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Abstract: This research investigates the behavior and frequency evolution of extreme waves in coastal
areas through a combination of physical modeling, spectral analysis, and artificial intelligence (AI)
techniques. Laboratory experiments were conducted in a wave flume, deploying various wave spec-
tra, including JONSWAP (γ = 7), JONSWAP (γ = 3.3), and Pierson–Moskowitz, using the dispersive
focusing technique, covering a broad range of wave amplitudes. Wave characteristics were monitored
using fifty-one gauges at distances between 4 m and 14 m from the wave generator, employing power
spectral density (PSD) analysis to investigate wave energy subtleties. A spectral approach of discrete
wavelets identified frequency components. The energy of the dominant frequency components, d5
and d4, representing the peak frequency (fp = 0.75 Hz) and its first harmonic (2fp = 1.5 Hz), respectively,
exhibited a significant decrease in energy, while others increased, revealing potential correlations
with zones of higher energy dissipation. This study underscores the repeatable and precise nature
of results, demonstrating the Multilayer Perceptron (MLP) machine learning algorithm’s accuracy
in predicting the energy of frequency components. The finding emphasizes the importance of a
multi-approach analysis for effectively monitoring energy in extreme coastal waves.

Keywords: extreme waves; wave energy; physical modeling; MLP model

1. Introduction

Nowadays, chronic coastal hazards, including wave-driven flooding and erosion, are
increasing in frequency and severity due to induced sea-level rise (SLR) and modified
storminess patterns in the global context of climate change [1,2]. Their impacts are also
influenced by internal system characteristics, such as geometry, topography slope, and
sediment texture. These impacts are generally manifested through a series of changes,
including coastal mechanisms and extensive economic and social costs [3,4]. Extreme waves
are typically generated in open seas during energetic storms and exhibit a spatiotemporal
spectrum in nearshore zones. Their frequencies are modulated in areas of reduced depths,
such as surf zones. Therefore, characterizing nearshore wave behavior is key for reliable
predictions of sediment transport, shoreline evolution, and future coastal management,
including maritime structures and marine energy devices. The response of coastal zones to
extreme events has been studied in previous works using observational methods, such as
space and airborne techniques, numerical modeling, and laboratory experiments.

The physical characterization provided by the latter approach is essential in engi-
neering solutions for coastal issues. Extensive research has been performed on wave
characteristics in wave flumes [5]. Complicated physical processes, such as wave breaking,
nonlinear wave–wave interactions, and energy transfer, are involved in the propagation of
these extreme events in the form of steep wave trains [6,7].
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At the laboratory scale, various methods exist for generating extreme waves, as
discussed in [8–10]. Only the dispersive focusing mechanism for extreme wave gener-
ation [10–14] is considered in this paper. By combining several analytical techniques,
the present study aims to gain insight into the relationships between wave behavior and
energy dissipation.

In the literature, extreme waves are defined as large water waves with a crest-to-trough
wave height H that exceeds twice the significant wave height Hs of the wave field [15,16].
The experimental results demonstrate a relationship between a water depth drop and an
increase in the probability of extreme waves [17,18]. In ocean engineering, the wavelet
analysis technique has been employed to explore the spectral components of non-stationary
oceanographic drivers, such as waves and storm surges [19]. This method has been
employed to discern wave groups with varying bathymetry [20], thereby predicting the
occurrence of extreme events. While the Fourier transform analysis provides information
about the frequency content of a signal over its entire duration, wavelet transforms offer
time–frequency localization.

According to the existing literature, prior studies have often relied on short-duration
signals, resulting in an insufficient consideration of the temporal aspects of extreme events.
Additionally, a limited application of wavelet transforms in coastal studies has been noticed.
In particular, the Maximal Overlap Discrete Wavelet Transform (MODWT) is well suited
for detecting and analyzing intricate frequency components within coastal signals [21,22].
Despite its potential, this method has not been widely adopted in the current research
methodologies. Furthermore, rapid advances in wave forecasting have made machine
learning (ML) a valuable tool, providing a wealth of techniques for extracting information
from data [23–25]. The Multilayer Perceptron (MLP) algorithm [26,27] was selected from
several machine learning algorithms for its applicability to complex nonlinear problems
and its ability to handle large input data sets [28]. This model has demonstrated its effective-
ness [29] and will be employed to improve wave prediction based on experimental data.

The objectives of this work are delineated as follows: (1) Monitoring wave energy
content using power spectral density analysis which provides a thorough comprehension
of energy distribution across various frequencies in the wave spectrum. This allows the
analysis of energy dissipation while varying the extreme events duration. (2) Identifying
inherent frequency components and their assigned energy using the MODWT method.
These aforementioned objectives will be fulfilled by the use of different approaches of
physical modeling, spectral analysis, and artificial intelligence techniques. The coupling
between different approaches will be useful to enhance our understanding of the energy
behavior with its different frequency components.

This paper is organized into several sections. In Section 2, the experimental setup
and the tested wave conditions are introduced. The monitoring of wave energy behavior
extracted from the power spectral density and frequency component study are outlined in
Section 3. Finally, Section 4 concludes with this paper’s findings, along with an overview
of a learning algorithm application.

2. Materials and Methods

All experiments were performed at the wave flume in the Continental and Coastal
Morphodynamics laboratory in Caen. This flume’s length is 20 m, the width is 0.8 m,
and the useful height ranges from 25 cm to 40 cm (Figure 1). To simulate different wave
conditions, a piston-type wave generator from Edinburgh Designs Ltd. (Edinburgh, UK)
was used.

Three wave spectra were chosen, including JONSWAP (γ = 7), JONSWAP (γ = 3.3),
and Pierson–Moskowitz, covering a wide range of amplitudes. The reference wave gauge
(WGR) signals for the three spectra mentioned earlier, using various numbers of wave trains,
are shown in Figure 2. To account for the varying duration of extreme events, one, three,
six, and nine wave trains were generated (see Figure 2). Wave gauges positioned between
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4 m and 14 m from the wave generator were used to measure the free surface elevation
with a sampling rate of 32 Hz. Table 1 presents a summary of the parameters used.
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Figure 2. Reference wave gauge (WGR) signals for three different spectra, namely Pierson–Moskowitz,
JONSWAP (γ = 3.3), and JONSWAP (γ = 7), using one, three, six, and nine wave trains.

Table 1. Experimental parameters used.

Spectrum PIERSON–MOSKOWITZ JONSWAP (γ = 3.3) JONSWAP (γ = 7)

Peak frequency fp 0.75 Hz 0.75 Hz 0.75 Hz

Nonlinearity ε0

0.16 0.20 0.24
0.20 0.25 0.30
0.23 0.30 0.36
0.27 0.35 0.42
0.31 0.40 0.47
0.35 0.44 0.52
0.39 0.47 0.57
0.43 0.53 -
0.47 0.57 -

Number of trains 1–3–6–9 1–3–6–9 1–3–6–9

WG positions 51 51 51

The experimental configuration included two distinct sections: (1) A flat glass bottom,
providing a hydraulically smooth surface; moreover, the water depth h0 within this section
was set at 0.3 m. (2) An inclined PVC slope positioned at a distance of 9.5 m from the wave
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generator; the slope angle β was defined as 1/25 [30], corresponding to a slope gradient
that enables wave transformation.

As shown in Figure 1, WGR refers to the reference wave gauge located 4 m away
from the wave generator. To cover the 10 m experimental area, five wave gauges were
strategically placed 20 cm apart [31]. This arrangement was replicated ten times. Wave
breaking was imposed at 2 m from the slope’s toe.

The present focused wave groups use the linear NewWave profile [32,33] as their
input. Each wave train consists of n sinusoidal wave components that phase together at a
single point in time and space. The free surface elevation is expressed as follows using the
linear wave theory (LWT):

η(x, t) =
n

∑
i=1

ai cos(kix − ωi + φi) (1)

where x represents the distance to the mean wave-maker position, t represents the time, ai
is the wave amplitude of the ith component, ki is the wave number, ωi is the wave angular
frequency, and ϕi is the phase angle at the focusing point.

The input parameters of Equation (1) are steepness, wave spectrum type, phase at
focus, focus location, and peak frequency (fp). The focus of a wave train is mainly depending
on dispersion (Equation (2)).

(2π fs)
2 = g ks tan h(ksh0) (2)

where ks represents the characteristic wavenumber and fs represents the characteristic fre-
quency. Wave trains propagated in intermediate water depth are represented by
kph = 0.37 − 0.93 [34], where kp denotes the wave number related to the wave peak fre-
quency fp, and h is the water depth. The initial local wave nonlinearity (ε0) of the wave
train is determined from the free surface elevation obtained by the resistive probe placed
4 m from the wave-maker. We consider that the wave train is well formed by this point.
The parameter was calculated using the formula (Equation (3)) (see [35]), as follows:

ε0 =
gH
cp2 (3)

where cp =
√

g
kp

tanh
(
kph

)
is phase velocity, g is gravitational acceleration, and H is the

maximum wave height at the focusing point (from the wave crest to the wave trough)
calculated from the time series.

The wave trains generated are based on a Pierson–Moskowitz (Equation (4)) [36]
or a JONSWAP (Equation (5)) spectrum [37]. The Pierson–Moskowitz spectrum can be
described by the following equation:

Epm( f ) = α
g2

(2π)4 f−5exp[−1.25 (
f
fp
)−4] (4)

where α = 0.0081: Philips constant determined empirically; fp = gvPM
19.5

U19.5
: peak frequency

where vPM
19.5 = 0.14; and U19.5 represents the wind speed on the fetch at 19.5 m of the free

surface. A correction factor was added to the Pierson–Moskowitz spectrum, the peak
enhancement factor γ, to improve the prediction of the energy spectral density of sea states.
Therefore, the JONSWAP spectrum (Joint North Sea Wave Project) can be defined by the
following equation:

EJ( f ) = α
g2

(2π)4 f−5exp[−1.25 (
f
fp
)−4]γδ (5)
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where α = ( gF
U2

10
)
−0.22

; δ = exp(
−(

f
fp
−1)

2

2σ2 ); and σ = 0.07 if f ≤ fp and 0.09 if f > fp.

The peak enhancement factor γ determines the height of the peak and the narrowness
of the spectrum. For practical purposes, it usually ranges from 1 for a Pierson–Moskowitz
spectrum to 7 for the narrowest spectrum.

3. Results and Discussion
3.1. Power Spectral Density

Spectral analysis provides the dissection of temporal signals into their component
frequencies. This method is especially advantageous for comprehending fast time-varying
phenomena like waves. It can be utilized to establish features such as dominant frequencies,
harmonic content, periodicity, and quantify the energy dissipation during wave propaga-
tion (see [6,7,30]). The measured signals were low-pass-filtered to eliminate the spurious
high-frequency band that could be contaminated by the electronic noise from the wave
probes. The spectra were estimated using Welch’s method. A 50% overlap was employed
to divide the signals into multiple segments. Each segment of the signal (approximately
16s) was first subjected to the Hann window before undergoing a 210-point fast Fourier
transform (FFT), which produced a high spectral resolution of ∆f = 0.03125 Hz.

The spatial evolution of the spectrum as well as the detailed spectra at three specific
positions are provided in Figures 3 and 4 using the same nonlinearity ε0 = 0.47. These posi-
tions were x = −5.6 m, x = 2 m, and x = 3.8 m, where 0 is the toe of the slope, corresponding
to WG1 representing the initial wave signal

(
kph0 = 0.93

)
, WG39 describing the signal

before wave breaking
(
kph = 0.68

)
, and finally WG48 as the last position

(
kph = 0.45

)
,

respectively. Two scenarios were examined, a single wave train signal (Figure 3) and a nine
wave train signal (Figure 4).

Figure 3 shows that the spectrum of waves undergoes a widening process as the
wave propagates towards the shore. The dissipation process leads to a decrease in the
total spectral energy of the waves. This remarkable evolution of the wave spectrum is
influenced by a combination of two critical elements, boundary friction and the nonlinear
wave interactions. The three spectrograms show that the energy is focused at a peak
frequency of fp = 0.75 Hz and dissipates strongly after the wave breaks, which occurs
around x = 2 m.

The JONSWAP spectrum more accurately represents energy dissipation due to wave
breaking than the Pierson–Moskowitz spectrum [38]. This is demonstrated by comparing
WG39 and WG48 for all three spectra. When using the Pierson–Moskowitz spectrum
(Figure 3b), the wave breaking that occurred just after WG39 does not show much differ-
ence between WG39 and WG48. However, when using the JONSWAP (γ = 7) spectrum
(Figure 3f), the difference is more noticeable.

Figure 4 shows that the multi-wave train signal exhibits higher energy levels compared
to the single-wave train signal (Figure 3) within a spatial range of x ∈ [−5.6 m, 2 m].
This distinction is evident, for example, by comparing Figures 3a and 4a. The marked
energy difference highlights the impact of the multi-wave train configuration on the overall
spectral properties.



Water 2024, 16, 1145 6 of 17Water 2024, 16, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 3. Spatial evolution of the spectrum and spectra of three positions using a signal of one wave 
train and 𝜀 = 0.47 for (a,b) Pierson–Moskowitz (γ =1) spectrum; (c,d) JONSWAP (γ = 3.3) spec-
trum; and (e,f) JONSWAP (γ = 7) spectrum, respectively. 

Figure 4 shows that the multi-wave train signal exhibits higher energy levels com-
pared to the single-wave train signal (Figure 3) within a spatial range of x ∈ [−5.6 m, 2 m]. 
This distinction is evident, for example, by comparing Figures 3a and 4a. The marked en-
ergy difference highlights the impact of the multi-wave train configuration on the overall 
spectral properties. 

Figure 3. Spatial evolution of the spectrum and spectra of three positions using a signal of one wave
train and ε0 = 0.47 for (a,b) Pierson–Moskowitz (γ = 1) spectrum; (c,d) JONSWAP (γ = 3.3) spectrum;
and (e,f) JONSWAP (γ = 7) spectrum, respectively.
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Figure 4. Spatial evolution of the spectrum and spectra of three positions using a signal of nine
wave trains and ε0 = 0.47 for (a,b) Pierson–Moskowitz (γ = 1) spectrum; (c,d) JONSWAP (γ = 3.3)
spectrum; and (e,f) JONSWAP (γ = 7) spectrum, respectively. (Spectra of Figure 3, using a signal of
one wave train are represented by dashed lines).

3.2. Energy Dissipation

For each frequency, the energy spectral density S( f ) can be calculated using Equation (6),
which represents the contribution of waves to the energy at that specific frequency. F( f )
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represents the FFT (fast Fourier transform) of η(t) at a given location. By adding up the energy
across all frequencies, the total wave energy (S) can be determined using Equation (7).

S( f ) = 2|F( f )|2 (6)

S = ∑ f2
f1

S( f ) (7)

When calculating S, only the Fourier components within the interval [f 1, f 2] are
considered. The two frequencies, f1 = fmin = 0.02 Hz and f2 = fmax = 3 fp Hz, are referred
to as the cutoff frequencies, and the spectral density is considered negligible elsewhere.
Calculating the individual energy of each wave train alone for a signal of nine wave trains
allowed us to discern certain variations (Figure 5).
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For instance, we observed that the first train generated exhibited lower energy levels
than the later ones, indicating that some residual energy was recovered by the subsequent
trains. This observation is interesting because it suggests that there may be a cyclical pattern
of energy dissipation and recovery within the wave train sequence.

The energy dissipation ED percentage is then derived by calculating the differential
between two consecutive wave gauge positions using

Energy Dissipation (ED) % =
SWG(i) − SWG(i−1)

SWG(i)
× 100 (8)

Energy dissipation percentage using a signal of one wave train and nine wave trains is
shown in Figures 6 and 7, respectively. Pierson–Moskowitz, JONSWAP (γ = 3.3), and JON-
SWAP (γ = 7) spectra are investigated in these figures with a nonlinearity ε0 ∈ [0.36, 0.47].
It can be seen that for a range of x ∈ [−5.6 m, 2 m], there is a reduction in wave energy.
These losses are caused by viscose boundary layers at the sidewalls and bottom, and due
to the dissipation in the boundary layer at the free surface, in the bulk of the water, and
contact-line damping. Furthermore, wave breaking, which takes place around 2 m from
the slope’s toe, has a notable impact on energy dissipation. It can be concluded that the



Water 2024, 16, 1145 9 of 17

variation in the wave spectrum before and after breaking, as seen in Figures 3 and 4, is due
to the energy dissipation caused by wave breaking.
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Wave nonlinearity ε0 has a significant effect on wave energy dissipation, as depicted in
Figures 6 and 7, showing an increasing percentage of dissipation with ε0. For instance, in the
wave breaking area x ∈ [2 m, 3 m], the dissipation percentage has risen from approximately
4% for ε0 = 0.36 to 10% for ε0 = 0.47. It is noticed that the dissipation of the wave train
increases again as the low-frequency waves shoal closer to the coast (x > 4 m).

In our investigation of energy dissipation, we examined the signals of both a single
wave train and nine wave trains (Figures 6 and 7 respectively). It seems that the energy
dissipation is more concentrated around the wave breaking area for the multi-wave train
signal case. For instance, the dissipation observed for x ∈ [2 m, 3 m] in Figure 7a is
significantly more concentrated than in Figure 6a. Our results indicate that the duration
of the extreme events not only impacts spectral energy but also plays a significant role in
shaping the spatial distribution of energy dissipation.
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3.3. Frequency Components and Wavelet Analysis

The spectral analysis is insufficient for accurately describing the wave–wave inter-
actions during wave trains propagation. While Fourier transform analysis reveals the
frequency content of a signal over its entirety, wavelet transforms offer localized insights
into both time and frequency. The discrete wavelet transform (DWT) is recommended for
decomposing hydrological time series data [39,40]. However, it is important to note that
the DWT is sensitive to the length of the time series [41]. To overcome this, the maximal
overlap DWT (MODWT) was implemented in this study [42,43]. It is particularly suitable
for handling non-stationary and irregularly sampled data using overlapping segments.
The MODWT algorithm decomposes the signal into various scale levels, arranged from
high to low frequencies, while keeping the amplitudes of the transform aligned with the
amplitude in the original signal [21]. This decomposition consists of applying a sequence of
low-pass and high-pass filters capable of producing the spectral components that describe
the entire signal [44]. For more details, see [21,22].
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The MODWT method was used to decompose the reference wave gauge signal WGR
(Figure 8). Figure 9 shows the decomposed components (d) ranging from d1 (corresponding
to the higher frequency) to d9 (corresponding to the lowest frequency). The red-framed d5
and d4 components are dominant and correspond to the peak frequency (fp = 0.75 Hz) and
its first harmonic (2fp = 1.5 Hz). One potential explanation for the presence of large energy
in the first harmonic component is the occurrence of nonlinear interactions between waves
as they propagate. Nonlinear processes can lead to the generation of harmonic components.
This phenomenon has been studied in various research articles (see [7,45,46]). Furthermore,
the percentage of energy that each spectral component contributes to the total variability
is estimated, indicating the importance of each detail [43]. Figure 10 illustrates the spatial
evolution of the decomposed components (d1–d9) energy along the wave flume using a
JONSWAP (γ = 3.3) signal of nine wave trains and a nonlinearity of ε0 = 0.53. Note that at
each position, the total contribution of all frequency components adds up to 100%.
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d6 → 0.53 Hz , d7 → 0.12 Hz , d8 → 0.094 Hz , d9 → 0.062 Hz ).

Components d5 and d4, which correspond to the peak frequency and its first harmonic,
experience a decrease in energy while the other components exhibit an increase (Figure 10).
For example, d4 and d5 each experienced a 15% and 30% reduction in energy, respectively,
while d8 (f = 0.094 Hz), which was initially insignificant, increased to an energy value of 20%
by the end of the testing zone. It is assumed that the energy lost by d4 and d5 was recovered
by the other components. This finding aligns with the result reported in [47], suggesting
that wave components at frequencies significantly below or near the peak frequency can
gain a small portion of the energy lost by high-frequency waves. Additionally, wave–
bottom interactions occurring when waves propagate over a sloping bottom can cause
energy transfer to lower frequency parts of the spectrum by breaking and reforming in a
process known as shoaling [48].

To further examine this evolution of frequency component energy, the energy differen-
tial (SWG(i) − SWG(i−1)) was calculated to reveal the zones of higher energy exchange using
various nonlinearities (see Figure 11). Six frequency components significantly exchanging
energy were selected (d4–d9). It should be noted that in the case of the d4 and d5 compo-
nents, the absolute value of the difference was considered to maintain the coherence of all
figures. This energy exchange becomes particularly significant at the beginning of wave
breaking at x = 2 m and increases as the nonlinearity increases (Figure 11).
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3.4. MLP-Regressor Model

MLP-Regressor is a supervised learning technique that effectively processes informa-
tion through nonlinear regression by optimizing the squared error. This robust algorithm
has already shown its usefulness for various applications [49,50]. It is used to verify the
repetitive and accurate nature of our results in forecasting the spatial evolution of frequency
component energy. The MLP-Regressor model is structured with three layers, an input
layer, a hidden layer containing 100 neurons, and an output layer. Figure 12 shows a
simplified schematic diagram of the Multilayer Perceptron (MLP) algorithm. During the
training phase, the model is fed input data—including wave spectrum, wave nonlinearity,
abscissa along the flume, and water height—to predict the energy values of frequency
components (d1–d9). A backpropagation algorithm is then used to minimize the error
by adjusting the weights and biases of the network iteratively. This process is repeated
for each training example until the network converges to a set of weights and biases that
yield low error values for the entire dataset. The programming environment is based on
the Python library Scikit-Learn version 0.21.3. To evaluate the model’s performance, R
squared (R2) was employed, which yielded a value of 0.935, indicating a high level of fit.
Nonetheless, potential areas for improvement include feature engineering, where addi-
tional relevant features could be incorporated, and experimenting with different algorithms
or hyperparameters to enhance performance. The predictions of two specific frequency
components were selected—d5 (Figure 13a) and d8 (Figure 13b)—which exhibited distin-
guishable variation in Figure 10. The predicted values in grey overlap with the dotted
curves obtained experimentally.

Predicting complex dynamic patterns, such as random waves, may be more challeng-
ing due to the intricate and nonlinear relationships between different wave features. To
improve accuracy and reliability for modeling complex wave dynamics, alternative neural
network architectures, such as recurrent neural networks (RNNs) and convolutional neural
networks (CNNs), could be considered [51]. Developing accurate predictive capabilities
would require access to extensive wave observation data [52]. In addition to traditional
wave parameters, such as wave amplitude and frequency, it may be beneficial to consider



Water 2024, 16, 1145 14 of 17

incorporating other variables, such as spectral bandwidth and wave groupiness, to capture
the broader context of wave generation and propagation.
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4. Conclusions

When nonlinear waves with sufficient energy encounter each other, they can interact
in various ways. Energy dissipation occurs during nonlinear wave–wave interactions,
especially in cases of wave breaking, where the wave’s energy is transformed into turbulent
kinetic energy and heat due to the chaotic motion of water particles. It was observed that
this energy dissipation increased with the nonlinearity ε0. Moreover, the multi-wave train
signal investigated in this study showed significantly higher energy levels and a more
focused dissipation of energy around the wave breaking area (x ∈ [2,3]) when compared to
the single-wave train signal. This observation underscores that the duration of extreme
events plays a crucial role in shaping the spatial distribution of energy dissipation. The
wavelet transform analysis using the MODWT method provided an additional level of
comprehension by identifying particular frequency components related to the process
of energy dissipation. This comprehensive frequency decomposition enabled a subtler
understanding of the individual contributions of different components of the wave spec-
trum to dissipation. Based on the wavelet transform analysis, during these nonlinear
interactions, energy can be transferred between different frequency components. This work
illustrates the effectiveness of the MLP algorithm in enhancing wave prediction based on
field experimental data. In the near future, we plan to generate longer signals, such as
100 trains, to gain a more definitive understanding of multi-train generation behavior. We
also plan to investigate how environmental factors, such as water depth and seabed com-
position, influence the observed interactions. Understanding environmental dependencies
can enhance the predictive capability of models and contribute to site-specific wave energy
management strategies.
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