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Addressing Open-set Object Detection for Autonomous Driving
perception: A focus on road objects

Corentin Bunel1, Maxime Gueriau1, Alaa Daoud1, Samia Ainouz1 and Gilles Gasso1

Abstract— Autonomous Vehicles (AVs) are expected to take
safe and efficient decisions. Hence, AVs need to be robust to
real-world situations and especially to cope with open world
setting i.e. the ability to handle novelties such as unseen objects.
Classical object detection models are trained to recognize a
predefined set of classes but struggle to generalize well to
novel classes at inference stage. Open-Set Object Detection
(OSOD) aims to address the challenge of correctly detecting
objects from unknown classes. However, autonomous driving
systems possess specific open-set characteristics that are not
yet covered by OSOD methods. Indeed, a detection error
could lead to catastrophic events, emphasizing the importance
of prioritizing the quality of box detection over quantity.
Also, the specific characteristics of objects encountered in
road scenes could be leveraged to improve their detection
in the open-world setting. In this vein, we introduce a new
definition of objects of interest for autonomous driving
perception, enabling the proposition of an AV specialized
open-set object detector coined ADOS. The proposed model
uses a new score, learnt with the background ground truth
of the semantic segmentation. This On Road Object score
measures whether the object is on drivable areas, enhancing
the selection of unknown detection. Experimental evaluations
are conducted on simulated and real world datasets and
reveal that our method outperforms the baseline approaches
in unknown object detection settings with the same detection
performance on known objects as the closed-set object detector.

I. INTRODUCTION

Autonomous vehicle (AV) systems mainly operate two
tasks: perception and control [1]. The perception system
elaborates a representation of the real world, called World
Model [2], on which the control system hinges to make
decisions. The effectiveness of the control system is heavily
correlated to the relevance of information provided by the
World Model. For instance, failure to detect some objects
on the road may lead to detrimental consequences while
conversely, over detecting objects can impede the user
driving experience. Those shifts between reality and AV
representation are deemed Corner Cases [3]. Specifically, the
Unknown Objects [3], [4] represent object-level corner cases
where the AV has to deal with a class of object that has not
been encountered during training.

Currently, the best World Model algorithms are Deep
Learning based. They learn known classes representation
using large scale labeled datasets. Object detection is a major
building block of the AV perception system that aims at
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providing object localization and semantics. However, the
current state-of-the-art object detectors do not perform well
on corner cases, as evidenced in CODA [5]. Because they
are trained on a fixed set of classes, when exposed to open
set settings with class instances outside the known set, those
detectors fail to generalize well. Open-Set Recognition has
emerged to address this problem [6], followed by open-
world object detection [4], [7] that incorporates incremental
learning into the detection of the unknown objects.

Despite this, open-set object detection for AVs poses
specific challenges not yet fully addressed by the current
trend of works. Indeed, on one hand perception systems
are expected to yield high detection performance on known
objects to ensure safe driving actions. For this, one can rely
on different sensor modalities to trade off recall and precision
contrary to the classical open-set settings. On the other hand,
object misdetection, especially false detection may represent
a significant issue for the driving decision-making process,
making the precision of an object detector more important
than recall. Moreover, the types of objects encountered and
the diversity of backgrounds and environments in road scenes
calls for dedicated open-set settings. The environment can
range from a rainy night in a big city with roadworks to a
snowy mountain at sunrise with bears and fallen trees [8].

In this paper, we propose a new open-set object detection
approach for AVs. The following are the key contributions:

• A definition is introduced for the objects of interest
to specify the characteristics of these objects the AV
perception has to detect.

• Based on that, we propose ADOS, a new open-set
object detector specialized for the autonomous vehicles
perception task.

• A new score representing the objects on the road is
presented. It is computed using semantic segmentation
ground truth and allows to improve the detection of
unknown objects.

• A benchmark with existing open-set object detectors
that follows an open-set evaluation protocol for road
scenes object detection using corner-case datasets illus-
trates the effectiveness of ADOS.

II. OVERVIEW OF OPEN-SET METHODS

Herein, we review the main open-set object detection
methods and their application in AV context.

A trend of research uses the assumption that the un-
known objects are close enough to known objects to ap-
ply unsupervised learning techniques like pseudo-labeling
on them. Joseph et al. [4] introduced Open World Object



Detector (ORE), which considers the best proposals from the
Faster R-CNN regional proposal networks not overlapping
with any ground truth as pseudo-labels. These are used as
unknown objects pseudo-labels during training. Similarly,
OW-DETR [9] uses attention-driven pseudo-labeling while
Zhao et al. [10] rely on a Proposal Advisor with a clas-
sic non-parametric Selective Search to improve unknown
pseudo-labels. These unknown proposals can then be used to
lift the classification module to unknown classes. ORE uses
contrastive learning with an energy-based classifier, OW-
DETR considers a supplementary for novelty, and Zhao et
al. [10] use a Class-specific Expelling Classifier.

Another way to detect unknown objects is to learn to detect
them only using the information issued from the known
ground truth. OpenDet [11] uses contrastive clustering to
expand low-density latent space and employs an Unknown
Probability Learner to extract unknown instances in that
space. A standard approach is to use class-agnostic scores
representing the quality of the proposal localization instead
of binary classification. Many methods [12], [13], [14], [15]
use IoU [12] or Centerness [16] as an objectness score. These
objectness scores serves to filter the box proposals before
classification. Using these scores makes proposals amenable
to unknown objects instead of only a closed set of classes.

In order to classify object proposals into known, unknown,
and background classes, OW-RCNN [14] and Unknown
Sniffer [15] rely on two classifiers: one specialized in known
classes and another dedicated to detecting unknown ones
using class-agnostic scores. Instead of using a new classifier,
PROB [17] classifies proposals into known classes and back-
ground as in closed settings. Then, it separates the unknown
objects from the background classes using the objectness
score.

When it comes to detection on road scenes, ORDER [18]
proposed an open world object detector for road scenes
where objects have high intra-class scale variation. The
approach is based on ORE and considers a Feature-Mix
module to improve unknown object identification. Using
curriculum learning and a modified focal regression loss,
ORDER improves the model capacity to detect small boxes
and intra-class scale variation.

Finally, from an evaluation perspective, CODA [5] was
proposed as a dataset of corner cases, including unknown
objects on the road. Empirical evaluations of ORE on CODA
show that a generic open world object detector is not suffi-
ciently efficient to detect corner case objects on the road as
ORE is based on the assumption of close similarity between
known and unknown objects which might not hold true in
road scene contexts. In this paper we leverage on the ground
truth labels from the background in order to improve the
detection of the unknown classes instances without probing
any ground truth label on unknown objects. In the sequel
we revisit the definition of open-set detection in AV settings
and, then formulate our proposed method.

III. PROBLEM DEFINITION

AV perception is composed of algorithms that infer high-
level information from the raw data from sensors, such as
object detection, localization, traffic sign detection, or fore-
casting. These algorithms all together should create a world
model that provides relevant information for the control
system to make safe and effective driving decisions [2].
The world model is conceptualized as a map containing
all the different agents present around the vehicle (other
vehicles, pedestrians, bicycles, etc.), along with their tra-
jectories. It encompasses the space where the vehicle can
drive, identifies the obstacles within the drivable area along
with their semantics, and includes all information related
to traffic rules [19]. However, the perception system is
considered non-specifiable [2], implying that a complete
concept specification may not be possible because the world
model generally cannot cover all relations and properties in
such a wide open context [20]. But we still need to detect
unknown objects because they impact the decision of the AVs
[21], [19]. In order to detect these corner case objects we
need a clear distinction between the background and objects
we need to detect, we will call them objects of interest.

A. Objects of interest for AV

Not every object present in the scene should be detected,
as it would entail a tremendous quantity of information that
is not necessarily useful to control systems. Furthermore,
achieving such a result would be difficult, considering that
humans cannot exactly define what constitutes an object [20].

To first approach what an object of interest is, we can
base ourselves on the known objects. The main classes
of objects occurring in road scenes datasets are Cars,
Trucks, Pedestrians, Traffic Lights, Motorcycles, Traffic
Signs, Buses, Bicycles, etc. Those are either traffic sights
or objects that can provide information about traffic rules
or road conditions, or agents defined by any object whose
trajectory stems from an internal decision-making process.
These two characteristics are actually used to make control
decisions. Hence, we postulate that any object with those
properties represents an object of interest. Because the
control system needs to anticipate the agents’ trajectories,
it needs information on any present object and on the
potential trajectories of the various agents. This property of
being an obstacle can be attributed to object located within
the drivable area. Drivable area is defined as the navigable
space where the vehicle can operate [21]. For example, a
ball is not an agent; if it is only placed on a balcony, it is
not of interest, but if the ball crosses the road, then it is
of interest. Similarly, a construction cone is an object of
interest because it provides information about the road and
is likely to be on the trajectories of agents. Thereon, we
assume that an object of interest presents at least one of
these properties: being an agent, an obstacle, or providing
traffic rules information.



B. Defining open-set settings for AV

In a closed-set setting, known objects and the background
are well defined. Known objects encompass all instances
of the set of classes available at training stage, while the
background comprises everything else. However, in an
open-set setting, the boundaries between unknown and
background remain somewhat ambiguous [22], [9]. This
ambiguity arises because the definition of an object depends
on the purpose for which the object detector is employed.
For instance, a car is an object, a wheel is an object, and
a nut is also considered an object. However, the question
arises: do we want to detect every nut that attaches a wheel
to a car? One approach outlined in [22] is to categorize
unknown objects into a set of super classes. Yet, the precise
definition of what constitutes a super class remains unclear.

In this paper, we define a super class as an object with
a set of properties. Therefore, we have one super class as
an object of interest that makes a clear separation between
the background and the unknown objects. The background
is simply defined by anything but an object of interest, and
the unknown objects are all the objects of interest that are
not an instance of the known classes.

IV. PROPOSED METHOD

We aim to have an object detector capable of detecting
all the known objects of interest with their correct classes. It
should also detect all the other objects of interest and classify
them as unknown, without proposing boxes that correspond
to the background.

We chose Faster R-CNN as the base detector, as the litera-
ture [6], [22], [4], [12] showed that it has better performances
on open-set tasks. The separation between classification and
localization inside its two-stage architecture and the use of an
additional class detection as background make it more stable
for open-set settings. Firstly, we will describe the basic Faster
R-CNN and then explain how we lift Faster R-CNN to our
purpose of open-set object detection for autonomous driving.

A. Faster RCNN

Faster R-CNN works in three steps. The first step is a
backbone, acting as a feature pyramid network, that takes
the raw image and attempts to express it in a latent space.
The idea is to extract as many characteristics as possible from
the image. The second step is a Regional Proposal Network
(RPN) that takes those features and provides proposals of
possible bounding boxes representing the objects in the im-
age. RPN uses anchor boxes, which are pre-defined bounding
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Fig. 1. Proposed OS Faster-RCNN and ADOS architecture. The differences between our models and Faster-RCNN are highlighted in red. OS Faster-
RCNN changed the objectness head of the RPN by an IoU regression. It then extracts the unknown detection from the background one using this new
objectness head. Autonomous Driving Open Set Faster-RCNN (ADOS) keeps the same modification and adds a new head calculating the ORO score,
which is used to filter the unknown detection.



boxes placed at various locations and scales across the image.
For each of those anchors, the RPN gives an objectness score
and adjustments for the anchor box’s coordinates. Then, these
proposals are filtered by their score and subjected to Non-
Maximum Suppression (NMS). The best proposals are then
given to the last step, the classification network.

The classifier uses the features from the backbone corre-
sponding to the proposals, thanks to the Regions Of Interest
(ROI) pooling layer. The classes of the classifier include the
known ones from the dataset, in addition to one class back-
ground to exclude every other possible object. It provides,
for each proposal and each class, a classification score and
regression on the coordinates. The output boxes consist of
the top 100 best classification scores with their regressed box
coordinates after removing the background classes, the small
boxes, and applying NMS.

The Objectness Score from the RPN is learned with Binary
Cross Entropy (BCE), where the corresponding anchor is
considered a positive sample if it has an Intersection over
Union (IoU) with a ground truth of more than 70 percent;
otherwise, it is a negative sample. The regression of coordi-
nates is only learned on the positive samples using Smooth
L1 loss. The sampling strategy of the RPN involves randomly
selecting 256 anchors, with half of them as positive and the
other half as negatives.

The Classification Score is learned using Cross Entropy
loss. There is a sampling of 512 boxes, with 25 percent
being positive and the rest as negatives. Boxes are considered
positive if their corresponding anchors have an IoU greater
than 70 percent; otherwise, they are considered negative and
assigned the background class.

B. Custom Open-set Faster RCNN

In Faster R-CNN, unknown objects are not detected be-
cause they are filtered by the RPN and by the classifier.
Firstly, they are not proposed by the RPN because BCE loss
of the objectness score enforces a strict binary classification
between known and everything else. The RPN tends to overfit
on the known labeled objects while excluding other possible
objects. We make the RPN open to unknown proposals in
the same way as in [12], [13], [14], [15]. We replace the
Binary Cross-Entropy (BCE) loss with a smooth L1 loss
that regresses the Intersection over Union (IoU) [23] with
the corresponding known ground truth. Contrary to classi-
fication, regressing a score can be transposed to any object
making it a suitable choice to enable unknown proposals in
the RPN.

Secondly, unknown objects are filtered in the classification
step within the background class. The classifier is optimized
to separate known classes from the rest of the proposals.
Introducing the task of distinguishing unknown classes could
impact known detection performance. Given that achieving
high performance on known classes is paramount for au-
tonomous vehicles, we keep the classifier unmodified, in
contrast to previous work that modifies the classifier to
classify as unknown [14], [15]. We follow PROB [17] by
using the objectness score to extract unknown objects from

those classified as background. The classification score of
the background classes is replaced with the objectness score
of the RPN. Unknown objects are the objects classified as
background with a score above a specified threshold.

In summary, the RPN makes a selection of boxes that
look like objects. Then the classifier either discriminates
those proposals as into either a known class or a back-
ground class. Finally, we separate the propositions from the
background classes into unknown objects and background.
Our final outputs are separated between known, unknown
and background, answering the open-set settings. Open set
architecture is summarized in Figure 1, with its differences
from Faster-RCNN highlighted in red.

C. Autonomous driving special scores

This custom Faster R-CNN works for an open-set setting
where known objects share characteristics with unknown
objects. In the case of autonomous driving, the objects of
interest, as defined above, could be very different from the
known objects. For example, road debris or traffic cones do
not have much in common with cars, pedestrians, or traffic
lights. To achieve better performance, the model needs more
information than that taken from the known classes only.
However, we do not have any ground truth on those unknown
objects.

Above, we defined an object of interest as any object
present on the potential trajectories of the agents. These
trajectories occur on the road, sidewalk, and terrain. The
ground truth for these drivable areas is present in the seman-
tic segmentation of our datasets, providing pixel information
corresponding to the region where objects are of interest. To
provide more relevant information to the model about what
constitutes an object of interest, we introduce a new score
indicating whether an object is on a drivable area or not and
is called ORO for On Road Object. Drawing inspiration from
shortcut learning [24], we aim to associate this score with
the context of where the object is and what is around it.

We have the ground truth of semantic segmentation, where
each pixel p has a class Cp. These classes are grouped into
three distinct super-classes SCp: Background, Objects,
and Drivable. The Objects super class includes the same
object classes as those of the bounding boxes ground truth,
in addition to the ”static” and ”dynamic” classes of the
semantic segmentation. The Drivable super class comprises
RoadLines, Roads, Sidewalks, Ground, and Terrain. The
Background super class includes all the other classes.

The score ORO of a box B is calculated as follows. We
defined the area under the box Bunder as the lower third of
B enlarged by λ percent, with B excluded. ORO represents
the proportion of pixels classified as Drivable in Bunder.
Making Bunder proportional to the box size using λ at 30
percent has empirically shown a robust representation of the
area under the box. We formally define the ORO score in
equation 1.

ORO =

∑
p∈Bunder

δ(Ip ∈ Drivable)∑
p∈Bunder

(1)



Propositions with a high score should represent objects
that can be in the trajectory of any agents, and thus are
considered objects of interest. This is a class-agnostic score,
as it does not depend on the class of the object. We will
use it as another objectness score similarly to the RPN IoU
score. We set a new threshold on the ORO score that filters
once more the unknown from the background, improving the
results on unknown objects detection.

D. Implementation details

To adapt Faster-RCNN to open-set settings, we update
the objectness head of the RPN. Instead of a BCE loss
learning to distinguish objects from background, we use a
Smooth L1 loss to regress the IoU score between the anchor
boxes and the known ground truth. In this work, we use
the inferring IoU score instead of the BCE classification
logits for the objectness score. The objectness score is still
capped between 0 and 1, ranging from 0 when there is no
object overlapping with the anchor box and up to 1 where
the anchor box overlaps perfectly with a possible object.
Changes only affect the computation of the objectness, not
the way it is used in the model. Therefore, the objectness
still helps in filtering the proposals from the RPN that are
then forwarded to the classifier. The sampling strategy needs
to be adujsted to obtain the IoU ground truth for the loss
function. Both positive and negative samples are required to
limit the model’s overfitting toward 0 and 1 values. Positive
samples are anchors boxes that have enough overlap with
any ground truth, and negative samples can be all the others.
However, as all objects are not labelled, making everything
else negative will prevent the model from giving high IoU
for unknown objects. Approaches from previous work [12],
[14] solve this problem by restricting the loss computation
to the fraction of positive samples with an IoU above 30
percent. The boxes coordinates regression head is the same
as in the original implementation.

For ADOS Faster-RCNN1 we added another head to the
RPN that infers the ORO score as calculated in equation 1.
It is identical to the IoU head with a smooth L1 loss. We
calculate the ORO score on each positive anchor using the
semantic segmentation labels divided into the three super-
classes previously defined. We use the same anchors that
were sampled for the IoU. ORO is not directly used in the
RPN, instead, it helps in extracting unknown boxes after
the classification stage from those classified as background.
The ORO score is inferred in the RPN, ensuring that the
classification task is not impacted. Our assumption is that
it may help the RPN to distinguishing objects from the
background.

All the proposals boxes are separated using scores
into Known, Unknown and Background objects after the
classification. We start by separating the proposals classified
as known using their classification score. This score is the
logits generated by the classifier for each class and each

1Our code is available at https://github.com/leenheart/
ADOS_object_detection

proposal. Known objects are all the boxes classified within
the known classes with a classification score over 0.5. The
final known detections generated by the model are the best
one hundred using their classification scores. There are
still some unknown objects within the proposals classified
as known. We select the subset of proposals that shows a
classification score between 0.2 and 0.5. Proposals with a
score below 0.2 are considered as background. After the
proposals classified within the known classes are extracted
as known object, unknown objects should be distinguished
from background. We use the ORO and IoU scores from
the RPN proposals to separate them. Proposals with an IoU
over 0.5 and an ORO over 0.4 are considered as unknown
objects otherwise they are considered as background. IoU
signifies the presence of objects, while ORO represents the
aspect of being situated on the road. Because we consider
that the scene should not contain more than 10 unknown
objects, we limit the selection to the best 10 based on the
IoU score. Many valid detections with high score were in
or near known objects, preventing other unknown objects
from being detected by lower scored detections. Therefore,
we removed any unknown detections with more than 50%
overlap with a known detection.

V. EXPERIMENTS

A. Open challenges regarding evaluation

The evaluation of models in open-set settings is a complex
task due to the lack of fully annotated dataset and the
complexity of unknown objects definition [22], [25]. Related
work selected the COCO [26] dataset that offers a diversity
of labelled classes and is considered as a meaningful baseline
for object detection benchmarks. To obtain the ground truth
for unknown objects, certain known classes are treated as
unknown and excluded from the training process. The liter-
ature creates multiple tasks, each with unique separation, to
mitigate the impact of the choice of the known set considered
as unknown.

Dhamija et al. [6] introduce a novel error type to evaluate
object detectors within open-set settings. This error involves
identifying unknown objects as known objects. It occurs
because the classifier has learned to filter out anything not
present in the known ground truth. However, when the model
encounters unknown objects closely related in the feature
space to the known classes, it may misclassify them as
known instead of unknown. The quantification of this error
is conducted using A-OSE [27], which measures the total
count of unknown objects classified as known. The objective
is thus to minimize this indicator.
In this work, we evaluate the ability of an object detector
to detect every object of interest in road scenes. To make
a complete evaluation [22], [25], we need to measure the
mean average precision (mAP) on known objects but also
on unknown objects. Contrary to previous works, comparing
models performance on a subset of known classes is not
possible considering the importance of detecting known ob-
jects in AV perception. Consequently, the usual road scenes
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Fig. 2. Qualitative results on example images from CODA dataset (first 3 rows) and CARLA (last 2 rows) dataset. Known boxes are in blue and unknown
boxes are in green. Some of the detection obtains by OS Faster-RCNN are outside of the drivable area contrary to ADOS that only have detection on the
road thanks to the ORO scores. ORE has also good detection with some outside the road, but is shows worst performance than the two other models. In
three models, inadequate detections persist, indicating that despite satisfactory detections, there is room for further improvement.

dataset can not be used in our benchmark as they do not
provide the ground truth for unknown classes.

As far as our knowledge can go, the only real world dataset
for AV perception containing unknown objects ground truth
is CODA [5]. It is an object-level corner case dataset with
34 classes like barrier, debris, dustbin, traffic cone or trailer.
However the objects are not exhaustively annotated, pre-
venting the computation of precision metrics of the objects.
Instead, CODA is useful to verify if our model is able
to detect unknown objects in real road scene scenarios.
The recall metric shows the number of annotated unknown
objects that are detected by the model. It is a first way to
evaluate unknown objects detection performance considering
the unavailability of annotated data. However, recall is less
important than the precision metric when the object detector
is part of an autonomous vehicle perception system. Indeed,
an AV can rely on other sensors and associated perception
algorithms to complete the world model. If the object de-
tector gives too much inaccurate information, it may not be
trusted by the control system, thus limiting the reliability
of unknown objects detection. Using a simulator to get an
exhaustive ground truth of unknown objects will enable the

evaluation of the precision metric. CARLA [28] is an open-
source simulator for autonomous driving research. Thanks
to the CornerSim framework [29] built upon CARLA, we
generate a corner-case dataset of 2000 road scene images.
Each image consists of a random number of known and
unknown objects disposed randomly on the drivable area.
The dataset contains complete labels for known and unknown
objects such as construction cones, trash bags, street barriers,
etc. Examples of images can be seen in the last two rows
of Figure 2. We split this dataset into train, validation, and
testing sets with 1300, 300, and 400 images, respectively.

B. Models

Faster-RCNN was selected as the closed set baseline. This
two-stage detector is known to perform well in open world
setting [6]. We select ORE [4] as the open-set baseline,
as it has been identified as a suitable baseline for open-set
object detection in the literature [9], [17]. Our comparison
is limited to these models due to the difficulty of integrating
reproducible models into our benchmarks. These baselines
are compared against our two models: (i) Open-Set Faster-
RCNN relying on an IoU regression head for the RPN ob-
jectness score and (ii) our model that leverages additionally



TABLE I
COMPARISON OF FOUR MODELS ON SIMULATED AND REAL DATASETS WITH OR WITHOUT ENABLING UNKNOWN DETECTION IN THE BACKGROUND CLASS.

Known Unknown

COCO CODA CARLA CODA (5000 imgs) CARLA (400 imgs)
mAP Recall mAP Precision Recall Recall A-OSE ↓ mAP Precision Recall A-OSE ↓

Without unknown in the background class

Faster-RCNN 0.43 0.44 0.29 0.75 0.50 0.01 2663 0.01 0.38 0.04 78
OS Faster-RCNN 0.40 0.40 0.26 0.88 0.35 0.01 2339 0.01 0.43 0.02 30
ADOS 0.24 0.39 0.36 0.89 0.40 0.01 2032 0.01 0.01 0.01 35
With unknown in the background class

Faster-RCNN 0.43 0.44 0.29 0.75 0.50 0.04 2663 0.00 0.13 0.07 78
ORE - 0.26 0.06 0.64 0.19 0.03 431 0.01 0.10 0.01 195
OS Faster-RCNN 0.40 0.40 0.26 0.88 0.35 0.10 2339 0.02 0.16 0.11 30
ADOS 0.24 0.39 0.36 0.89 0.40 0.08 2032 0.02 0.21 0.10 35

a new objectness score specialized for autonomous driving
perception task. ADOS Faster-RCNN is the Open-Set Faster-
RCNN with an additional head in combination with the IoU
head in the RPN. This head infers the ORO score of each
anchors (as illustrated in Figure 1).

All models were trained on the COCO [26] dataset. The
Faster-RCNN models use the PyTorch implementation and
their pre-trained associated weights, ensuring reproducibility.
We selected the COCO dataset as it features an interesting
diversity among the represented classes, enabling for more
open training setup. Also, both ORE and Faster-RCNN have
available weights that were pre-trained on COCO allowing
for a fair comparison. Only ADOS Faster-RCNN is fine-
tuned on CARLA in order to learn the ORO score. To
monitor the impact of our changes from the original im-
plementations on the performance, we evaluate the Faster-
RCNN models in two modes: first, when removing detec-
tions classified as background, and second, when extracting
unknown detections from those classified as background.

C. Results

We compared the proposed methods on both real and
simulated datasets with the baseline. Table I displays the
performance metrics: mAP, Recall, Precision, and Open Set
Error (A-OSE) when calculable. The top panel of the table
shows the performance results when the unknown selection
process from the background class is deactivated. The only
unknown detections obtained are those classified within the
classes learned by the model, but where the class is not
present in the dataset ground truth. Since models trained
on COCO have 80 classes, we keep them in the classifier,
enabling the possibility of having detection with classes
missing in the dataset known classes. Consequently, they are
considered as unknown. We present these results with two
complementary objectives. The first one is to demonstrate
that the quantitative aspect of these types of unknowns is very
low compared to the unknowns from the background class.
ADOS exhibits lower performance in this scenario because
the fine-tuned RPN on CARLA does not provide detections
for classes that are not represented in the CARLA dataset.

These results are also useful for comparing the known
detection performances with and without the unknown de-
tections. Since mAP, Recall, and Precision are exactly the

same between the first and second panels of the table with
the same models, we can conclude that we have achieved
the objective of not impacting the known classes detection
while opening the model to unknown ones.

The OS Faster-RCNN demonstrates a 10 percent improve-
ment in recall and a 6 percent improvement in precision
on the CARLA dataset. Additionally, it shows a 6 percent
improvement in recall on the CODA dataset. This highlights
that our Open Set Faster-RCNN, trained on the same real-
world dataset COCO as ORE, obtains superior performance
in Autonomous Driving situations.

A qualitative example in Figure 2 illustrates the ability for
the models to detect unknown objects. The OS Faster-RCNN
provides more unknown detections than ORE. However a
significant number of these unknown detections are outside
the scope of the road. We obtain the same recall value for
ADOS and OS Faster-RCNN and improve precision by 5
percent. The ORO score allows the model to focus unknown
detections on the road, as defined in Section III-A. Figure 2
effectively demonstrates this capability when contrasted with
the outputs of ORE and OS Faster-RCNN.

ORE exhibits five times less Open Set Error in the
real-world dataset than ADOS but has five times more in
the simulated dataset. ADOS decreases the open set error
compared to OS Faster-RCNN and Faster-RCNN, indicating
an improvement in the model. However, as discussed in the
introduction, there is a need for a model that ensures very
low open set error.

VI. CONCLUSION

This paper addresses the significant challenge of devel-
oping AV perception systems that are robust in open-world
scenarios. By introducing a novel definition for the object of
interest, we adapt open-set object detection methods to road
scene scenarios. Our proposed model incorporates the On
Road Object score that aims at improving the model preci-
sion when detecting unknown objects of interest. Through the
evaluation on both real and simulated corner case datasets,
we showcase the performance improvement compared to
open-set and closed-set baselines.

However, it is essential to acknowledge that ADOS has not
yet reached the performance level required for a system that
involves potential safety implications. This indicates the need



for further research to address these challenges. We believe
that our work can serve as a valuable foundation, and we
encourage future work to build upon the insights presented
in this paper, recognizing the ongoing efforts required in
this field. Future work directions involve exploring new
scores that capture the semantic meaning of the scene and
developing underlying rules to assist the model in inferring
unknown objects without relying on their costly ground truth.
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C. Stiller, T. Fingscheidt, and B. Sick, “An Application-Driven Con-
ceptualization of Corner Cases for Perception in Highly Automated
Driving,” in 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 644–
651, July 2021.

[9] A. Gupta, S. Narayan, K. J. Joseph, S. Khan, F. S. Khan, and M. Shah,
“OW-DETR: Open-world Detection Transformer,” in 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
(New Orleans, LA, USA), pp. 9225–9234, IEEE, June 2022.

[10] X. Zhao, Y. Ma, D. Wang, Y. Shen, Y. Qiao, and X. Liu, “Revisiting
Open World Object Detection,” IEEE Transactions on Circuits and
Systems for Video Technology, pp. 1–1, 2023.

[11] J. Han, Y. Ren, J. Ding, X. Pan, K. Yan, and G.-S. Xia, “Expanding
Low-Density Latent Regions for Open-Set Object Detection,” in 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), (New Orleans, LA, USA), pp. 9581–9590, IEEE, June 2022.

[12] D. Kim, T.-Y. Lin, A. Angelova, I. S. Kweon, and W. Kuo, “Learning
Open-World Object Proposals Without Learning to Classify,” IEEE
Robotics and Automation Letters, vol. 7, pp. 5453–5460, Apr. 2022.

[13] S. Konan, K. J. Liang, and L. Yin, “Extending One-Stage Detection
with Open-World Proposals,” arXiv preprint arXiv:2201.02302, Jan.
2022.

[14] D. Pershouse, F. Dayoub, D. Miller, and N. Sünderhauf, “Addressing
the Challenges of Open-World Object Detection,” arXiv preprint
arXiv:2303.14930, Mar. 2023.

[15] W. Liang, F. Xue, Y. Liu, G. Zhong, and A. Ming, “Unknown Sniffer
for Object Detection: Don’t Turn a Blind Eye to Unknown Objects,”
in 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), (Vancouver, BC, Canada), pp. 3230–3239, IEEE,
June 2023.

[16] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: A Simple and Strong
Anchor-Free Object Detector,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, pp. 1922–1933, Apr. 2022.

[17] O. Zohar, K.-C. Wang, and S. Yeung, “PROB: Probabilistic Objectness
for Open World Object Detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11444–
11453, 2023.

[18] D. K. Singh, S. N. Rai, K. J. Joseph, R. Saluja, V. N. Balasubramanian,
C. Arora, A. Subramanian, and C. V. Jawahar, “ORDER: Open World
Object Detection on Road Scenes,” Proc. NeurIPS Workshops, vol. 1,
no. 2, p. 3, 2021.

[19] A. Furda and L. Vlacic, “An object-oriented design of a World Model
for autonomous city vehicles,” in 2010 IEEE Intelligent Vehicles
Symposium, pp. 1054–1059, June 2010.

[20] B. Spanfelner, D. Richter, S. Ebel, and U. Wilhelm, “Challenges
in applying the ISO 26262 for driver assistance systems,” Tagung
Fahrerassistenz, Munchen, p. 16, Aug. 2018.

[21] C. Sanchez, A World Model Enabling Information Integrity for
Autonomous Vehicles. PhD thesis, Université de Technologie de
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