Categorizing by BMI, 76% of all
obese patient IQ scores were moderate (3) and 22% poor or insufficient (2). There was no
significant effect of gender, nor of other tested variables (age, study indication (initial vs.
follow-up), glycemia, scan delay, and pathologic study) on visual IQ; p ≥ 0.8. Linearly
weighted kappa showed fair agreement between both readers (κ = 0.35; 95% CI 0.22–0.45).

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 13 
 

 

3.2. Image Analysis 
3.2.1. Global Image Quality in Native PET 
• Visual image quality 

In native PET, average IQ score by both readers was 3.6 ± 0.6, with scores of 2 (by at 
least one reader)in 4%, 3 in 43%, 4 in 46% and 5 in 7%. There was a significant negative 
correlation between IQ score and body habitus for both readers (p < 0.0001; Spearman ρ 
between −0.59 and −0.74 for each reader). This negative correlation was not significantly 
different for weight, BMI, and fat mass. 

As shown in Figure 1A, in patients weighing at least 90 kg, 72.2% of native PET IQ 
scores attributed by at least one reader were moderate (3) and 11.1% poor or insufficient 
(2). IQ scores were better in lower weight categories. Categorizing by BMI, 76% of all obese 
patient IQ scores were moderate (3) and 22% poor or insufficient (2). There was no signif-
icant effect of gender, nor of other tested variables (age, study indication (initial vs. follow-
up), glycemia, scan delay, and pathologic study) on visual IQ; p ≥ 0.8. Linearly weighted 
kappa showed fair agreement between both readers (κ = 0.35; 95% CI 0.22–0.45). 

 
Figure 1. Impact of patient weight on visual IQ in native (A) and denoised PET (B). Legend: IQ 
score frequencies (in Y-axis) according to patient weight categories (on X axis). 

• Semi-quantitative analysis 
In native PET, CVliv was 12.2 ± 1.6% and was associated with weight, BMI, and fat 

mass in univariable and multivariable linear regression analysis (p ≤ 0.0001). Figure 2 
shows the univariable plot of CVliv according to weight in native PET. 

 

Figure 1. Impact of patient weight on visual IQ in native (A) and denoised PET (B). Legend: IQ score
frequencies (in Y-axis) according to patient weight categories (on X-axis).

• Semi-quantitative analysis

In native PET, CVliv was 12.2 ± 1.6% and was associated with weight, BMI, and fat
mass in univariable and multivariable linear regression analysis (p ≤ 0.0001). Figure 2
shows the univariable plot of CVliv according to weight in native PET.
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A significant association was found between male gender and CVliv, in multivariable
analysis including weight (p = 0.03), and it was more significant when testing together
with BMI (p = 0.0003). Unassociated variables included age, study indication (initial vs.
follow-up), glycemia, scan delay, and pathologic study. Visual IQ was negatively correlated
with CVliv (Spearman ρ = −0.63; p < 0.0001).

3.2.2. Global Image Quality in Denoised PET: Improvement and Homogenization

• Visual image quality

After PET denoising, visual IQ was significantly improved and was more homoge-
neous between patients (Figure 1B). IQ score was higher in denoised than in native PET,
4.8 ± 0.3 vs. 3.6 ± 0.6; p < 0.0001, with score 5 attributed in 80%, 4 in 19%, and 3 in 1%.
Inter-reader kappa were not improved. There remained a significant negative correlation
between visual IQ and body habitus (Spearman ρ = −0.42; p < 0.0001).

• Semi-quantitative analysis

CVliv was significantly lower in denoised than in native PET in all patients, 6.9 ± 0.9%
vs. 12.2 ± 1.6%; p < 0.0001. After PET denoising, SD decreased considerably and liver
SUVmean increased moderately (liver SUVmean of 2.8 ± 0.5 in denoised PET vs. 2.7 ± 0.4 in
native PET; p < 0.0001). CVliv was still significantly associated with weight (Figure 3), BMI
and fat mass (p = 0.0001). Pearson’s correlation coefficients before and after denoising were
not significantly different (p = 0.19 for CVliv according to weight). However, the CVliv slope
according to weight was lower in denoised than in native PET (p = 0.0002). No additional
association was found in multivariable analysis, in particular with gender (p = 0.16).
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Figure 4 illustrates the impact of body habitus on PET IQ and the improvement and
homogenization of IQ after PET denoising in three patients.

3.2.3. Lesion Analysis in Native and Denoised PET

• Visual lesion detectability

In 47 patients, PET findings were normal with both PET modalities. In the remaining
66 patients, a total of 371 lesions with increased [18F]FDG uptake were detected. Of these
lesions, 369/371 lesions (99.5%) were visualized with both modalities, while two small, low-
activity bone lesions were detected only with native PET. In addition, ease of detecting the
remaining concordant lesions was judged not significantly different in most of the lesions
(359/369; 97.3%), better with native PET in 8/369 (2.2%) or better with denoised PET in
2/369 (0.5%). In Figure 5 we illustrate the effect of PET denoising on lesion detectability.
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Figure 4. Native and denoised [18F]FDG PET images of three patients with different body habitus.
Legend: MIP (a,b) and coronal views (c,d) of native PET (a,c) and denoised PET (b,d), respectively,
are illustrated. DL: deep learning processing by Subtle PETTM. Patient 1 is a 36-year-old female with a
weight of 55 kg, a BMI 22 kg/m2 and FM of 19 kg, scanned for a suspected paraneoplastic syndrome.
The average visual IQ score with native PET was 4 versus 5 with denoised PET and CVliv 9.9% vs.
5.8%, respectively. A [18F]FDG avid left thyroid nodule (red upper arrows), detected similarly in both
PET series, proved to be a benign follicular adenoma. Patient 2 is a 63-year-old male with a weight of
89 kg, a BMI of 30 kg/m2 and FM of 27 kg, referred for lung cancer follow-up. IQ score with native
PET was 3.5 vs. 4.5 with denoised PET and CVliv 13.4% vs. 7.0%, respectively. The residual left lung
lesion (full and upper red arrows) and a right adrenal metastasis (transparent and lower red arrows)
were both detectable with native and denoised PET. Patient 3 is a 62-year-old female patient weighing
104 kg with a BMI of 38 kg/m2 and FM of 51 kg. She was scanned for cervical cancer follow-up. IQ
score with native PET was 3 vs. 4 with denoised PET and CVliv 15.5% vs. 8.2%, respectively. Both
PET showed complete metabolic remission.
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Figure 5. Native and denoised PET images of a patient with slightly better lesion detection with
native PET. Legend: DL: deep learning processing by SubtlePETTM. A [18F]FDG PET/CT exam of
a 37-year-old female patient, weight 105 kg, BMI 34 kg/m2 and FM 48 kg. She was referred for
the follow-up of breast cancer with multiple (strongly) [18F]FDG avid bone and nodal metastases.
In (a) MIP views are illustrated of native (on the left) and denoised PET (on the right). Almost all
lesions were detected similarly in both PET modalities. Nonetheless, denoised images appeared less
noisy, especially in the liver. Small red arrows in (a) depict a false negative small bone metastasis
in denoised PET, further illustrated on axial PET/CT slices in (b) (upward blue arrows). This small
low-activity focus corresponds to a lytic bone lesion measuring 4 mm on CT (b, upward blue arrows).
This false negative lesion on denoised PET had no clinical impact.

• Semi-quantitative analysis of lesions

As shown in Figure 6, SUVmax and SUVpeak values in 101 analyzed lesions were
significantly lower in denoised than in native PET (p < 0.001), with an average relative bias
of −7.7 ± 5.6% for SUVmax and −2.8 ± 5.3% for SUVpeak.
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Also minimum and maximum values are indicated as horizontal lines, excluding outliers (shown
as cercles).
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4. Discussion

Visual and semi-quantitative native PET IQ values were lower in patients with larger
body habitus on our digital PET/CT. Visual IQ was often moderate (43%) to even poor
(3%), especially in patients with obesity and/or a high weight and fat mass, in whom a
minority had a PET with good global IQ. A linear increase in the coefficient of variation in
the liver according to body habitus was estimated with moderate curve fitting. In addition,
there was a less significant association of CVliv with male gender. Interestingly, CVliv was
strongly and negatively correlated with visual IQ.

Several reasons may explain the poorer PET IQ in patients with a large body habitus.
Image noise is generated by increased soft-tissue attenuation (lowering count detection
statistics), higher scatter, and possibly by an altered bio-distribution [39]. Moreover, obese
patients may be more difficult to inject and to install on the camera table. This contributes
to motion and other artefacts (mostly related to the arms) [40,41], although the latter occur
less frequently with the more recent, optimized time-of-flight SiPM PET/CT cameras [42].
Only faint [18F]FDG uptake is visible in fat mass in a fasting state, and more in visceral
than in subcutaneous fat [43,44]. Controversy continues about the influence of obesity on
[18F]FDG uptake in fat tissue.

Higher liver noise in men than in women may be due to higher and more central
abdominal fat levels. A higher incidence of steato-hepatitis in men [45], with possibly
more heterogeneous and lower mean hepatic [18F]FDG uptake [46,47], is another putative
explanation. Gender did not significantly influence visual scoring of global IQ in the
present study.

The interpretive value and impact of higher noise levels are neither consensual nor
predictable. Koopman et al. [5] found slightly higher average PET liver noise in digital
than in analogue PET/CT (CVliv = 14.7% vs. 13.3%) in the same patients, but also a higher
“real lesion” detection. PSF modeling and a small voxel size (2 × 2 × 2 m3), as used in
our PET reconstruction to optimize small lesion detectability, is known to affect image
quality by increasing noise [4]. There is no consensus about how much noise in PET is
acceptable or should be targeted. Nagaki et al. [48] and de Groot et al. [49] aim at liver
noise levels of about 10%. Indeed, too much image noise can reduce exam accuracy (by
increasing false positives and false negatives [13,50]), reading comfort and speed, and
induce readers’ fatigue.

To increase efficiency and limit radiation, we decided to test a DL-based denoising
solution in order to improve PET IQ and homogenize IQ between patients rather than
implementing a PET protocol that is modified according to body habitus. Visual and semi-
quantitative global [18F]FDG PET IQ improved significantly and became more uniform
between patients by using Subtle PET TM in digital PET/CT. Visual IQ scores were excellent
to good for nearly all patients in denoised PET, in contrast with native PET. Nevertheless,
enlarging body habitus had still a negative effect on denoised PET IQ parameters.

Having less image noise did not lead to improved lesion detection or diagnostic
accuracy in this study population, probably as native PET showed rather good lesion
contrast-to-background ratios. Almost all lesions were detected with both PET modalities.
On the other hand, the deep learning algorithm can encounter difficulties in distinguishing
small lesions with low activity concentration from noise, leading to very few false negatives
(0.5%) in denoised PET in this population. SUVmax and SUVpeak values of up to the five
most intense lesions per patient were slightly lower in denoised PET, with a mean relative
negative bias below 8% and very low (<3%) for SUVpeak, as in previous studies [13,27].
By analyzing IQ, lesion detection and quantification after DL-denoising in this study
population (with an 11% count reduced PET protocol) compared to 50% count reduced
PET in our previous paper [13], it is possible to understand the effect of the DL-algorithm
in less or more noisy conditions. Another finding in line with two previous studies is the
slight increase in liver SUVmean after PET denoising [13,27], which should be kept in mind
while using the liver as a reference organ. In two other studies, no significant differences
were found in native versus denoised liver SUVmean [28,29].
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This study has some limitations. First this was a retrospective analysis, so some errors
in data sources or bias cannot be ruled out. Second, side-by-side visualization of both
native and denoised PET series may have created a bias, but also allowed direct comparison
of image quality [51] and visual lesion contrast. Another potential source of bias is the
absence of lesions in many patients. This could decrease the generalizability of our findings.
Moreover, we did not evaluate the readers’ ease of interpretation and visual comfort e.g.,
reading duration, subjective fatigue and overall diagnostic confidence. Finally, we are
unable to compare our results to those of other more conventional denoising methods.

On the other hand, the study has some strengths. First, it lays the foundations
for establishing the way in which PET image quality can be improved, optimized and
homogenized. Second, a post-reconstruction DL-based PET denoising algorithm might
be the best long-term practical solution to achieve this. Third, it would allow IQ to be
homogenized between patients, and possibly also between different cameras and protocols.
Finally, PET denoising by Subtle PETTM might allow the acquisition time x activity product
to be further decreased while maintaining IQ [13,27–29].

Striking the optimal balance between image quality, time x activity product and
efficiency is of paramount importance for patients, clinicians and hospitals. Further im-
provement in DL algorithms would impact IQ favorably while preserving even better lesion
detectability and quantification. This study is perhaps the first step in a move towards the
homogenization and harmonization of PET by DL.

5. Conclusions

Given the constant pressure to increase patient throughput while respecting radiation
dose, a native PET protocol with a relatively low time x activity product was implemented
on our digital PET/CT.

We first studied visual and semi-quantitative [18F]FDG PET global image quality and
their association with other variables, in particular body habitus, in native PET.

Native PET IQ was heterogeneous, often moderate and not satisfactory in all patients
in this study population. Large body habitus and, to a lesser extent, male gender had a
negative impact on PET IQ. To improve and homogenize IQ, deep learning based PET
denoising by Subtle PETTM was evaluated. Applied to native PET, DL-denoising improved
global IQ substantially and satisfactorily while rendering it more uniform between patients.
Lesion detection and quantification were preserved satisfactorily after PET denoising.
DL-PET denoising may thus render body habitus adaptive protocols unnecessary. This
study paves the way towards the improvement, homogenization and harmonization of
PET by DL.
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