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Abstract

Graph Neural Networks (GNNs) are inspired from CNNs and aim at
transferring the performances observed on images to graphs. In a GNN,
convolution and pooling are the main components in the network and
these operations are employed in an alternating fashion between each other
if a pooling method is used. However, this simple definition of GNN has
some issues and their impacts can lead to low prediction performances.
The two main issues are identified as over-squashing and over-smoothing.
Recent works on these issues only focuses on the graph convolution oper-
ator, neglecting the role of pooling operator.

This paper aims to investigate the impact of pooling on over-squashing
and over-smoothing. Our findings demonstrate that, under certain prop-
erties, pooling can reduced over-squashing and prevent over-smoothing.
The conditions imposed on pooling to achieve these results are not so re-
strictive and encompass the majority of methods such as Top-k methods,
EdgePool or MIS strategies. Finally, we empirically validate our results.

1 Introduction

Graph Neural Networks (GNNs) ([15]) take their inspiration from CNNs ([13])
and aim at transferring the performances observed on images to graphs. The
backbone of CNNs and GNNs both rely on convolution and pooling operations.
However, CNNs are designed for images which are embedded on a 2D or 3D
oriented space and have a fixed structure. When working with graphs, one has
to integrate several particularities. First, the number of nodes may vary between
graphs. Second, the order of nodes for a given graph is generally arbitrary
defined. A same graph can be represented by all the permutations of its node
order, making complicate the comparison of two graphs. Third, unlike images,
the structure of the graph is not regular and is defined by the neighborhood
relationship between nodes. Therefore, the definition of GNNs must handle
these problems to be effective on downstream tasks, and convolution and pooling
operations must be adapted for graphs.

Similarly to convolutions in CNNs, first proposed graph convolution opera-
tors aim to learn node representations by defining a linear combination between
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the representations of a given node and the representations of neighborhood
nodes [11]. This convolution scheme is a particular case of a Message Pass-
ing Neural Network (MPNN) [8]. Following this, the new node representation
is computed using an activation function, generally non linear to enhance the
learning ability of the model. To compute a graph level representation, node
representations of a graph are resumed into one single vector, using different
strategies to keep all necessary information for the prediction tasks. This last
step is generally denoted as the pooling operator, still inspired by CNNs.

However, this simple definition of GNN has some issues and their impacts
can lead to low prediction performances. The two main issues are identified as
over-squashing and over-smoothing.

Over-smoothing occurs when the number of layers, e.g. the depth, in a
GNN increases. By iteratively combining neighbors node features together,
all nodes representation in a graph are computed using the same information,
hence leading to non discriminant node representations, and thus to a loss of
information. We refer the reader to [14] for a survey on this issue.

Over-squashing is characterized by the fact that GNNs are almost unable
to transfer information between distant nodes, hence limiting the learning pos-
sibilities of the model. This lack of communication between two nodes can be
characterized by the length of their shortest paths, by commute (access) time
([9]), or by high negative curvature edges between them ([18]).

Graph pooling operators mainly consists in computing a new graph with a
reduced number of nodes, while keeping as much as information as possible. The
purpose of this operation is threefold : i) reduce the graph to one node so as the
initial permutation of nodes has no influence in the learning process, ii) compute
a hierarchy of graphs to catch relevant information and iii) enhance the receptive
field of convolution operations. Unlike pooling in CNNs, this operation must be
able to manage different graph sizes, nodes permutations and variations in local
topologies. Graph pooling operators can generally be defined using the Select,
Reduce and Connect scheme (SRC) [10]. These three operations respectively
allows the definition of the set of nodes for the next level, how the new node
features are computed and finally the structure of the new graph through the
definition of edges on the new set of nodes.

In this paper, first, a study from a signal point of view on the need for sub-
sampling and these limits is provided (Section 2). In Section 3, a decimation
scheme is introduced to analyse the impact of restricting pooling as a parti-
tion of the initial graph on over-smoothing and over-squashing (Section 4). A
complementary study is given in Section 5 for methods satisfying one of the
conditions of the decimation scheme.

2 On the need for subsampling

The results bellow are mainly based on [1]. We consider a simple, connected,
undirected and weighted graph G and denote by L its normalized Laplacian.
The matrix L being symmetric positive semi-definite, we have L = UΛUT
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where U is the matrix of eigenvectors and Λ = diag(λ1, . . . , λN ) with 0 =
λ1, λ2, . . . , λN ≤ 2. Given a signal f on G, its Graph Fourier Transform (GFT)
is defined as f̃ = UT f . A w-band limited signal on a graph is defined to have
0 GFT coefficients for frequencies above w, i.e. its spectral support is limited
to [0, w]. The space of all w bandlimited signals is know as the Paley-Wiener
space and is denoted PWw(G). Let us denote by {u1, . . . , uN} the columns of
U . We trivially have

PWw(G) = span({u1, . . . , ui}) with λi ≤ w.

Let us note that if w < λ2 we have PWw(G) = Ru1 which corresponds to the
set of constant signals on the graph.

Definition 1. A subset of nodes S ⊂ V is a uniqueness set for the space
PWw(G), if for any two signals from PWw(G), the fact that they coincide on
S implies that they coincide on V, i.e.:

∀f, g ∈ PWw(G), f(S) = g(S) ⇒ f = g

Let us note that for w < λ2, any subset of V is a uniqueness subset of
PWw(G). Indeed, for constant signals any sub-sampling even of a single vertex
fully determines the signal on the whole graph.

Lemma 1. S is a uniqueness set for a signal in PWw(G) iff PWw(G)∩L2(S
c) =

{0}, where L2(S
c) is the space of all graph signals that are zero everywhere except

possibly on the subset of nodes Sc i.e.:

∀ϕ ∈ L2(S
c), ϕ(S) = 0

Proof. See [1].

Definition 2. S is an allowed down-sampling for a signal f on G, if it exists
w such that f ∈ PWw(G) and S is a uniqueness set for PWw(G).

Let us consider the low pass filter gn which cuts off (set to zeros) the n
highest eigenvalues of L. The filtered version of f , denoted fn is equal to
fn = Ugn(Λ)U

T f . We have the following proposition:

Proposition 1. For any signal f and for any uniqueness set S of a set PWw(G),
it exists a filtered version fn of f such that S is an allowed down-sampling for
fn.

Proof. Let us consider n = N − dim(PWw(G)). We have by definition of gn,
fn ∈ span(u1, . . . , udim(PWw(G))), hence fn ∈ PWw(G).

The above result shows that for any uniqueness set S and any signal f , a
sufficient low pass filtering of f ”forces” the set S to become an allowed down-
sampling for the filtered version fn of f . Intuitively, fn contains a sufficient
amount of redundant information to be described by the reduced set of vertices
S. At the extreme, using n = N − 1, any subset S ⊂ V is an allowed down-
sampling. It corresponds to the case where f has been filtered up to a constant
signal. In this case, any sub-sampling of it is sufficient to describe the whole
vector.
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3 Sizes of receptive fields

Poolings operations define implicitly a hierarchy among vertices. Given a vertex
v surviving at layer l we denote by RW l(v) the Reduction Window of v at level
l, i.e. the set of vertices merged to v between levels l − 1 and l. Let us note
that we have v ∈ RW l(v). Say, an other way, RW l(v) denotes the child defined
at level l− 1 of v defined at level l. Given u ∈ RW l(v), we inversely say that v
is the parent of u and denote this relation by pl(u) = v, where pl : V l−1 → V l

encodes the parent relationship.
We additionally suppose that the sequence of reduced graphs G0, . . . , Gl is

constrained by the reduction windows using the following equation:

∀l,∀(u, v) ∈ V l, dl−1(RW l(v), RW l(u)) ≤ 1 ⇔ u ∈ Nl(v) (1)

Where dl−1 is the distance defined within Gl−1. Stated in words, two adjacent
reduction windows induce two adjacent vertices.

The transitive closure of the hierarchy relationships defined by the reduction
window defines the receptive field. The receptive field of v at level l RF l(v)
corresponds to the set of vertices defined at the base level graph which are
merged onto v at level l. More formally, the receptive field at level l is defined
recursively :

Definition 3. Let Gl, . . . , G1 = (V 1, E1) denote a sequence of reduced graphs.
The receptive fields at level l are defined for any vertex v ∈ V l as:

RF l(v) =
⋃

u∈RW l(v)

RF l−1(u) with RF 1(u) = RW 1(u)

Equation 1 can be extended to receptive fields:

Proposition 2. Let Gl, . . . , G1 = (V 1, E1) denote a sequence of reduced graphs:

∀l,∀(u, v) ∈ V l, d0(RF l(v), RF l(u)) ≤ 1 ⇔ u ∈ Nl(v)

Proof. The property is true for l = 1 since at this level receptive fields are equal
to reduction windows. Let us suppose it true up to level l−1, and let us consider
two vertices u and v such that d(RF l(v), RF l(u)) ≤ 1. We obtain:

d0

 ⋃
v′∈RW l(v)

RF l−1(v′),
⋃

u′∈RW l(u)

RF l−1(u′)

 ≤ 1

Hence, it must exists u′ ∈ RW l(u) and v′ ∈ RW l(v) such that d0(RF l−1(v′), RF l−1(u′)) ≤
1. We thus get by our recurrence hypothesis: u′ ∈ Nl−1(v

′). We thus obtain:

dl−1(RW l(v), RW l(u)) ≤ dl−1(u
′, v′) = 1
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Figure 1: Illustration of Corollary 1 with q = 4.

and thus u ∈ Nl(v).
Conversely, if u ∈ Nl(v), we have dl−1(RW l(v), RW l(u)) ≤ 1. So it must

exists (u′, v′) ∈ RW l(u)×RW l(v) such that dl−1(u
′, v′) ≤ 1.

If u′ = v′, then d0(RF l(u), RF l(v)) = 0. Otherwise, u′ ∈ Nl−1(v
′). By

iterating this process we can get two sequences u0 = u, . . . , ul ∈ V 0 and v0 =
v, . . . , vl ∈ V 0 such that ul ∈ N0(v

l) and u is an ancestor of ul while v is an
ancestor of vl. We have thus ul ∈ RF l(u) and vl ∈ RF l(v) with d0(u

l, vl) ≤ 1.
Hence the expected result.

The above proposition provides the following interesting corollary:

Corollary 1. Let Gl, . . . , G1 = (V 1, E1) denote a sequence of reduced graphs,
if all reduction windows (at any level) are connected, then receptive fields are
also connected.

Proof. The proof is trivial at level 1, since at this level, receptive fields are equal
to reduction windows. Let us suppose it true up to level l− 1. We have for any
vertex v ∈ V l:

RF l(v) =
⋃

u∈RW l(v)

RF l−1(u)

Given any pair of vertex x, x′ in RF l(v), let us consider w and w′ in RW l(v)
such that x ∈ RF l−1(w) and x′ ∈ RF l−1(w′). If w = w′, we have nothing left
to demonstrate since RF l−1(w) is connected by hypothesis. Otherwise, since
RW l(v) is connected, it exists a path w1 = w, . . . , wq = w′ connecting w and
w′ in RW l(v). We have by definition of a path: wi−1 ∈ Nl−1(wi) for any i in
{2, . . . , q}. Hence, using proposition 2, d0(RF l−1(wi−1), RF l−1(wi)) ≤ 1, for
any i ∈ {2, . . . , q}. We can thus identify a set of vertices α1, . . . , α2q−2 in V 0

such that α1 ∈ RF l−1(w1), α2q−2 ∈ RF l−1(wq), {α2i−2, α2i−1} ⊂ RF l−1(wi)
for i ∈ {2, . . . , q − 1} and d0(αi−1, αi) ≤ 1, for any i ∈ {2, . . . , q} (Figure 1).
Since all RF l−1(wi) are connected, it exists a path x, α1, . . . , α2q−2x

′ connecting
x and x′ in RF l(v). This last set is thus connected.

If the set of reduction windows defined at any level l defines a partition of
Gl−1, the set of receptive fields defined at any level l defines a partition of G0.
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Moreover, if RW l(w) = {v1, . . . , vn}, then {RF l−1(v1), . . . , RF l−1(vn)} forms
a partition of RF l(w).

We proposed in [16, 17] different strategies to define a graph hierarchy. Re-
duction windows produced by these strategies satisfy the following equations at
any layer l and for any vertex w ∈ V l:{

RW l(w) = {w} or
RW l(w) = {w, v1, . . . , vn} with ∀i ∈ {1, . . . , n} dGl−1

(w, vi) = 1
(2)

where dGl−1
(., .) is the distance within the graph Gl−1 defined at layer l − 1.

Let us first note that this restrictions on reduction windows induces con-
nected receptive fields (Corollary 1). We may additionally note that equation 2
is satisfied by the methods [16, 17] but also by all methods based on a maximal
matching [5, 6, 12]. However dense methods based on clustering [21, 2, 22] algo-
rithms generally do not satisfy these conditions. Finally, Top-k methods satisfy
only the first condition (RW l(w) = {w}). It corresponds to a special case which
is considered in Section 5.

Proposition 3. Using a decimation scheme satisfying equation 2 we have for
any vertex w surviving at level l in the hierarchy:

∀(u, v) ∈ RF l(w)
2

dG0
(u, v) ≤ 2 ∗ 3l − 1

Proof. For l = 1, since any non surviving vertex is connected to a surviving one,
all paths do not exceed 2.

Let us suppose the property true up to layer l−1 and let us consider a vertex
w surviving up to level l. If RW l(w) = {w} the proof is trivial. Otherwise,
RW l(w) = {w, v1, . . . , vn}. Using equation 2, {v1, . . . , vn} are adjacent to w.
Let us consider two vertices u and v and two indexes r and s such that u ∈
RF l−1(vr) and v ∈ RF l−1(vs). Since vr and vs are both connected to w, their
receptive fields are adjacents to the one of w. It exists thus a path Puv =
PvrPwPvs connecting u and v such that Pt ⊂ RF l−1(t), t = vr, vs, w (Figure 2).
We have thus:

dG0(u, v) ≤ |Puv| ≤
∑

t∈{vr,w,vz}

|Pt|+ 2 ≤ 3(2 ∗ 3l−1 − 1) + 2 = 2 ∗ 3l − 1

The two other cases (vr or vs equal to w or both u and v belong to RF l−1(w))
imply respectively 2 or 1 subpaths. They thus also satisfy the inequality.

4 Pooling operations

In the following, we suppose that we do not discard information between levels.
More precisely, at any level a vertex either survives or is attached to an unique
surviving neighbor.

Let us consider the simple following pooling function:

hl = pooll(hl−1) = Slhl−1 (3)
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Figure 2: Connection between receptive fields in the base level graph. Note
the two edges between RF l−1(vr) and RF l−1(w) and between RF l−1(w) and
RF l−1(vs).

Iterating the previous equation up to level 0 lead to:

hq =

(
q∏

l=1

Sl

)
h0 =not Σ

qh0

where Σq denotes the product
∏q

l=1 S
l ∈ Rnq×n, where nq is the number of

vertices of Gq and n the number of vertices of G0.

Proposition 4. Using previous notations, if we denote by σq
i,j the entry (i, j)

of Σq, we have:

σq
i,j = sqi,pq−1(j)

(
q−1∏
k=1

skpk(j),pk−1(j)

)
where skm,n is the (m,n) entry of Sk, and pk(j) is the parent of j at level k. By
convention p0(j) = j.

Let us note that sqi,pq−1(j) ̸= 0 iff pq−1(j) is merged with i at level q and we

have in this case pq(j) = i. So the previous equation may be rewritten:

σq
i,j =

{
0 If pq(j) ̸= i∏q

k=1 s
k
pk(j),pk−1(j) oherwize

Proof. Let us first note the asymmetry between i and j in Proposition 4. By
hypothesis, i survives at level q while j is just one vertex of G0 which may have
been contracted at any level between level 0 and level q.

Let us consider the case q = 2. We have:

σ2
i,j = (S2S1)i,j =

n∑
k=1

s2i,ks
1
k,j
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By hypothesis, the vertex j either survives or is merged with a single survivor.
In any case, there is a single k (the parent (p1(j)) of j) such that s1k,j ̸= 0. We
thus have:

σ2
i,j = s2i,p1(j)s

1
p1(j),j = s2i,p1(j)s

1
p1(j),p0(j)

Let us note that σ2
i,j ̸= 0, only if s2i,p1(j) ̸= 0 and hence if p1(j) ∈ RW 2(i). Let

us suppose the property true up to level q − 1, we have:

σq
i,j =

nq−1∑
k=1

sqi,kσ
q−1
k,j

By recurrence hypothesis, σq−1
k,j ̸= 0, only if sq−1

k,pq−2(j) ̸= 0 which implies that

pq−2(j) ∈ RW q−1(k) and hence that k = pq−1(j). We have thus:

σq
i,j = sqi,pq−1(j)σ

q−1
pq−1(j),j = sqi,pq−1(j)s

q−1
pq−1(j),pq−2(j)

(
q−2∏
k=1

skpk(j),pk−1(j)

)
which provides the expected equation, namely:

σq
i,j = sqi,pq−1(j)

(
q−1∏
k=1

skpk(j),pk−1(j)

)
Moreover, σq

i,j ̸= 0 only if sqi,pq−1(j) ̸= 0.

Let us note that we have hq = Σqh0. So, let us introduce uq = Σq
1n, where

1n ∈ Rn denotes the vector of ones. uq, encodes for each vertex surviving at
level q, the sum of the weighs of the vertices defined at level 0 which contribute
to its value.

Proposition 5. If Sq is line stochastic for any layer q then:

∀q uq = 1nq

Proof. Matrix Σq is line stochastic as a product of line stochastic matrices.
Moreover, we have, u0 = 1n since each vertex represents itself in the base level
graph. The result follows.

Note that, the same demonstration than Proposition 5, can state that if the
rows of Sq sum to γ for any q, then we have uq = γq

1nq . We observe then
either a drastic decrease (γ < 1)) or an explosion (γ > 1) of the features of the
reduced graphs.

4.1 Over smoothing

As mentioned in Proposition 4, σq
i,j ̸= 0, only if pq(j) = i i.e. j ∈ RF q(i).

Hence:

hq = Σqh0 ⇒ hq
i =

nq∑
j=1

σq
i,jh

0
j =

∑
j∈RF q(i)

σq
i,jh

0
j (4)
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Each entry hq
i is thus a weighted mean (Proposition 5) of the vertices defined

at the base level and belonging to the receptive field of i. Since the set of
receptive fields forms a partition of the initial vertex set, having two vertices at
level q with a same value would imply that two different linear combinations
of two sets of different values result in a same value. This possibility is quite
reduced.

4.2 Over squashing

Using previous notations, we denote by h
(q,α)
i the component α of the feature

vector of i defined at level q. We also consider a vertex j whose sequence of
parents up to level q is defined by p0(j) = j, p1(j), . . . , pq(j). We finally consider
the layerm ≤ q where a parent of j merges with i (so pm(j) = i). Since i survives
up to layer q, we have p0(i) = p1(i) = . . . = pq(i) = i (Figure 4).

If we suppose Σq independent of h0, we obtain from equation 4:

∂h
(q,α)
i

∂h
(0,β)
j

= σq
i,jδα,β = sqi,pq−1(j)

(
q−1∏
k=1

skpk(j),pk−1(j)

)
δα,β

where δ is the dirac function.
Since pm(j) = . . . = pq(j) = i we obtain:

∂h
(q,α)
i

∂h
(0,β)
j

=

(
q−1∏

k=m+1

sqi,i

)(
m∏

k=1

skpk(j),pk−1(j)

)
δα,β

Note that for k < m, j ̸∈ RF k(i), hence σk
i,j = 0 and

∂h
(k,α)
i

∂h
(0,β)
j

= 0.

As an exercise, let us suppose that skww = 1 for any vertex w and any layer
k. Let us also denote by r the layer where j dies. We get:

∂h
(q,α)
i

∂h
(0,β)
j

=

(
m∏

k=r+1

skpk(j),pk−1(j)

)
δα,β

In this case, only merge operations induce a decrease of the gradient and the

derivative
∂h

(k,α)
i

∂h
(0,β)
j

remains constant from layer m up to layer q.

The different behaviors of
∂h

(q,α)
i

∂h
(0,β)
j

according to both scenarios (skww = 1 and

skww < 1) is provided in Figure 5.
Let us now bound the level m where i and j merge. Using the same notation,

m is the first level such that j ∈ RFm(i). So, if the decimation satisfies the
hypothesis defined by equation 2, we have (Proposition 3):

dG0
(i, j) ≤ 2 ∗ 3m − 1 ⇒ m ≥ log3

(
dG0

(i, j) + 1

2

)
(5)
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The minimal number of layers required to ”connect” any two vertices is thus
a log of the graph diameter. For example, at least 2 layers are required to group
two vertices whose distance is equal to 17.

In order to obtain a lower bound for m, we should make additional hypoth-
esis. Before this, let us consider two vertices x and y surviving up to level r and
let us consider two paths such that:{

|P r
xy| = dGr (x, y) and

|P r−1
xy | = dGr−1

(x, y)

Let us now consider the path Qr−1
xy formed from P r−1

xy by contracting all the
edges concerned with the transformation of Gp−1 onto Gp present in P r−1

xy .
Qr−1

xy is a sequence of adjacent surviving vertices at level r and is thus a valid
path of Gr. Moreover, Qr−1

xy is trivially shorter than P r−1
xy . We have thus:

dGr−1(x, y) = |P r−1
xy | ≥ |Qr−1

xy | ≥ |P r
xy| = dGr

(x, y)

The above equation, only stress a trivial result, namely the fact that con-
tractions shrink distances. Let us go one step further by supposing the existence
of a constant γ > 1 such that for any level p and any couple of surviving vertices
(x, y) we have:

dGp−1
(x, y) ≥ γdGp

(x, y)

We hence suppose a small positive multiplicative margin. In this case we have:

dGp
(x, y) ≤ 1

γ
dGp−1

(x, y) ≤
(
1

γ

)p

dG0
(x, y)

Returning to i and j, let us additionally suppose that j survives up to level
m− 1 where it is merged with i. We have thus p0(j) = . . . = pm−1(j) = j and
pm(j) = . . . = pq(j) = i. Since i and j merge at level m, it means that they are
neighbors at level m− 1 (equation 2). We thus have:

dGm−1(i, j) = 1 ≤
(
1

γ

)m−1

dG0(i, j) ⇒ γm−1 ≤ dG0(i, j)

We thus obtain:

m ≤ log(dG0
(i, j))

log(γ)
+ 1 (6)

One may note the similarities between equations 5 and 6 which provide respec-
tively a lower and an upper bound for m both according to log(dG0

(i, j)).
We can thus assume that any two vertices are connected within our network

at a layer roughly proportional to the log of the distance between these vertices.
This is important since it means that contrary to usual graph neural networks
without poolings, which require a linear number of layers according to the dis-
tance between the two vertices to be connected, a GNN based on a decimation
scheme fulfilling equation 2 connects them much faster. All the problematic,
connected to the attenuation of the influence of u on v along a linear number
of layers is thus strongly reduced.
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Figure 6: Let consider a linear graph with features (1,0) and (0,1) at the extreme
nodes. Others nodes features are equal to (0,0). In the figure, we study the
average number of layers needed to intersect the two features of the extreme
nodes according to the diameter of the graph. edge, mides and mivs respectively
denote an architecture only composed of EdgePool [6], MIDESPool [17] and
MIVSPool [16]. Note that any learnable parameters is replaced by random
values.
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5 On Top-k methods and Graph Shift Operators

Top-k methods perform a selection of vertices among the graph before recon-
necting it. Such a selection procedure may be modeled at layer l by a matrix
S ∈ Rnl+1×nl where each row has a single positive entry. Columns may contain
either a single entry (of a surviving vertex) or be filled with 0 (the non surviving
vertex is discarded).

Definition 4. A matrix O is called a Graph Shift Operator (GSO) for a graph
G=(V,E) iff:

∀(i, j) ∈ V 2, i ̸= j and (i, j) ̸∈ E ⇒ oi,j = 0

Graph Shift operators [4] are taken are a generalization of adjacency matrices
and are used to generalize different kind of convolutions.

Proposition 6. Given a graph G, a GSO O ∈ Rn×n, and a projection matrix
S ∈ Rn′×n with n′ < n, then the product matrix SO satisfies:

∀(i, j) ∈ V ′ × V, ki ̸= j and (ki, j) ̸∈ E ⇒ soi,j = 0

Where V ′ is the reduced set of vertices with |V ′| = n′ and ki ∈ V , is the unique
son of i ∈ V ′.

Proof. Since S has a single non null value per line, multiplying O per S is
equivalent to select the lines of O corresponding to the non null column entries
of S and to multiply them by the corresponding entry. In other terms we have:

soi,j = si,ki
oki,j = sioki,j

where si denotes the value of the only positive entry on line i and ki is the index
selected at line i. The proof follows from the fact that O is a GSO.

Proposition 6, indicates that SO, is not a GSO since it performs a shift and
a selection. Consequently the matrix SO is not squared. However, the main
property of a GSO is preserved.

Let us consider a generic form of GSO, denoted as the Parametrised Graph
Shift Operator (PGSO), defined by the following expression [4]:

γ(A,S) = m1D
e1
a +m2D

e2
a AaD

e3
a +m3I

where Aa = A + aI, Da = diag(Aa1) is the degree matrix of Aa and S =
(m1,m2,m3, e1, e2, e3, a) is our set of parameters.

We have:

Sγ(A,S) = m1SD
e1
a +m2SD

e2
a AaD

e3
a +m3S

Let us note that that SDe1
a just multiplies the non null entry of each line i of S

by (de1a )ki
. The main properties of our projection (a single non null entry on each

14



line) is thus preserved and SDe1
a may be considered as a modified projection.

So that we can write:
Sγ(A,S) = S1 + S2ADe3

a

where S1 = S(m1D
e1
a +am2D

e2+e3
a +m3) and S2 = m2SD

e2
a are two projections.

Considering the equation h′ = Sγ(A,S)h we obtain by dropping the sub
index ’a’:

h′
i = si

(m1d
e1
ki

+ am2d
e2+e3
ki

+m3)hki +m2d
e2
ki

∑
j∈Nki

aki,jd
e3
j hj


where (di) stands for the entries of Da and (ai,j) for the ones of A. Let us recall
that si denotes si,ki

the only positive entry of line i.
Using projections matrices S1 and S2 we get the simpler formula:

h′
i = s1ihki

+ s2i
∑

j∈Nki

aki,jd
e3
j hj (7)

The main difference between equations 3 and 7 is that the pooling step defined
in equation 3 requires that each non surviving vertex is attached to a unique
survivor while a non surviving vertex in equation 7 shares its value with all
surviving vertices adjacent to it. In terms of matrices, it means that the matrix
Sl, used in equation 3 has a single positive entry per column while if we denote
by Stop the matrix implicitly defined by equation 7, so that h′ = Stoph, each
column of Stop corresponding to a non surviving vertex has one positive entry
per surviving vertex adjacent to the non surviving one.

5.1 Some examples

Let us consider the simplest PGSO defined by γ(A,S) = I +A. It corresponds
to S = (m1,m2,m3, e1, e2, e3, a) = (0, 1, 1, 0, 0, 0, 0). We then have S1 = S and
S2 = S. We thus obtain:

h′
i = si

hki +
∑

j∈Nki

akijhj

 (8)

where ki denotes the only positive entry of Sl+1 in row i and Nki
denotes the

neighborhood of ki at layer l.
Equation 8, has two major normalisation problems:

1. A non surviving vertex j transfers its values to all its surviving neighbors.
Hence, non surviving vertices with a high degree will be over-represented
compared to surviving ones or non surviving ones with a smaller degree.

2. The sum in equation 8 is proportional to |Nki
|. Hence surviving vertices

with a large degree will be over weighted according to the other surviving
vertices. Large neighborhood may also hide the value hl

ki
of the surviving

vertex at layer l.
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In order to overcome the two previous drawbacks, we may consider the fol-
lowing PGSO defined by S = (0, 1, 1, 0,−1,−1, 0) which provides the following
update equation:

h′ = S(I +D−1AD−1)h

In this case, we obtain:

h′
i = si

hki +
1

dki

∑
j∈Nki

akij

dj
hj


The main drawback of the last equation is that the contributions of non surviv-
ing vertices is normalized by their degree and not by their number of surviving
neighbors (to which they contribute). To correct this point we first note that
(SA)ij = siki

akij so that:

((SA)T 1)j =

nl+1∑
i=1

sikiakij =
∑

i∈V l+1|ki∈Nj

siki

So, ((SA)T 1)j is the sum of the weighs (or the scores) of the surviving ver-
tices adjacent to each vertex j. Let us consider the diagonal matrix Dsurv =
diag((SA)T 1). In order to incorporate Dsurv we need to mix pooling and con-
volution steps by considering the following update equation:

hl+1 = S
(
I +D−1A(Dsurv)−1

)
hl

We then get:

hl+1
i = siki

hl
ki

+
1

dki

∑
j∈Nki

akij

dsurvj

hl
j


Note that

siki

dsurv
j

may be interpreted as the relative importance of the surviving

vertex ki among the neighbors of j. We have thus a strategy of ”winner takes
all”.

5.2 Effect on main convolutions

Let us consider the PGSO of GCN [11] defined by γ(A,S) = D
− 1

2
1 A1D

− 1
2

1 . It
corresponds to S = (m1,m2,m3, e1, e2, e3, a) = (0, 1, 0, 0,− 1

2 ,−
1
2 , 1). We then

have S1 = SD−1
1 and S2 = SD

− 1
2

1 . We thus obtain:

h′
i = sid

−1
ki

hki
+ sid

− 1
2

ki

∑
j∈Nki

aki,jd
− 1

2
j hj (9)

where ki denotes the only positive entry of Sl+1 in row i and Nki denotes the
neighborhood of ki at layer l.
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Let us consider the PGSO of GIN [20] defined by γ(A,S) = A+ (1+ ϵ)I. It
corresponds to S = (m1,m2,m3, e1, e2, e3, a) = (0, 1, 0, 0, 0, 0, 1 + ϵ). We then
have S1 = (1 + ϵ)S and S2 = S. We thus obtain:

h′
i = (1 + ϵ)sihki + si

∑
j∈Nki

aki,jhj (10)

where ki denotes the only positive entry of Sl+1 in row i and Nki
denotes the

neighborhood of ki at layer l.
Let us consider the PGSO of DGCNN [23] defined by γ(A,S) = D−1

1 A1.
It corresponds to S = (m1,m2,m3, e1, e2, e3, a) = (0, 1, 0, 0,−1, 0, 1). We then
have S1 and S2 both equal to SD−1

1 . We thus obtain:

h′
i = sid

−1
ki

hki
+ sid

−1
ki

∑
j∈Nki

aki,jhj (11)

where ki denotes the only positive entry of Sl+1 in row i and Nki
denotes the

neighborhood of ki at layer l.

Convolution S γ(A,S)
GCN (0, 1, 0, 0,− 1

2 ,−
1
2 , 1) D

− 1
2

1 A1D
− 1

2
1

GIN (0, 1, 0, 0, 0, 0, 1 + ϵ) A+ (1 + ϵ)I
DGCNN (0, 1, 0, 0,−1, 0, 1) D−1

1 A1

Table 1: Summary of the convolution formulas

Let note that PGSO can’t define all graph convolutions. For example, GAT
methods [19, 3] can’t be define without additional assumptions or operators.

5.3 Let us iterate

Let’s assume that the matrix A has a non-zero diagonal and let us consider
the matrix Stop = Sγ(A,S). Let note that, using Proposition 6 Stop satisfies
the main properties of a GSO while being a non squared matrix. Let us now
consider the two following iteration equations:{

h′ = Stoph
A′ = StopA(Stop)T

(12)

Where A is the adjacency matrix with positive elements on the diagonal. Let
us simply denote by si,j the entries of the matrix Stop (hence dropping the top
index). Then we have:

a′ij =

n∑
k,l=1

ak,lsiksjl

If A and Stop are non negative, we get the trivial result:

a′i,j ̸= 0 iff ∃(k, l) ∈ {1, . . . , n}2 |

 (k, l) ∈ E (akl ̸= 0)
sik ̸= 0
sjl ̸= 0

(13)
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This general equation, hides some particular cases. In particular, a vertex shared
by two surviving vertices induces an edge between them:

∃k ∈ {1, . . . , N} | sik ̸= 0 and sj,k ̸= 0 ⇒ a′i,j ̸= 0

The above equation is simply due to the fact that akk is always not null. More-
over, we have for any reduced vertex i:

a′i,i ≥ aki,ki
si,ki

si,ki
> 0

Let us now introduce reduction windows within the Top-k framework.

Definition 5. Let G = (A, h) denote a graph and G′ = (A′, h′) its reduced
version using equations 12 with Stop ∈ Rn′×n. The reduction window of a
surviving vertex i ∈ {1, . . . , n′} is defined by:

RW (i) = {k ∈ {1, . . . , n} | sik > 0}

Note that reduction windows defined with the classical pooling framework
may be defined using the same equation than in Definition 5. The main differ-
ence within the Top-k framework is that we loss the insurance that each column
of Stop contains a single positive entry. Consequently, a non surviving vertex
may belong to different reduction windows and the set of reduction window may
not form a partition of {1, . . . , n}.

Remark 1. Using Proposition 6 we have for any surviving vertex i:

RW (i) ⊂ Nki ∪ {ki}

where Nki denotes the neighborhood of the vertex ki corresponding to i in the
initial graph.

Let us note that our reduction windows fulfill equation 2. Receptive fields are
still defined according to Definition 3. Let us note, however, that within the top-
k framework, since reduction windows may overlap, receptive fields associated
to these reduction windows also overlap and thus do not define a partition.

Proposition 7. Let us consider Al the adjacency matrix obtained by l itera-
tions of equation 12 and for any vertex i surviving at level l, the set RF l(i)
corresponding to the transitive closure of the hierarchical relationship defined by
the reduction window. Then we have:

alij ̸= 0 ⇔ ∃u ∈ RF l(i),∃v ∈ RF l(j) | auv ̸= 0

Or in other terms, the receptive fields of two adjacent vertices at level l intersect
(case u = v) or are adjacent at the base level.
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Proof. Implication : For l = 1, the proof is provided by equation 13.

Let us suppose the property true at level l − 1 and let us consider i, j
defined at level l such that alij ̸= 0. Using equation 13:

∃k ∈ RW l(i),∃l ∈ RW l(j) al−1
kl ̸= 0

Using our recurrence hypothesis, it exists u ∈ RF l−1(k) and v ∈ RF l−1(v)
such that auv ̸= 0. Moreover:

RF l(i) = ∪
w∈RW l(i)

RF l−1(w) and RF l(j) = ∪
w∈RW l(j)

RF l−1(w)

Hence u ∈ RF l−1(k) ⊂ RF l(i) and in the same way v ∈ RF l(j) which
concludes the proof.

Reciprocal: Since u ∈ RF l(i), it exists a sequence il = i, il−1, . . . , i0 = u of
children of i from i down to u. In the same way, we have a sequence
jl = j, jl−1, . . . , j0 = v. Note that, a vertex may have several father.
However, the set of child of a vertex is defined without ambiguity by
Definition 5.

By definition of i1 and j1, we have u ∈ RW (i1) and v ∈ RW (j1). So we
have si1,u > 0, sj1,v > 0 and au,v ̸= 0(by hypothesis). Hence a1i1,j1 ̸= 0.

If we suppose the property true up to level l − 1, we have al−1
il−1,jl−1

̸= 0,

with il−1 ∈ RW (il) and jl−1 ∈ RW (jl). Hence, sil,il−1
> 0, sjl,jl−1

> 0
and ail−1,jl−1

̸= 0. We have thus ail,jl = ai,j ̸= 0.

Remark 2. We know, thanks to remark 1, that our reduction windows fulfill
equation 2. Moreover, thanks to Proposition 7, we know that adjacent vertices
at level l have adjacent receptive fields. We have thus all the required properties
to apply Proposition 3. Namely, for any vertex w surviving at level l in the
hierarchy:

∀(u, v) ∈ RF l(w)
2

dG0
(u, v) ≤ 2 ∗ 3l − 1

Corollary 2. Given two distinct vertices i and j surviving at level l, if i and j
are not adjacent then their receptive fields have an empty intersection and are
not adjacent.

Proof. Using Proposition 7, we have:

aij = 0 ⇒ ∀(u, v) ∈ RF l(i)×RF l(j) au,v = 0

In particular, if it exists u ∈ RF l(i)∩RF l(j), we should have au,u = 0 which is
forbidden by hypothesis. Hence RF l(i) ∩RF l(j) = ∅

Corollary 2, implies that an over-smoothing phenomenon is unlucky unless
the base graph is filled with constant values, or we get a complete graph at some
steps of the decimation process.
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Figure 7: Let consider 1000 graphs with 100 nodes and a density of 20% gen-
erating like in [7]. The curves shows the mean Dirichlet energy according to
the size of K-hop. gcn denotes an architecture only composed of GCN [11].
gcn+pool denotes an architecture alternating GCN [11] and a pooling method.
pool can be a DiffPool [21], EdgePool [6], MIDESPool [17], MIVSPool [16] or
a Top-k like in Figure 3. Note that any learnable parameters is replaced by
random values.
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Figure 8: Let consider a linear graph with features (1,0) and (0,1) at the ex-
treme nodes. Others nodes features are equal to (0,0). In the figure, we study
the average number of layers needed to intersect the two features of the ex-
treme nodes according to the diameter of the graph. gcn denotes an architec-
ture only composed of GCN [11]. gcn+pool denotes an architecture alternating
GCN [11] and a pooling method. pool can be an EdgePool [6], MIDESPool [17]
or MIVSPool [16]. Note that any learnable parameters is replaced by random
values.
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6 Conclusion

In Section 2, we show that a sufficient low pass filtering of any signal ”forces”
any uniqueness set to become an allowed down-sampling. Nevertheless, for a
constant signal, any sub-sampling is an allowed sub-sampling. Hence this signal
point of view neglects the structure of the graph while a pooling operation must
preserve both the signal content and the structural information. In Section 4, we
prove that, using the pooling scheme defined in Section 3, the layer at which two
distant vertices can be merged is upper bounded by a log of their distance. The
access time between the features of two nodes is thus reduced in comparison with
the one of graph convolution which is linear. This implies that over-squashing
is less present using pooling layers. Furthermore, if each vertex from the initial
graph belongs to only one receptive field in the reduced graph, then vertices in
the reduced graph forms a partition of the vertices in the initial graph, applying
just pooling layers like define in Definition 3 prevent to have over-smoothing.
Finally, in Section 5, the case of an alternation of graph convolution and a
Top-k method is studied. Under certain conditions on the selection of surviving
vertices and on the construction of the reduced graph, we prove that the over-
squashing and over-smoothing effects are reduced by pooling operations.
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[13] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller.
Efficient backprop. In Neural networks: Tricks of the trade, pages 9–48.
Springer, 2012.

[14] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A
survey on oversmoothing in graph neural networks. CoRR, abs/2303.10993,
2023.

23



[15] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions
on neural networks, 20(1):61–80, 2008.

[16] Stevan Stanovic, Benoit Ga”uz‘ere, and Luc Brun. Maximal Independent
Vertex Set applied to Graph Pooling. In Structural and Syntactic Pattern
Recognition (SSPR), Montr’eal, Canada, August 2022.
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