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ABSTRACT Vehicle localization plays a crucial role in ensuring the safe operation of autonomous vehicles
and the development of intelligent transportation systems (ITS). However, there is insufficient effort to
compare the performance and challenges of different vehicle localization algorithms. This paper aims to
address this gap by analyzing the comprehensive performance of existing advanced vehicle localization
techniques and discussing their challenges. Firstly, we analyze the self-localization methods based on active
and passive sensors. The results show that, the light detection and ranging (LiDAR) and vision-based
techniques can reach high accuracy. However, they have high computational complexity. And only using
the inertial measurement unit (IMU), global positioning system (GPS), radar, and ultrasonic sensors may
not realize localization result with high accuracy. Then, we discuss V2X-based cooperative methods and
analyze the multi-sensor based localization techniques and compare the comprehensive performance among
all methods. Although the artificial intelligence (AI) techniques can effectively enhance the efficiency
of vision-based localization algorithms, the high computational complexity still should be considered.
In addition, since the IMU, GPS, radar, and ultrasonic sensors have good performance in terms of the
availability, scalability, computational complexity, and cost-effectiveness, they can be used as auxiliary
sensors to achieve good comprehensive performance through data fusion techniques. Finally, we propose
the challenges of different techniques and look forward to future work.

INDEX TERMS Active sensor-based self-localization, Cooperative Localization, Data Fusion, ITS,
Localization, Multi-sensors based vehicle localization, Passive sensor-based self-localizaion, V2X based
cooperative localization.

I. INTRODUCTION

THE continuous growth of the number of vehicles in
cities has had a negative impact on the people’s daily

lives. The large number of vehicles regularly cause traffic
jams and slowdowns, leading to excessive energy consump-
tion and significant emissions of greenhouse gases. These
emissions directly impact air quality, contributing to an in-
crease of the carbon footprint. In order to solve these kind
of problems, the intelligent transportation systems (ITS) can
be built. ITS takes cutting-edge techniques such as infor-
mation communication, automatic and intelligently control
technique, which can enable the vehicles to run automati-
cally according to the environment and their conditions by
comprehensively managing vehicles. ITS has four layers: the
physical layer, the communication layer, the operation layer,
and the service layer. The physical layer comprises various
sensors and information-receiving equipment in the system,
primarily responsible for detecting the system’s environ-

ment and collecting data. The communication layer has the
function of realizing the exchange of information between
vehicles and other devices in the system. Meanwhile, the
operation layer formulates the running route of vehicles and
controls their operating modes. And the service layer enables
automatic and intelligent system operation.

The vehicle localization methods with high comprehensive
performance is one of the key functions of the ITS, not
only the vehicle localization accuracy but also the robust-
ness and time delay performance during the localization
process should be considered. Time delays can affect vehicle
scheduling decisions and thus impact the system’s efficiency.
Although the global navigation satellite system (GNSS) [1]
[2] [3] [4] is widely used in vehicle localization, they are
susceptible to interference from severe weather conditions
and high buildings. Moreover, in some special environments
with weak signals, named GNSS-denied environment [5]
[6] [7] [8] (such as tunnels, underground parking lots, and
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forests), the accuracy of localization cannot be guaranteed.
Therefore, it is necessary to use multiple sensors to achieve
high precision localization. Multi-sensor-based localization
methods use a variety of sensors (including proprioceptive
sensors and exteroceptive sensors) to collect diverse and
effective data, which can make up for the shortcomings
of using GNSS technique alone. By taking advantage of
artificial intelligence (AI) [9] [10] [11] [12] and data fusion
technique (such as Kalman filter (KF) [13], extended Kalman
filter (EKF) [14], unscented Kalman filter (UKF) [15] [16]
[17], particle filter (PF) [18] [19] [20], etc.), the data collected
by various sensors (such as LiDAR and different types of
cameras) can be processed, which improves the accuracy and
robustness of vehicle localization.

Furthermore, the architecture of the data fusion process
mainly includes three manners: the centralized, decentral-
ized, and distributed. For the centralized architecture, all the
collected data of every vehicle is transmitted to the central
workstation where the localization process of each vehicle
is accomplished. The centralized architecture can achieve
real-time localization when the communication bandwidth
and the calculation ability of the central workstation is high
enough. However, it is difficult to deploy this kind of system
on a large scale in the real world since it requires huge eco-
nomic expenses. And in the distributed architecture, there is
no central workstation, every vehicle realizes the localization
on their own processors. Compared with centralized architec-
ture, the distributed manner requires lower communication
bandwidth, which is more suitable to achieve high real-time
performance localization.

Moreover, cooperative and collaborative localization
methods can improve the efficiency of localization by us-
ing the available information shared by other vehicles or
infrastructures. With the improvement of the communication
techniques, such as vehicle-to-vehicle (V2V) [21], vehicle-
to-infrastructure (V2I) [22], and vehicle-to-everything (V2X)
[23] [24] in the internet of things (IoT) [25] and internet
of vehicle (IoV) [26] domain, the data sharing between
objects in the system becomes more convenient. Cooperative
localization enhances the cooperation between vehicles and
infrastructures by making full use of the information in the
system.

A survey of vehicle localization based on visual and point
cloud odometry methods has been proposed in [27]. Another
related work for investigating the hardware architectures for
camera and LiDAR SLAM is proposed in [28], and the
authors develop the possible fusion approach for increasing
the localization accuracy and robustness. At the same time,
the authors of [29] propose the possible potentials and limi-
tations for map-based vehicle localization method. However,
the cooperative vehicle localization by using V2X com-
munication is ignored in these papers. Moreover, although
the vehicle accuracy as the most important performance
of vehicle localization has been discussed in these papers,
there is a lack of the comprehensive performance like the
reliability, availability, scalability and real-time performance,

which are also indispensable performances of robust vehicle
positioning system.

Therefore, the aim of this paper is to survey the state-of-
the-art localization techniques (including active and passive
sensors based self-localization methods, V2X based cooper-
ative vehicle localization methods, and so on.), analyze their
comprehensive performances, and present the challenges in
this domain. We will comprehensively discuss the state-of-
the-art vehicle localization methods in the following main
criterion and co-criteria:

Main criterion: Accuracy. The definition of the vehicle
localization accuracy can be regarded as ’how close’ the
estimated or measured position result is to the true position.
The vehicle localization accuracy validating methods are
proposed in [30]. In the 2-D vehicle localization scenario,
the accuracy can be evaluated by calculating the mean along-
track error Elat and across-track error Elong (Lateral and
longitudinal errors). As shown in equation (1).

Elat =
1

N

N∑
i=1

(xt
i − xe

i )

Elong =
1

N

N∑
i=1

(yti − yei )

(1)

Where the xt
i and yti are the true position of vehicle at time

i on x and y coordinate, respectively. The xe
i and yei are the

estimated position of vehicle at time i on x and y coordinate,
respectively.

Moreover, the positioning mean error Ep can be repre-
sented by calculating the mean Euclidean distance between
the true point (xt

i, y
t
i) and the estimated or measured position

result (xe
i , y

e
i ), as represented in equation (2). In addition,

the root mean square error (RMSE) is also an indicator
of localization accuracy, which can be calculated by the
equation (3).
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Localization accuracy can be affected by the precision of
the sensor data, which is affected by the environment, the
distance between targets, the view angle and other factors. In
addition, the standard of accuracy requirement for different
vehicle localization system is different. For collision warning
applications, the positioning accuracy of 1 meter can meet the
basic application requirements. If the positioning accuracy
can reach 0.5 meters, then the application will have good
accuracy performance [31]. Furthermore, since autonomous
vehicles(AVs) require higher localization accuracy, a local-
ization accuracy criteria for AVs in the United States is de-
fined in [32]. Both the lateral and longitudinal errors should
be 0.1 m at 95 percent confidence with the alert limit is
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0.29 m in local street scenario. Additionally, another standard
(The maximum positioning error is 0.3 m) is proposed by
the 5G PPP (5G infrastructure public private partnership) in
Europe. So, the state-of-the-art methods selected in our paper
need to meet the localization accuracy standard in different
applications.

The co-criteria includes the availability, reliability, scala-
bility, and real-time performance.

Availability [31]: The availability refers to the capacity of
vehicle localization method can be realized in different envi-
ronments (including the GNSS-denied environment, weather
extremes, and so on.). In addition, in cooperative vehicle lo-
calization domain, the standard of information sharing is de-
fined in the in-vehicle navigation systems–communications
message set requirements standard (ISO 15075).

Reliability [31]: The Reliability is an important factor for
the safety of a localization system. Moreover, the safety of
the intended functionality standard (ISO 21448) provides
the guidance on data collection on requirement on mea-
surements. The standard ISO/TR 21707 provides the quality
requirement of data being exchanged in the system.

Scalability [33]: The scalability is the ability to realize
localization in large-scale vehicles localization system. To
evaluate the scalability, the economic expenses and overall
system performance after the expansion of vehicle localiza-
tion should be considered. The ISO/DIS 23150 standard can
provide a guidance for the communication between sensors
and data fusion unit when expanding the vehicle localization
system in the future ITS.

Real-time Performance [34]: In vehicle localization, the
real-time performance can be evaluated by the system re-
sponse time or the time delay of the result refresh process.
For the cooperative vehicle localization, the communication
delay can affect the real-time performance, the standard of
communication delay is defined in IEEE 802.11 p.

Based on the both main criterion and co-criteria, by using
the reference selection method proposed in the appendix, the
references with competitive results are determined to survey
in our paper.

The process of vehicle localization is shown in figure 1. It
mainly includes the data collection and processing stage, and
the output result is the estimation of the vehicle’s position
and direction.

In addition, the coordinate system in the localization do-
main mainly includes earth-centred inertial (ECI) coordinate
system, earth-centred earth-fixed (ECEF) coordinate system,
and the geographical coordinate system.

The remaining sections of this paper are structured as
follows: Section II discusses the active sensor-based vehicle
localization algorithms. Section III describes the passive
sensor-based methods. Section IV analyzes the V2X-based
cooperative localization algorithms. Section V discusses the
multi-sensor based methods. Section VI gives the compre-
hensive performance analysis of different methods and pro-
poses their challenges. Finally, the conclusion and future
work are presented in the last section.

Data Collection

LiDAR

RFID

GNSS

Vision

Filters

Artificial
Intelligence

Geometric
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vehicles

The direction
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Results
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FIGURE 1. Vehicle localization process.

II. ACTIVE SENSOR-BASED SELF-LOCALIZATION
In this section, we analyze and compare the state-of-the-
art vehicle self-localization methods which use the on-board
active sensors in the data collection step. Active sensors,
including LiDAR, radar, and ultrasonic sensors, they can
emit energy to the environment and the data is collected by
measuring the scattered or reflected signal. In the following,
we illustrate the advantages and disadvantages of each data
collection method. Additionally, we compare the economic
cost of each sensor and analyze its latency, which affects
the real-time performance during vehicle self-localization.
For the data processing step, we discuss the advantages
and disadvantages of each algorithm and further analyze the
accuracy and complexity performance of each technique. The
current main methods for the vehicle self-localization algo-
rithm will be described in detail in the following subsections.

A. LIDAR-BASED SELF-LOCALIZATION METHOD
Light detection and ranging (LiDAR) can collect emitted
laser light and calculates the distance to the target based on
the intensity and time of the received laser, which can provide
accurate data for vehicle localization. By processing the data
collected by LiDAR through the use of filters, mapping, arti-
ficial intelligence (AI), and multi-method techniques, it has
excellent accuracy performance in the vehicle localization
domain. For a LiDAR-based method, a map (including planar
and point-cloud maps [35]) is generally required to match
with the point cloud data collected by LiDAR. If there is
no prior map, the simultaneous localization and mapping
(SLAM) method can be used to create a real-time map. The
position of the vehicle can be determined by map matching.

To address the problem that the traditional map match-
ing process is easily affected by the resolution, the authors
of [36] proposed an algorithm based on a free-resolution
probability distributions map (FRPDM) using 3D LiDAR.
The FRPDM stores the probability distribution converted
by the Gaussian mixture modeling (GMM) method, which
effectively reduces space complexity. The size of the FRPDM
is about 0.061 MB/km, which is smaller than the extended
line map in [37] (0.134 MB/km), the binary grid map in [38]
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(0.901 MB/km), and the multi-resolution Gaussian mixture
map in [39] (44.3 MB/km). The authors also proposed a data
association method for the point-to-probability distribution
scan matching method. The RMSE of the lateral and lon-
gitudinal directions is 0.057 m and 0.178 m, respectively.
Although this method can reach an average map matching
time of 37 ms, the extraction time is 146 ms, which results
in a higher total data processing time (183 ms). Therefore,
this method is not sufficient for applications that require
high real-time performance. To increase the real-time perfor-
mance, the authors of [40] proposed a localization method
based on mapping and UKF techniques, using a distance-
weight map (DWM) in an underground mine environment.
The spatial localization error is 4 cm, and the processing
time per frame is 60 ms. In order to further improve the
availability of localization algorithms in mountainous rural
environments, an algorithm exploiting multi-layer LiDAR
was proposed in [41]. A 3D normal distribution map is built
at first, and then the normal distribution transform (NDT)
scan matching method and the EKF technique are employed
to estimate the position. The average absolute error of longi-
tudinal and lateral are 0.38 m and 0.08 m with the average
velocity 45 km/h, respectively. However, it is not reliable
enough for autonomous driving because it may cause the
traffic accident during demonstrations. Additionally, another
work which can reach high accuracy localization is proposed
in [42]. This method includes the mapping and localization
phase. In the mapping phase, the pole detector is designed,
and the pole landmarks are extracted by the pole detector
from LiDAR scans. Then, the extracted pole landmarks are
registered with a global map which is provided by the true
trajectory. In the localization phase, the PF technique is
implemented to realize position estimation by matching the
pole landmarks provided by sensors with that in the map. The
advantage of this algorithm is that the positioning RMSE is
about 0.1 m, which can meet the accuracy requirement of
AVs.

Furthermore, in recent years, the AI technique is em-
ployed in the localization domain to reach high real-time
performance. The authors of [43] proposed an improved
lightweight deep neural network to realize the deep local
feature extraction in day-night changes environment. A prior
map is built by using aligned dense LiDAR point clouds
and imagery provided by a portable camera-LiDAR sensor.
Meanwhile, the ground truth point cloud dataset with 5 cm
accuracy is employed to evaluate the localization accuracy
and robustness in vision-changed conditions. The extraction
speed of the feature in this method is 92 frames per second,
and this work is focus on the day-night changed environment,
which also has high availability performance. Another work
was proposed in [44], the authors proposed a siamese neural
network-based algorithm by using a global prior map. The
reduced dimension scan representations learned from neural
networks are utilized to realize place recognition, and the
global prior map is employed to determine the vehicle’s posi-
tion. The advantage of this algorithm is that the storage space

for sensor data is reduced. Moreover, another work based on
deep learning is proposed in [45]. In order to achieve fast and
accurate information interaction during vehicle localization,
only a few LiDAR points are used in the proposed frame-
work. In addition, a clustering algorithm is employed to real-
ize the non-semantic features extraction from the information
collected by LiDAR and the data smoothing process occurs in
the convolutional layers. In order to enhance the reliability of
the algorithm, both the north campus long-term (NCLT) and
Kitti dataset are used to evaluate the accuracy performance in
the short and long term trajectory. Experimental results show
that a reasonable accuracy (Mean positioning error is below
1 m) can be achieved.

In addition, a LiDAR-based road sign perception system
using third-party sparse maps (TPSM) was proposed to im-
prove the accuracy of traditional GNSS-based vehicle local-
ization algorithms [46]. This system uses LiDAR to detect
road and lane sign features and employs the PF technique
to estimate the position of vehicle. This algorithm increases
the accuracy by using TPSM road features (0.31 m for the
constrained update). However, the TPSM is not suitable for
all sensors, limiting its scalability. To address the issue that
the traditional normalized cross-correlation (NCC) algorithm
requires sufficient feature points, a cross means absolute dif-
ference (CMAD) algorithm based on known map information
using 3D LiDAR is proposed in [47]. This method includes
offline and online parts. In the offline part, the map is built,
calibrated, and segmented. The 3D map is then transformed
into a 2D grid map and feature extraction is performed. In the
online part, the same procedure is used for LiDAR scanning.
The mean energy and feature registration method are used
to initialize location and orientation of the vehicle, and the
drivable moving search region (DMR) method is designed
during feature registration during the process. The RMSE is
about 0.1-0.3 m in outdoor environments and it has good real-
time performance.

B. RADAR-BASED SELF-LOCALIZATION METHOD
While the LiDAR-based and vision-based method can pro-
vide more precise data, radar-based methods cannot be easily
replaced at the moment. This is because radar is the only sen-
sor capable of accurately measuring the speed of objects un-
der long distance conditions, as supported by Zhou et al. [48].
Moreover, radar-based methods can offer good real-time
performance due to their low latency during data collection,
as highlighted by Lu et al. [34]. Additionally, radar-based
methods are capable of functioning effectively in adverse
weather conditions, further enhancing their reliability. Some
popular types of radar used in vehicle localization,including
multiple-input multiple-output radar [49], millimeter wave
automotive radar [50], and so on.

In order to enhance the availability of localization meth-
ods, the authors of [51] proposed an improved algorithm
that uses a 76GHz omnidirectional millimeter-wave radar
(MWR). They develop a novel error propagation model to
calculate the unique noise characteristics of sensors operating
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in snowy environments. The process consists of four steps:
image generation of objects, template matching, probability
updating, and offset updating. The lateral RMSE of 0.25 m
can be achieved, regardless of the presence or absence of
snowfall. Since the radar sensor has strong reliability and
availability, especially in extreme weather conditions, the
author in [52] used ground penetrating radar to realize vehicle
localization in inclement weathers. The positioning results
show that the total mean positioning error (the sum of along-
track and cross-track error) is 0.34 m, 0.39 m, and 0.77 m,
in the clear, snow, and rain weather scenario, respectively.
To improve the accuracy of radar based vehicle localization
methods in urban environments, the accuracy is less than 0.5
m with 95-percentile is achieved in [53].

In addition, the authors of [54] proposed a machine
learning-based algorithm by using mmWave radars operating
in the frequency range of 77 GHz-81 GHz. This algorithm
consists of two steps: range estimation and angle estimation.
For range estimation, unwanted clutter is removed based on
the properties of mainlobe clutter and sidelobe clutter, fol-
lowed by estimating the average range for a certain frame. To
improve angle estimation accuracy, a polynomial regression
model is proposed, achieving the RMSE of 2.56 degrees.
Another work that utilizes artificial intelligence (AI) tech-
niques was presented in [55]. The authors designe a deep
radar object detection network (RODNet) which uses range-
azimuth frequency heatmaps (RAMaps). RODNet increases
the availability by incorporating three architectures, namely
3D convolution deconvolution, 3D stacked hourglass, and
3D stacked hourglass with temporal inception. Additionally,
a new method for learning step is proposed by leveraging
cross-model supervision. The latency is less than 100 ms for
real-time performance.

C. ULTRASONIC-BASED SELF-LOCALIZATION
METHOD
Ultrasonic-based sensors are commonly used in low-cost
curb detection and localization systems due to their afford-
ability. Additionally, the ultrasonic sensor is widely used in
indoor positioning algorithms [56]. Nevertheless, the limited
detection range of ultrasonic sensors (approximately 3 m)
makes them unsuitable for long distance measurement sce-
narios. In other words, the scalability performance is insuf-
ficient. To increase accuracy and real-time performance of
ultrasonic-based localization methods, the authors of [57]
designed a low-cost curb detection and localization system
utilizing multiple ultrasonic sensors. Initially, a ground re-
flection elimination filter is proposed to eliminate obvious re-
flections caused by ground reflections. Subsequently, the reli-
ability of the measurement data is calculated, and a distance
estimation algorithm is proposed by analyzing the obtained
reliability. The complexity of this algorithm is O(N2), and
when four ultrasonic sensors are implemented, the system
achieves the accuracy with 13.5 cm on the RMSE.

Additionally, the execution time for processing raw sensor
data (collected over 100 seconds) is 0.58 seconds, demon-

strating good real-time performance. Another method with
excellent real-time performance was reported in [58]. To
further enhance the availability of ultrasonic-based methods
in GPS-denied environments, a navigation estimation system
is designed. The raw data from the ultrasonic sensors is
preprocessed to reduce the effects of sensor noise, and during
GPS blockage periods, The EKF technique is employed to
estimate the vehicle’s position. The result refresh rate is
92 Hz, achieving excellent real-time performance.

D. DISCUSSION
Although LiDAR-based localization methods can provide
high accuracy compared to other active sensor-based meth-
ods, they have higher computation requirements and eco-
nomic expenses. In terms of 1D, 2D and 3D map matching
method in LiDAR-based methods, the 3D map matching
method can get the most accuracy and robustness localization
result since the 3D maps have rich type of features, and
it especially has good performance in complex scenarios.
However, compared with 1D and 2D map-based methods,
the storage requirement of map and the computation power
increase dramatically compared with 1D and 2D map-based
methods, which has bad influence on the performance of scal-
ability. The use of AI techniques can be employed to enhance
the accuracy and real-time performance of 3D map matching
methods [59], which could be beneficial for applications
where accuracy and real-time performance are crucial, such
as autonomous driving, in the future.

Furthermore, although radar-based localization methods
may not always meet the accuracy requirements of au-
tonomous driving or ITS, the radar still plays an irreplaceable
role in the field of object detection [60]. And the radar-based
localization system has excellent performance in extreme
weather scenarios. On the other hand, ultrasonic sensor-based
methods offer excellent real-time performance, as reported
in [58], which can serve as auxiliary sensors in certain
scenarios.

III. PASSIVE SENSOR-BASED SELF-LOCALIZATION
For passive sensors, such as IMU, GPS, and vision-based
sensors, only the radiation or emission in the nature or from
the target can be detected. In this section, we analyze the ac-
curacy, real-time performance, and complexity performance
of self-localization methods based on passive sensors that
utilize popular data processing techniques, such as filters, AI,
and mapping methods.

A. IMU-BASED SELF-LOCALIZATION METHOD
The IMU sensors are widely used for dead reckoning (DR)
[61] and inertial navigation system (INS) [62]. However, a
disadvantage of the IMU sensor is that when applied to long-
distance positioning, the accumulated error can significantly
decrease the accuracy of the final result. One approach which
can mitigate this issue is to use multiple IMUs simultane-
ously to increase the accuracy of the localization system.

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3318885

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

In [63], the authors proposed an algorithm based on
multiple IMUs. They employ least-square and probabilistic
marginalization methods to map measurements from all IMU
sensors onto a virtual IMU, and the probabilistic estima-
tors are used to estimate the location of the vehicle. This
algorithm achieves real-time performance with localization
refresh time of about 10 ms, based on sensor measurement
rates of 200 Hz. However, the RMSE of this approach is
0.6 m. Another multi-IMU based system called real-time
multi-IMU visual-inertial navigation system (mi-VINS) was
proposed in [64]. In this system, in order to enhance the real-
time performance, a tightly-coupled EKF based estimation
method is proposed to fuse asynchronous measurements
from multiple sensors. The propagation method of the joint
covariance and state estimation of each IMU is defined.

Furthermore, to ensure the consistency in the data fusion
process, all the spatial and temporal calibration parameters
are processed online for the calibration refinement of sensors,
which can reduce the space complexity caused by offline
steps. The RMSE of this approach is about 0.2 m with an
average data processing time of 23 ms (43 Hz), and mi-VINS
can increase the robustness in cases where one of the IMUs in
the system does not work. To further increase the robustness
of IMU-based methods, the authors of [61] proposed an
algorithm based on KF and deep neural networks. The deep
neural networks are utilized to optimize and provide noise
estimates during the KF algorithm. The raw data of the IMU
is refreshed at a rate of 100 Hz, and the translational error
is about 1.1 percent. Additionally, in certain special environ-
ments, such as GPS-denied environments, IMU can play a
crucial role in the localization system.Another work based
on solely the commercial-of-the-shelf (COTS) IMU in GPS-
denied environment is proposed in [65].A new developed
Bayesian filter is proposed which can achieve the position
error of less than 0.5 m.

B. GPS-BASED SELF-LOCALIZATION METHOD
GNSS, including GPS [66], Beidou [67], and Galileo [68],
can provide convenient and low-cost global localization ser-
vices by using four or more satellites. The accuracy of GPS
is about from a few meters to twenty meters [35]. In order to
increase the accuracy of GPS localization, various techniques
such as real-time kinematic (RTK) [69], has been proposed.
However, GPS accuracy is easily affected by factors such
as obstacles, atmospheric conditions and signal blockage.
So, the vehicle localization in GPS-denied environment is a
popular research topic [70] [71].

In order to improve the accuracy of GPS-based localization
by GNSS signal reception state detection, the authors of [72]
designed a multi-path detection system based on support
vector machines (SVM). To enhance the effectiveness of
the map-matching method, the authors of [73] proposed a
spatio-temporal-based matching algorithm (STD matching)
which considers the spatial features of roads (including road
topology and detailed road information), vehicle speed con-
straints on different roads, and real-time vehicle movement

during low-sampling rate GPS trajectories. Furthermore, the
authors employ GPS clustering, GPS smoothing, and A∗

algorithms to reduce the computational costs and improve the
accuracy. The experimental result based on a road network
containing 200,236 vertices and 90,709 road segments shows
that the matching accuracy was over 80%, which is higher
and more stable than the results obtained by the HMM-
RCM algorithm proposed in [74]. However, the running time
with 3-10 candidate points was about 11 seconds under low-
sampling rate conditions.

Furthermore, to enhance the scalability of GPS-based lo-
calization methods, the authors of [75] designed a system
which is intended for global-scale deployment. This system
involves an offline map building step and an online query
step. In the offline map building step, they design a structure-
from-motion model and congas descriptors, and the struc-
ture and appearance compression methods are employed to
reduce data storage space. Finally, the data is stored using
a tiled model. In the online query step, congas extraction
and projection, 2D-3D matching and voting, and pose recov-
ery and refinement are included. The query latency of this
system is about 200 ms, demonstrating excellent real-time
performance. Additionally, this system is robust compared to
previous methods, as it delivers significantly stable results.
Unlike previous methods, aiming at improving the GPS lo-
calization accuracy in non-line of sight (NLOS) scenario, the
authors of [76] employed 3D mapping techniques to improve
the conventional ranging-based GNSS localization methods.
Specifically, they utilize terrain height-aiding techniques to
achieve additional virtual ranging measurements, and the
NLOS reception is predicted by using 3D city models.

C. VISION-BASED SELF-LOCALIZATION METHOD
Vision-based data collection methods capture target images
through vision devices such as monocular cameras [77],
binocular cameras [78], or panoramic thermal cameras [79],
and then the effective feature data can be extracted from the
images. The SLAM algorithm [80] [81] [82] [83], which
is a basic vehicle localization algorithm using vision sen-
sors, is widely implemented in urban environment. SLAM
algorithms include visual SLAM (vSLAM) [84], centralized
collaborative monocular SLAM [85], and so on.

The vSLAM technique is widely used in vehicle local-
ization and it mainly includes three modules: initialization,
tracking, and mapping [86]. The initialization module is
responsible for establishing the coordinate system, and the
tracking and mapping modules have the function of build-
ing and updating the map. Meanwhile, the authors of [87]
proposed a method which utilizes the LiDAR-based map,
which can achieve the real-time performance on 0.06s and
the RMSE is about 0.1 m. In order to further enhance the
real-time performance, a topview system based on real-time
capable image processing pipeline was designed in [88],
and the estimation of position is realized by processing data
collected by four fisheye cameras. The accuracy of this algo-
rithm is about 0.33 m on the worst condition, and the result
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refresh time is 0.04 s. Furthermore, another work with high
accuracy and real-time performance based on visual sensor
is proposed in [89]. In the developed method, the back lane
markings registry (BLMR) and data matching method with
light-weigh is used. The visual lane marking is detected by
sensors and matched with map, for the purpose of estimating
the position of vehicle in the map reference. Additionally,
the proposed algorithm has high reliability and availability,
which can realize data processing and positioning even if
the lane markings can not be observed by a short distance
detection. The positioning mean error of this method is 0.06
m, for the real-time performance, the result refresh time is
7.66 ms.

Meanwhile, another work called high-speed pavement vi-
sual odometry (HSP-VO) method based on two cameras
was proposed in [90]. The data collected by the lateral
camera is used to match with the sparse visual map (noting
that the sparse visual map is created in the offline step),
which includes GPS coordinates, visual features, and the
3D information. Another down-view high-speed camera is
used to increase the efficiency of feature extraction during
the vehicle’s movement at high speed. Moreover, the KF
technique is employed to fuse the data provided by the two
cameras. The accuracy of this method is 0.19 m on mean
error. In addition, the mean time consumption of the feature
extraction and matching process by using raw images is about
14.1 ms, which is an excellent real-time performance.

D. DISCUSSION
Although passive sensors can achieve low-cost localization,
their accuracy, robustness, and availability may not meet
the high-performance requirements of ITS applications. The
accuracy of GPS positioning is easily affected by the NLOS
and multi-path effect, and the GPS is completely ineffective
in signal-denied environments. Nowadays, a more popular
approach is to use GPS as an aid equipment, combining it
with other sensors through data fusion methods to achieve
higher-performance localization. For example, in low-cost
sensor localization systems with excellent scalability per-
formance, GPS receivers are important sensors. Addition-
ally, only using an IMU sensor cannot achieve accurate
result because the cumulative error grows rapidly over time.
However, it can achieve localization with excellent real-
time performance, as shown in [63]. Additionally, vision
sensors play an irreplaceable role in the positioning domain,
particularly in SLAM algorithms, and reasonable accuracy
can be achieved. However, vision sensors depend on light
intensity and weather conditions. In order to increase real-
time performance, a graphics processing unit (GPU) with
high-performance should be equipped, which increases eco-
nomic expenses. Moreover, vision sensor-based methods us-
ing maps require additional computation power to process
and store the maps. With the development of AI techniques
in the field of image processing, applying AI techniques to
vision-based methods has great potential to enhance accuracy
and real-time performance. AI techniques for localization

and mapping have recently been reported in [91].

IV. V2X BASED COOPERATIVE LOCALIZATION
Unlike the self-vehicle localization method, cooperative or
collaborative vehicle localization methods use the V2X tech-
nique to share their state data (such as velocity, heading,
location, and environment information) between vehicles
or infrastructures, achieving the purpose of enhancing the
efficiency through data sharing. V2X enables the data com-
munication capability between vehicles and other objects
(such as base stations) [92]. It includes V2V, V2I, vehicle-
to-cloud (V2C), vehicle-to-road-signs (V2RS), vehicle-to-
network (V2N), and vehicle-to-pedestrian (V2P). The V2X
standards are DSRC (IEEE 802.11p) and C-V2X (3GPP
LTE/5G NR) [93]. The 802.11p band is 5.9 GHz (5.85-
5.925 GHz) [94]. The details of cellular-based V2X com-
munications are in [95]. Combining main communication
techniques such as UWB (802.15.4a) [96], Wi-Fi (IEEE
802.11) [97], RFID [98], and cellular-based (5G) [99] with
AOA [100], TDOA [101], and RSS [102] [103] methods,
the range estimation and cooperative vehicle localization can
be achieved. In this section, we analyze the state-of-the-art
vehicle localization based on V2V and V2I communication
techniques.

A. V2V-BASED LOCALIZATION METHOD
The V2V-based localization method refers to the vehicle
localization method which utilizes the data shared between
connected vehicles. By using the shared state of other ve-
hicles, such as their distance, speed, position, and orien-
tation angle data in V2V networks, a vehicle can achieve
localization with reasonable accuracy [104]. The main pro-
tocol of V2V is IEEE 802.11p, and the communication
data mainly includes three kinds of messages: cooperative
awareness messages (CAMs), decentralized environmental
notification messages (DENMs), and service announcement
messages (SAMs) [35]. One work based on V2V communi-
cation technique named implicit cooperative positioning with
data association (ICPDA) has been proposed in [105]. Two
algorithms named ICP-DA-PF and ICP-DA-LC are proposed
for vehicle localization in urban environment. Additionally,
a new distributed Bayesian framework is designed and a
belief propagation algorithm is proposed to solve the data
association problem over the framework in a distribute way.
Considering the communication/processing overhead in the
cooperative vehicle system, the distributed KF is employed
to solve the trade-off between positioning accuracy and al-
gorithm complexity. The experiment results shown that the
RMSE of vehicle localization in real urban scenario is about
0.8 m.

Meanwhile, the authors of [106] proposed an algorithm
which uses the chain branch leaf (CBL) clustering method
in VAENTs, which can improve the adaptability to different
data transfer rates during the V2V communication process.
Additionally, they propose the multi-point relaying technique
to reduce time delay and optimize network routing. Experi-
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mental results show that in real scenarios, the latency is less
than 250 ms in all scenarios, and the average time delay
is about 180 ms, which improves real-time performance. In
the real world, radio-based cooperative vehicle localization
methods are susceptible to the influence of multi-path signals
provided by different types of objects in the process of infor-
mation transmission, thereby reducing the accuracy of posi-
tioning.A work on mitigating the effects of multi-path signals
on localization accuracy is proposed in [107]. Firstly, in order
to make better use of the localization information provided
by different objects, a radio map is established to store the
number of objects, object type, and object state. Then, the
probability hypothesis density filter and a map fusion routine
are proposed to integrate the available information provided
by multi-path signals to enhance the accuracy of vehicle
localization. The RMSE of localization result is less than
0.3 m, which shows that this method can effectively utilize
information generated from different types of objects and the
high reliability. However, map matching based localization
methods need to create and maintain a large-scale map which
causes expensive calculation and data storage cost.

B. V2I-BASED LOCALIZATION METHOD
The V2I technique can realize data sharing and commu-
nication between vehicles and roadside units (RSUs)/ base
stations (BSs), and the protocol for V2I is IEEE 802.11p.
Compared to V2V-based methods, V2I-based methods have
more effective information (such as the position of fixed
RSUs and BSs). To make full use of the position of fixed BSs
to increase the accuracy, the authors of [108] [109] proposed
the V2I-based method by using data-fusion technique to
realize vehicle localization in the IoV system, and the GPS
data correction technique is also employed. In the system
model, the RSU is equipped with a GPS receiver that can
provide the difference of received GPS data from the real
position, which is utilized to correct the real-time position
collected by on-board GPS receivers. In the data process-
ing stage, a data fusion system consisting of KF and EKF
techniques is designed to fuse the corrected GPS data and
IMU data to obtain the position of the vehicle. The advantage
of this algorithm is that only one single RSU is used to
collect data from multiple vehicles, making the economic
expense low. When the vehicle passes the toll gate ramp,
the error is less than 0.1 m, which is accurate. However, if
the GPS signal is not available or has high time delay during
transmission, the real-time performance and accuracy will be
seriously affected. To improve the accuracy when the GPS
signal strength is insufficient, the authors of [110] proposed a
DOA and V2I technique-based algorithm. The system model
consists of three cooperating BSs, and the sparse Bayesian
learning (SBL) robust technique is used to enhance the
stability and effectiveness of DOA data. Finally, the vehicle
position is estimated by processing the location data of BSs
and DOA measurement data generated in different situations.
The advantage of this algorithm is its high robustness, and it
can be used in non-uniform noise scenes. The disadvantage

is that it requires high hardware facilities (three BSs are
required), and it is difficult to realize vehicle localization in
an environment with insufficient BSs in the real world.

Range of RFID reader

FIGURE 2. Model based on RFID.

The radio frequency identification (RFID) technique is
commonly used for indoor localization, where the tag reader
reads data on the tag through radio signals to collect data. The
communication diameter of the tag reader is shown in Figure
2. Tags are deployed on the roadside, and the tag reader is
equipped on the vehicle. When the distance between tags and
the car is less than the communication range, the reader can
get the information provided by the tags. The international
standards organization (ISO) has three standards for RFID:
ISO 14443, ISO 15693, and ISO 18000, and the tags include
active tags and passive tags. The authors of [111] utilized
ultrahigh frequency (UHF) RFID to achieve accurate local-
ization in a GPS-less environment. They use the robust Chi-
nese remainder theorem (CRT) and the levenberg-mlarquardt
(LM) method to estimate the position of the vehicle. The
frequency band of the reader is between 902.75 and 927.75
MHz, and the protocol is ISO/IEC 18000-6C Class1 Gen2.
The error is less than 0.27 m with 90% probability. Since this
method has excellent real-time performance, the error caused
by the time delay is less than 0.1 m. However, this algorithm’s
complexity is made up of two parts: CRT (O(nN2)) and
LM (O(Kk3)), where n and N are the number of tags and
signal frequencies, respectively, and K and k are the number
of iterations of the LM method and the dimensions of the
matrix, respectively.

Furthermore, related work concerning unmanned aerial
vehicle (UAV) accurate localization, a system which realizes
six degrees of freedom (6-DoF) localization was proposed by
[112]. Each UAV is equipped with three or more RFID tags,
and the Bayesian filter method is implemented to estimate
the location of the UAVs. The mean error and orientation
estimation result is 0.04 m and 2.5 degrees, respectively.
Meanwhile, for the purpose of enhancing the real-time per-
formance, the authors of [113] designed a real-time local-
ization system (RTLS) based on RFID and UWB technique.
This system includes the real-time data acquisition layer, the
data processing layer, the holographic workshop map layer,
and the application service layer. The response time is less
than 0.5 s and the average accuracy of RFID and UWB based
localization method is 0.39 m and 0.18 m, respectively.
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C. V2V AND V2I-BASED LOCALIZATION METHOD
For a localization method that takes advantage of both V2V
and V2I communication techniques, the authors in [114]
designed a generic stochastic localization framework which
can process different type of data collected by sensors. A PF
based algorithm is designed to fuse the relative positioning
provided by neighbor vehicles, which can achieve a reason-
able localization error with about 1 m. However, the data
transmission delay and the relative data association is not
considered, which may have a bad influence on the real-time
performance.

Moreover, in order to realize vehicle localization in weak
GPS signal environments, the authors of [115] designed
an error-cognitive localization system that uses both the
V2V and V2I technique. This system includes a tag-reading
model, a tag deployment model, and a position correction
model, etc. The roadside tag deployment method is obtained
through matrix analysis, and data such as vehicle speed, tag
distance, and correction parameters are used to increase the
accuracy. This algorithm can realize vehicle localization in
scenarios where there is no GPS signal or the GPS signal
is weak, and the proposed tag deployment method reduces
the number of tags utilized in the system, further reducing
economic expenses. Additionally, the RMSE is less than 0.5
m. At the same time, the authors of [116] proposed a co-
operative localization algorithm by using GPS pseudorange
errors in the V2X network. V2V and V2I communication
techniques are employed to share positions, pseudorange
estimated errors, and DR data, while set inversion and con-
straint propagation (CP) techniques are used to design the
distributed estimation algorithm. Highly reliable confidence
domains can be calculated without the need for direct range
measurements, and the latency is less than 0.1 s.

D. DISCUSSION
The V2X-based vehicle localization method can enhance
the cooperative interaction ability of the whole system by
realizing information sharing, thereby further enhancing the
information utilization effectiveness in the system. In ad-
dition, fault detection and exclusion methods can also en-
hance the efficiency, which can also benefit from V2X com-
munication techniques [117]. With the development of the
5G, the communication efficiency can be further enhanced,
which can enhance the performance of V2X-based methods.
Compared to V2I-based methods, the V2V-based method
has better scalability performance since it does not require
infrastructure deployment, such as base stations. However,
the V2I-based localization can increase accuracy since the
position of infrastructure is fixed, which can realize the
correction of positioning errors. The disadvantages of V2X-
based methods include the need of communication resources
and time delay during communication process, especially
in the large number vehicles scenarios. So, the time delay
during data transmission should be considered in order to
increase the accuracy. Additionally, the RFID-based method
can provide excellent positioning performance in special ap-

plication scenarios, such as highway toll gates or parking lots.
In summary, V2X-based localization has excellent potential
for high-precision vehicle positioning applications (such as
autonomous driving).

V. MULTI-SENSORS BASED VEHICLE LOCALIZATION

From the above discussion, no single sensor can meet the
availability, scalability, computational complexity, economic
expenses, accuracy and real-time performances. So, taking
advantages of multiple sensors has the substantial potential
to achieve vehicle localization with more comprehensive
performance. In this section, we will analyze the multi-sensor
based localization methods.

A. MAP-BASED MULTI-SENSOR LOCALIZATION

The authors of [118] proposed a method based on an im-
proved Monte Carlo localization (MCL) technique that uti-
lizes both GNSS and LiDAR data to achieve robust local-
ization in different environments. The GNSS data increases
accuracy in feature-poor scenarios, and the LiDAR data can
enhance accuracy in feature-rich scenarios. This method can
achieve high accuracy in complex environments (0.566 m po-
sition mean without GNSS and 0.3895 m on average position
mean with GNSS). However, the sensor cost is high, which
hinders large-scale implementation. Another algorithm that
uses radar and camera was proposed in [119].

Meanwhile, to enhance the real-time performance of
multi-sensor-based consistent localization methods using
mapping, the authors of [120] proposed a global map based
algorithm which achieves a result refresh rate of 25 Hz with
an average error which is less than 0.1 m. To get the position
of vehicle in underground parking lots, a method based
on Wi-Fi and computer vision techniques was proposed in
[121]. This algorithm uses dead-reckoning (DR), the random
sample consensus (RANSAC) method, and complementary
filter to realize data fusion and correct errors in offline maps,
achieving the accuracy of less than 1 meter. The advantage
of this algorithm is that it can achieve reasonable accuracy
when GPS is unavailable, but the requirements for the various
modules of the localization system can lead to high complex-
ity. In addition, another map based multi-sensor data fusion
vehicle localization method is proposed in [122]. The authors
use images sequence and wheel-inertial ego-motion data to
create a semantic local map at first. The position estimated by
camera data is provided by matching the local map with the
online map database. The map matching process is simplified
by using the developed supervised neural network, which can
reduce computational overhead. The mean absolute errors
of positioning result are 0.04 m and 0.17 m in the lateral
and longitudinal directions, respectively. However, the map
matching process requires on line map, which may cause
positioning time delay.
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B. DATA FUSION-BASED MULTI-SENSOR
LOCALIZATION
The authors of [123] proposed an algorithm named fuzzy
adaptive Kalman filter, which can increase the performance
of the conventional UKF by verifying and correcting the real-
time noise of sensors. The proposed fuzzy adaptive Kalman
filter can increase the accuracy by about 40 percent compared
to the conventional UKF.

In order to increase the localization real-time performance
and accuracy of AVs, the authors in [16] proposed a real-time
localization method based on UKF and PF. The main contri-
bution of this paper is that both the real-time performance
and the accuracy is balanced by the proposed optimization
method. The data collected by IMU, LiDAR, and GPS is
fused to estimate the position. The result refresh time is about
8.2 ms and with the localization error which is less than 0.3
m. However, the computational complexity is not considered
since the PF method has high complexity when the number
of particles is large.

Furthermore, to further improve the accuracy, the authors
of [124] proposed an IMM-UKF-GNN (grey neural network)
algorithm, where the IMM method can achieve a soft switch-
ing among three different UKFs (noting that these UKFs
have different noise). In this work, the GNN is employed
to further increase the accuracy by training. Moreover, the
bio-inspired technique has been implemented in data fusion
methods. For example, the authors of [125] proposed an
integrated robot localization method named particle swarm
optimization enhanced particle filter (POF) based on PF and
PSO techniques. The pose tracking of robots is realized by
the particle set update, evolutionary search and normaliza-
tion, and resampling steps. The mean error of the result is
less than 0.05 m, and the position refresh rate is 96 ms. In
addition, another work considering low-cost multiple sensors
(gyroscopes, acceleration, magnetic, and mileage sensors)
data fusion method was proposed in [126]. For the purpose of
reducing the error of result outputted by the EKF, the authors
propose an adaptive error correction EKF algorithm that uses
the evolutionary iteration mechanism of genetic methods to
optimize the noise covariances in the traditional EKF.

Focusing on the vehicle localization in GPS-denied envi-
ronment, the authors of [127] propose an adaptive continuum
shape constraint analysis (ACSCA) method. First of all, one
novel identifiable specific target named icosahedron target
is defined and detected by LiDAR sensor along the vehicle
moving trajectories. The ACSCA algorithm can recognize
the icosahedron target and get the relative position data for
calculating the position of vehicle automatically. The RMSE
of the localization result is less than 0.05 m. However, the
time and economic requirements for preparation, data pro-
cessing and data postprocessing is high. At the same time,
another work focusing on both real-time and accuracy perfor-
mance is proposed in [128]. This method includes two parts,
at the first part, the wheel odometry, IMU, and tightly coupled
visual-inertial odometry are employed to collect data. And
the data fusion of these different kinds of data is realized

by EKF technique. At the second part is dense 3D point
cloud mapping, which can process data in real-time based
on a standard CPU. The average RMSE of the positioning
based on six different experiment scenarios is less than 0.3 m.
Moreover, these two algorithms have good performance in
GPS-denied environments, which increases the reliability of
the localization system. To increase real-time performance,
a data fusion-based multi-sensor algorithm is proposed in
[129], which has an excellent result refresh time (3 ms).

Additionally, another algorithm based on deep learning
and PF was proposed in [119]. A deep learning-based scoring
mechanism is designed to detect the position of the rear
corner of the vehicle. Then, the authors use the PF to output
the estimated vehicle position, and the output data is fused
with the radar data to obtain the final position of vehicle,
which can achieving an accuracy of 0.18 m. The advantage
of this algorithm is that this system is robust. However,
the requirements for the first-acquainted vehicle picture are
strict because the picture needs to be applied to extract the
rear corner location information, and the final result will be
inaccurate if the radar data is inaccurate. At the same time,
the authors in [130] utilized the graded KF technique to fuse
the data collected by IMU and GPS. This algorithm satisfies
the advanced-surface movement guidance and control system
(A-SMGCS) standard, and it can achieve comprehensive
utilization of sensor data. However, the performance of the
result is not analyzed when the vehicle is moving in a non-
linear motion, and the impact of changes in road conditions
on the accuracy needs to be further considered.

In addition, another algorithm based on multi-sensor data
fusion was proposed in [131]. The sensors in the data col-
lection stage include GPS and camera, and the geographic
information databases are employed to reduce the impact of
accumulated errors on the accuracy due to time change. The
error correction process depends on geography information
database, if the data information in the database cannot be
obtained or the information has big errors, it will affect the
accuracy performance. Another work was proposed in [132],
which uses the data collected by camera, GPS, and inertial
navigation system to achieve lane-level vehicle localization.
The authors utilize the information collected by the camera
to match the high-definition (HD) map. And they propose
the method based on the iterative closest point (ICP) to
deal with errors. The advantage of this algorithm is that
it can achieve lane-level localization and does not employ
expensive sensors (such as LiDAR), which is conducive to
large-scale promotion.

C. DATA FUSION-BASED MULTI-SENSOR
COOPERATIVE LOCALIZATION
V2V communication technique can realize data sharing in
the IoV, which can enhance the positioning performance
through a cooperative or collaborative way. The authors
of [133] propose a mathematical framework for cooperative
vehicle localization by using GNSS, IMU, and UWB sensors.
This framework can work in the centralized and distributed
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manner. The positioning error in both centralized distributed
manner are less than 0.08 m. In addition, based on the
conclusion of this paper, we can conclude that compared with
the centralized manner, the distributed manner has higher
scalability and reliability. Because each vehicle in the system
can realize data processing in an independent way. However,
the accuracy is lower than that in the centralized manner,
since the more precise computation of correlations among the
states of vehicles can be processed in the data fusion center.

Moreover, the authors of [134] proposed a cooperative
localization method based on GPS receiver and radar by
using DSRC technique. The multiple pieces of information
are fused by KF technique. When more than three neighbor
vehicles communicate with the ego-vehicle, the RMSE is less
than 0.5 m. Additionally, another work based on data fusion
for cooperative vehicle localization is proposed in [135]. An
adaptive ant colony optimization PF (AACOPF) method is
proposed, which does not need any prior information. This
method includes six steps: particles initialization, importance
sampling, adaptive cooperative localization, update weights,
ant colony optimization resampling, and output state estima-
tion. Furthermore, the particle propagation model is designed
and the weight updating method is developed by analysing
range data provided by UWB sensors. The positioning error
is about 0.66 m.

For data fusion for non-linear systems with multiple sen-
sors with correlated noise, the authors in [136] used the
adaptive and robust UKF (ARUKF) to design a two-layer
data fusion structure named ARUKF-MSIF (multi-sensor
information filters). In the first layer, the redundant mea-
surement noise covariance estimation (RMNCE) method is
employed to process the unknown noise at each time at first.
Then, the chi-square test and indicator calculation and the
proposed Q-adaption algorithm are used to further reduce the
error. Finally, the final estimation is determined in the fusion
center in the second layer. In addition, the author of [137]
proposed a data fusion method named covariance intersection
(CI), which can solve the data fusion problem with unknown
correlation between input data and yield consistent estimates.
However, the CI method has pessimistic estimate results
since the source data is treated as totally correlated, and the
independent part is not considered. Therefore, the author of
[138] proposed the split covariance intersection filter (SCIF),
which can estimate the source data in both correlated and
independent parts. Moreover, the author of [139] used the
SCIF to fuse the data from GNSS, camera, LiDAR, and HD
maps, which achieved an accuracy with RMSE of 0.27 m.

D. DISCUSSION
The analysis above shows that multi-sensor-based vehicle
localization has the good performances since it combines the
advantages of different sensors and communication methods.
However, in order to obtain better algorithm performance,
there are still many factors that need to be considered. The
first factor is the independence of the data to be fused.
When each input information source can be expressed as

a random variable with a known mean, covariance, and
cross-correlation with the other sources, rigorous estimate
results can be achieved by traditional KF, EKF, UKF, and
PF. However, the fusion result is not consistent when there is
correlation between input estimates. Meanwhile, the CIF can
yield consistent fusion results even when facing an unknown
degree of source estimate correlation, but it neglects the
independent information, which yields pessimistic estimate
results. The SCIF can increase the accuracy of the estimated
result because both known independent information and un-
known correlated information in source data are considered.
The second factor is the redundancy of the input data, and
the constraint propagation techniques on interval can realize
a reliable result when facing redundant data. Moreover, the
authenticity of the input data should also be considered. Since
a large number of sensors are used in large-scale vehicle
localization systems, fault detection and identification tech-
niques need to be utilized to increase the robustness of the
system. For an efficient data fusion structure, since the two-
layer structure is easily affected by communication delay,
high-efficiency data fusion algorithms for error correlation
should be developed.

VI. LOCALIZATION METHODS PERFORMANCE
ANALYSIS AND CHALLENGES
A. METHODS PERFORMANCE ANALYSIS
In this section, we analyze the comprehensive performance
proposed in the introduction and identify the challenges of
state-of-the-art vehicle localization methods. We present the
characteristics of different data collection methods in table 1,
including their ability to create 3D models, the precision of
collected data, deployment strategy, ability to work without
light, ability to capture color information, cost of the sensors,
and ability to work in bad weather conditions. We analyze
and compare the comprehensive performance of different
localization algorithms, as illustrated in table 2. The data is
based on the details of traditional active and passive sensors
based methods, as shown in table 3, the details of cooperative
localization method, as illustrated in table 4, and the details
of multi-sensor based algorithms, as shown in table 5.

The LiDAR can provide the distance and angle data that
between the vehicle and the object by receiving information
such as the intensity and angle of the reflected light wave after
the laser reaches the object. And the data collected by LiDAR
has high accuracy, strong stability, which is very suitable for
applications with high localization accuracy requirements.
The disadvantage is that it is susceptible to interference from
natural weather such as rain, snow, and fog, and its accuracy
will decrease under severe weather conditions. Meanwhile,
the vision sensors can provide precise data for localization
by processing images and extracting feature points. However,
the quality of collected data can be impacted by the light in-
tensity. Based on the precise collected data, the LiDAR-based
and vision-based methods can achieve reasonable accuracy
with high reliability because the high precision collected
data. However, they have high computational complexity,
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CHARACTERISTICS LIDAR-BASED RADAR-BASED ULTRASONIC-BASED GPS-BASED IMU-BASED VISION-BASED V2X-BASED
DEPLOYMENT Easy Easy Easy Easy Easy Easy Hard
DATA PRECISION High Middle Low Middle Low High High
WITHOUT LIGHT Yes Yes Yes Yes Yes No Yes
COLOR No No No No No Yes No
PRICE Expensive Middle Middle Middle Middle Middle Middle
WORK IN BAD WEATHER No Yes Yes Yes Yes No Yes

TABLE 1. The comparison of different sensor-based localization methods.

PERFORMANCES LOW MIDDLE HIGH
ACCURACY Ultrasonic-, GPS-, IMU- Radar-, V2V-, V2I- LiDAR-, Vision-, Data Fusion-
AVAILABILITY Vision-, LiDAR-, V2I- Data Fusion-, V2V- GPS-, Ultrasonic-, Radar-, IMU-
SCALABILITY LiDAR-, Vision-, V2I- V2V-, Data Fusion- Ultrasonic-, Radar-, GPS-, IMU-
RELIABILITY IMU-, Ultrasonic-, GPS- Radar-, V2V-, V2I- Vision-, LiDAR-, Data Fusion-
REAL-TIME PERFORMANCE V2I-,V2V-, Data Fusion- LiDAR-, Vision-, GPS- Radar-, Ultrasonic-, IMU-

TABLE 2. Performances of different methods.

the reason is that the picture and map generated by LiDAR
(especially 3D maps) need large amount of computing and
storage resources. One of the effective solution is that ap-
plying AI technique to vehicle localization [140] [72] has
great potential since it has outstanding performance in image
processing domain. And the flowchart of AI technique is
shown in Figure 3. It mainly includes the data collection,
data preprocessing, data features selection, model training,
optimization and analysis steps. In addition, the LiDAR-
based and vision-based methods has low scalability, because
its high economic expenses.

Data collection

Data
preprocessing

Data feature
selection

Training model

Model
optimization

Model analysis

FIGURE 3. The flow chart of AI.

Although GPS-based, IMU-based, radar-based, and
ultrasonic-based methods cannot meet the high accuracy
requirement, these sensors play a key role in the data fusion
system, especially in low-cost data fusion systems, because
they have high scalability and availability. Moreover, these
sensors can also effectively collect data in extreme weather

while vision-based and LiDAR-based methods may not
work well. For instance, compared to other data collec-
tion methods like LiDAR, the IMU sensor has better cost-
saving performance and stronger anti-interference ability.
Additionally, the data collected by the IMU is relatively
stable and has strong continuity for different weather and
environmental conditions. However, the disadvantage is that
the localization data error accumulates with time, affecting
the accuracy of localization, and it is not suitable for scenes
requiring high vehicle localization accuracy and localization
applications with long time and distance requirements. As
for GPS technique, its advantages include low economic
cost, easy deployment, and wide coverage of GPS signals.
Therefore, as an auxiliary sensor, GPS is suitable for most
localization scenarios since it is not easily affected by bad
weather or light. Furthermore, data fusion-based methods can
also achieve highly accurate localization results by making
full use of resources collected by various sensors. By using
certain optimization criteria, to obtain a reasonable fusion
result [141] [142] [143]. Popular filter techniques include
KF, EKF, UKF, PF, etc., and compared with LiDAR-based
and vision-based methods, the data fusion-based method has
better scalability, reliability, and computational complexity
performance. Multiple sensors can provide more options
for realizing vehicle localization, thereby increasing the
robustness of localization system.

Moreover, the V2I and V2V based methods can reach a
middle accuracy. And the V2X communication technique
also plays an irreplaceable role in cooperative localization
because it can realize data sharing in the IoV system. Com-
pared with V2V-based methods, the V2I-based has a better
performance on accuracy and reliability. The reason is that
the position of infrastructure is fixed while the position of
other vehicles has a certain error. For example,the RFID tech-
nique uses tags and readers to cooperate with each other to
realize data transmission and collection. Generally speaking,
in the process of vehicle localization, the reader is equipped
on the vehicle, and the tags are equipped on the roadside or
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buildings with obvious signs to provide location information
or other data. The advantages of this technique for data
collection can realize fast data reading speed, which can effi-
ciently collect data. Moreover, the RFID tag is small in size
and its deployment is not easily restricted by environmental
conditions. However, its communication distance is limited,
and if the distance between the reader and the tag is too long,
it will affect the efficiency and accuracy of data collection
seriously. Compared with the V2I, the V2V has the better
performance on the scalability and availability, since the
deployment of the infrastructure will cause additional eco-
nomic costs. However, the V2X-based methods have higher
computational complexity than data fusion-based methods.
Because the time delay during data transmission in both V2I
and V2V can not be neglected. In addition, by utilizing the
distance measurement methods (TOA, TDOA, RSSI), the
location of vehicles can be calculated by geometric method
(The trilateration algorithm) [144] [145] [146] [147].

In addition, compared to vehicle localization methods that
are not based on cooperation, the advantage of the coopera-
tive vehicle localization algorithm is the utilization of infor-
mation interaction and data sharing between vehicles and in-
frastructures, which enhances the data and resources (such as
data storage, data computing, and communication resources)
utilization rates. Moreover, most cooperative localization al-
gorithms have distributed data processing capabilities, which
greatly increases the parallelism of the localization process,
reduces the centralized data processing burden on the server,
and improves data processing efficiency. However, if there
are a large number of vehicles in the ITS or the amount
of collected sensor data is massive, the data transmission
process may cause system channel congestion, resulting in
additional time delays and affecting vehicle localization ef-
ficiency. Additionally, the computing power of the vehicle is
limited, and if the data requires high computing power, the
data processing efficiency may decrease.

Challenges 
for data 

collection

Sensor
selection

Deployment
method

Security

Localization accuracy
Weather conditions
Economic expenses

Deployment location
Deployment density

Anomaly detection
Data protection

FIGURE 4. Challenges for data collection.

B. CHALLENGES
We propose challenges for vehicle localization in the data
collection and data processing steps. The challenges for data
collection are illustrated in Figure 4. The main challenges
faced in the data collection stage of vehicle localization in
ITS are three aspects: sensor selection, deployment method,
and security. For the sensor selection problem, it is necessary
to consider the comprehensive performance (analyzed in the

last section) of different sensors. For example, The LiDAR
collects data with the highest accuracy, the IMU is suitable
for data collection in extreme weather, and the LiDAR has
high economic costs. Moreover, the environment should also
be considered, such as GPS-denied environments [148]. For
the deployment method, it is necessary to comprehensively
consider the deployment method and density of the sensor.
The IMU, LiDAR, GPS receiver, and some cameras belong
to the onboard equipment, and their deployment method is
simple. However, RFID requires the deployment of tags on
the road or in the external environment, so it is necessary
to make a decision on the deployment method based on
economic costs and data collection efficiency factors. For the
security of sensor data collection, it is necessary to consider
two aspects: anomaly detection and data protection. Anomaly
detection techniques can ensure the safety, effectively operate
sensors and avoid malicious node intrusion. Data protection
techniques can ensure data integrity and security and prevent
data leakage.

The challenges at present of data processing method are
shown in figure 5. For the data fusion technique, the chal-
lenges are seven aspects: coordinate system selection, kine-
matics model establishment, observation model establish-
ment, system state estimate, independence analysis, noise
processing, and data incest problem during data fusion. For
coordinate system selection, especially in relative position
estimation, the coordinate system transformation must be im-
plemented. Moreover, the vehicle kinematics model should
be determined. For example, the IMM filter technique can
realize high accuracy localization since it considers the in-
teraction among different models. And for the observation
model establishment, we should consider the conversion of
partial observation. At the same time, the influence of noise
on the observations should also be considered. And regarding
the system state estimation, not only a priori estimate is re-
quired, but also a posteriori estimation should be calculated.
So, reducing algorithm complexity brought by the matrix
inversion calculation is also a challenge. And the process
has a certain time delay, it is also necessary to consider the
influence of the time delay on the subsequent system state
estimate results to obtain the best estimation value. Further-
more, the independence analysis is a key step during data
fusion, the CIF, SCIF has excellent performance when facing
the uncertain independence between input data. For noise
processing, the unbiased estimation and biased estimation
technique should be selected reasonable. Finally, the data
incest problem can not be ignored especially in multi-sensor
multi-vehicle localization system, the constraint propagation
on intervals technique can be implemented to solve this kind
of problem.

Moreover, using AI techniques to achieve vehicle local-
ization can improve the utilization rate of data during the
localization process and enhance the accuracy of localization
results, especially in applications that require high localiza-
tion accuracy, such as autonomous driving. Exploiting AI
techniques such as neural networks and deep learning can
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FIGURE 5. Challenges for data processing method.

obtain precise localization results and improve the robustness
of the system. For example, in a certain period when the
data collected by sensors is lost or the data is inaccurate due
to data transmission errors, the performance of traditional
algorithms will inevitably be affected because their decision-
making is very dependent on the accuracy of data collected
by sensors. However, compared with traditional algorithms,
AI techniques require a larger amount of different types
of data, which increases the pressure in the data collection
process. In terms of computational cost, the time and energy
costs are greater than that in traditional algorithms, because
it requires more time for data training, and regarding the
neural network technique, its computational cost is affected
by the depth of the neural network designed. Therefore, in the
process of constructing a neural network, we not only need
to consider its impact on the accuracy of the output result
but also its complexity. For AI techniques, the challenges of
applying them to vehicle localization are the establishment
of mathematical model representative data selection, data
feature selection, model training and optimization, and model
diagnosis and fusion.

First of all, for the mathematical model establishment,
the problem and expected result should be divided and
determined based on the existing data, and the field such
as clustering or regression should be determined because
it takes a lot of time to realize a certain function through
AI techniques. Therefore, it is very important to determine
the appropriate mathematical model. Then the representative
data selection step is considered, because the amount of
data that needs to be processed is huge. If all the data is
processed, not only a lot of time and computing resources
are wasted, but also the redundancy or wrong data in the
data set will cause a bad influence on the results. So, it
is necessary to select representative data for analysis and
processing. And the possible solution to this type of problem
is to evaluate the magnitude of the data in advance and use
existing computing resources to estimate it. If the amount of
data is too large and the existing computing resources cannot

support its calculations, the dimensionality reduction method
should be employed or the calculation method should be
changed, such as using distributed computing instead of cen-
tralized computing or improving the complexity performance
of the algorithm. Therefore, the representative data selection
method can achieve the effect of enhancing the efficiency of
the algorithm and reducing the computational burden.

For data feature selection, and the main function of this
step is to reduce the bad influence caused by erroneous or
redundant data. This process requires feature preprocessing
and validity analysis of the data. For data feature prepro-
cessing, the effective methods are the removal of collinearity
and normalization, etc. For feature validity analysis, the
main methods includes the Chi-square test and correlation
coefficient calculation. An effective data feature selection
method can enhance the credibility of the results and reduce
the waste of computing resources. For the Model training and
optimization stage, the main problem is that the parameter
tuning problem. Excellent parameters are a necessary factor
to enhance the efficiency of the algorithm, and therefore, it
is necessary to have a deeper understanding of the algorithm
and more attempts to discover the inherent laws. For model
diagnosis and fusion, the first step is to perform the error
analysis method on the output results, in order to obtain the
reasons for the error such as model selection or parame-
ter selection error, and then using cross-validation or other
methods to diagnose the model. In addition, if the model
is overfitted, the eliminate overfitting techniques should be
developed. And the recent work for AI-based localization has
been reported in [149].

In addition, the algorithm that takes advantage of geo-
metric methods to achieve vehicle localization exploits data
such as the position data, angle data, and communication
time on a two-dimensional plane. The advantages of this
type of algorithm are that the complexity is low. The dis-
advantage of this type of algorithm is that the accuracy of
vehicle localization is lower than that of using AI technique
and data fusion-based technique. And the time delay in the
data transmission process, which is not conducive to real-
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time vehicle localization. The challenges of using geometric
methods to process data are the distance measurement, the
localization estimate model establishment, the data trans-
mission delay, and the roadside unit deployment method.
For distance measurement, such as wireless communication
scenarios, using TOA, TDOA, and RSSI methods to calculate
distance, the challenge is that the influence caused by time
delay and noise interference on distance accuracy during data
transmission. And the solution is to implement the noise
reduction method on the signal and optimize the transmission
time delay to obtain a more accurate distance measurement
result. For localization estimate model establishment, it is
necessary to comprehensively consider the influence of var-
ious data on location results, and establishing an effective
mathematical model to operate on the data. Furthermore,
its computational complexity and parameter optimization are
also factors that must be considered. For data transmission
delay, the solution is to increase the channel bandwidth and
optimize the channel method used for data transmission.
Finally, with regard to the roadside unit deployment method,
it is necessary to comprehensively consider the impact of
roadside deployment location and density on the localization
results, and also to determine the optimal deployment method
based on economic cost.

Furthermore, the challenges facing vehicle cooperative
localization mainly includes three aspects: network selec-
tion, algorithm design, and software design, as illustrated in
Figure 6. For network selection, the main communication
methods are the V2V and V2I, and the challenges are similar,
namely data transmission, quality of service, and security
issues. For the data transmission process, if the number of
vehicles and sensors in the communication range is large or
the amount of data that needs to be exchanged is huge, it
is easy to cause the channel congestion and data backlog,
which can have a negative impact on the quality of service
and network time delays. This issue can also affect the
efficiency of data transmission and processing. Furthermore,
network security issues can not be ignored too. Due to the
openness of the network, when nodes or vehicles frequently
exchange data by the network, they may give malicious
programs the opportunity to implant and cause the data
leakage. In addition, attacks on data storage databases are
also an important reason for data leakage and loss. Possible
solutions include improving and strengthening the identity
authentication technique, effectively managing the nodes and
vehicles that utilize the network, and reducing the possibility
of malicious nodes joining the network. Recent encryption
techniques can also be used to encrypt and save data in the
database, and the key can be changed regularly to prevent
the database from being used maliciously and to ensure the
confidentiality, integrity, and authenticity of the data. Finally,
the fault detection method [150] can be employed to increase
the robustness of the multi-sensor multi-vehicle cooperative
localization system.

Moreover, the algorithm design mainly includes three as-
pects: algorithm complexity, algorithm efficiency, and robust-

ness. Algorithm complexity mainly includes time complexity
and space complexity, which together determine the effi-
ciency of the algorithm. The time complexity of the algorithm
mainly depends on the running time of the algorithm, and the
space complexity is limited by the random access memory
(RAM) requirements of the algorithm. When the localization
algorithm is applied to a large-scale system, the data calcula-
tion time can be reduced and the algorithm efficiency can be
enhanced by sacrificing the space complexity to reduce the
algorithm time complexity, because the RAM and hardware
in large-scale system are sufficient to meet the algorithm data
processing requirements, and large-scale system has higher
requirements for time performance and algorithm efficiency
than small-scale system. For a small-scale system, the RAM
and hardware in the system can be reduced by sacrificing the
time complexity of the algorithm to achieve the purpose of
reducing economic expenses. For algorithm efficiency, the
main challenge in localization is accuracy and time delay
performance. Additionally, the real-time performance mainly
depends on the selection of the communication model and
channel width, and the proper communication scheduling
can also reduce the time delay. The recent work for real
time performance analysis has been reported in [34]. For
the robustness performance of the algorithm, since there will
be sudden changes caused by the change of environment,
such as weather and road conditions, the implementation
of the localization algorithm should consider the response
strategy for emergencies, to avoid the occurrence of invalid
localization result due to external factors.

In addition, in terms of software design, the challenges
facing the implementation of localization algorithms are
human-machine interaction, sensor management, and soft-
ware privacy protection. For the needs of human-computer
interaction, the software augmented reality function should
be considered. The user customization technique can be
implemented since it bases on user needs which can mini-
mize economic expenses. Moreover, the augmented reality
function can better enhance the users’ feeling of utilizing
the software and enhance the human-computer interaction. In
addition, methods based on knowledge-driven and embedded
computation to enhance computing power should be used to
enhance the practicability of the software. For sensor man-
agement, it includes sensor deployment and sensor control
methods. Sensor deployment methods include the selection
of sensor deployment locations and the deployment density
required by the system. Efficient sensor deployment methods
can effectively provide the data required for localization and
appropriately reduce economic costs. Sensor control methods
include sensor data collection time and frequency control,
and a reasonable sensor control method can enhance the in-
teraction between sensors and vehicles, while can effectively
collect data and increase the accuracy of localization while
enhancing the robustness of the system. For software privacy
protection, it mainly includes two aspects: data storage man-
agement and account management. For data management,
the current challenges are database security and data access
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FIGURE 6. Challenges for cooperative localization

security, because if the database and data access process is
maliciously invaded, it will affect the privacy of the soft-
ware. In order to response to this problem, possible coun-
termeasures include updating the software operating system
in real-time, reducing software vulnerabilities, and making
the system more secure can be employed. At the same time,
implementing encrypted passwords method can reduce the
possibility of malicious users damage the software security.
In addition, real-time system backup method can be used to
ensure the integrity of data when the software is unavail-
ability. For account management, the system can employ a
privacy database to protect the security of user accounts and
passwords. Users should be vigilant about personal privacy,
frequently changing account passwords, avoiding virus intru-
sion, and at the same time taking advantage of device lock
and other device management software to manage the device
to prevent malicious users from destroying the system.

VII. CONCLUSION AND FUTURE WORK
This paper briefly analyzes and summarizes the state-of-the-
art vehicle localization methods, and presents their compre-
hensive performance analysis and challenges. To sum up, the
LiDAR-based method has excellent data collection perfor-
mance because it collects data with high accuracy and less
time delay. So, LiDAR is more suitable for applications with
high accuracy requirements. However, since it is difficult to
popularize due to its expensive cost, one feasible method is
to share LiDAR between multiple vehicles by using com-
munication techniques. Through data sharing, the number
of LiDAR deployed in the system can be reduced, thereby

reducing economic expenditure. Although methods based on
the IMU, GPS, radar, and ultrasonic sensors cannot meet the
high accuracy requirements, they have excellent performance
in terms of availability and scalability as auxiliary sensors.
By using data fusion based methods, excellent comprehen-
sive performance can be achieved. However, challenges still
remain in terms of fault tolerance and data fusion process.
Since the AI technique can effectively improve the perfor-
mance of vision-based and LiDAR-based localization meth-
ods, the high time and computational overhead problems
caused by image processing should be effectively solved. In
addition, considering the many types of sensors and data in
the future ITS, the redundancy of collected data needs to
be considered. Moreover, for cooperative localization algo-
rithms, data sharing can effectively enhance the cooperation
among various objects in the system. However, when the
number of vehicles or the amount of data collected by sensors
is large, the network performance requirements are high. The
current 5G communication technique can greatly enhance
network performance and the efficiency of data transmission,
providing reliable communication for the vehicle localization
system. Meanwhile, when there are a large number of sensors
in the system, fault detection and security still face big
challenges. Therefore, it is necessary to design an efficient
fault detection and network protection mechanism.

In future work, the performance of localization algorithms
in centralized, decentralized, and distributed structures will
be researched and conducted. Additionally, the vehicle lo-
calization algorithm for applications with weak GPS signals,
such as urban canyons, will be investigated, focusing on the
deployment of sensors in this scenario and the influence of
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REF SENSOR(S)
DATA

PROCESSING
METHOD

ACCURACY
REAL-TIME

PERFORMANCE
ADVANTAGES SCENARIOS

[36] 3D LiDAR Map matching lat.=0.057 m
long.=0.178 m

183 ms
(Processing time)

FRPDM can reduce the
space complexity
significantly

Urban

[40] 3D LiDAR DWM and UKF 4 cm 60 ms/frame High accuracy Underground
mine

[41] Multi-layer
LiDAR NDT and EKF lat.=0.38 m,

long.=0.08 m NA
Can be implemented in
mountainous rural
environments

Public road

[43] Camera-LiDAR
sensor

Lightweight deep
neural network NA 92 frames/s High reliability Day-night

changed

[47] 3D LiDAR CMAD 0.1-0.3 m NA The traditional NCC
method is improved Real-world

[51] 76GHz MWR Error propagation
model lat. 0.25 m on RMSE NA High availability Snowfall

weather

[54] mmWave radars polynomial
regression model

2.56 degrees on
RMSE NA Low complexity Ground and

aerial

[57]
Multiple
ultrasonic
sensors

Ground reflection
elimination filter 13.5 cm on RMSE Processing time

is 0.58 s
Good real-time
performance Real-world

[63] Multiple IMUs

Least-square and
probabilistic
marginalization
methods

0.6 m on RMSE Result refresh
time is 10 ms High availability Real-world

[64] Multiple IMUs tightly-coupled
EKF 0.2 m on RMSE Result refresh

time is 23 ms
Space complexity is
reduced Real-world

[87] Vision sensor Mapping 0.1 m on RMSE Result refresh
time 0.06 s High accuracy Urban

[88] Four fisheye
cameras Filter 0.33 m Result refresh

time 0.04 s
Excellent real-time
performance

Parking
scenario

[90] Vision sensor Mapping 0.19 m on mean error
Mean time

consumption is
about 14.1 ms

High scalability Campus road

TABLE 3. Details of traditional algorithms.

REF
COMMUNICATION

TECHNIQUE

DATA
PROCESSING

METHOD
ACCURACY

REAL-TIME
PERFORMANCE

ADVANTAGES SCENARIOS

[151] V2V ICPDA The RMSE
is 0.8 m NA High scalability Urban

[107] V2V PHD filter RMSE is less
than 0.3 m NA High Reliability Real-world

[108] V2I KF and EKF 0.1 m on RMSE NA High accuracy Highway

[112] V2I Bayesian filter Mean error is
0.04 m NA High accuracy Indoor

[113] V2I Map matching Mean error is
about 0.3 m

The response time is
less than 0.5 s Good real-time performance Manufacturing

workshop

[113] V2V and V2I PF Mean error is 1 m NA High reliability Real -world

[115] V2V and V2I Error-cognitive RMSE is less
than 0.5 m NA High scalability GPS weak

[116] V2V and V2I CP NA The latency is less
than 0.1 s High Robustness Real-world

TABLE 4. Details of cooperative algorithms.
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REF SENSORS
DATA

PROCESSING
METHOD

ACCURACY
REAL-TIME

PERFORMANCE
ADVANTAGES SCENARIOS

[118] GNSS and
LiDAR Mapping Mean error is about 0.5 m NA High Robustness Urban canyons

[120] GNSS, LiDAR Mapping Mean error is less than 0.1
m

Result refresh rate of
25 Hz High reliability Real-world

[122] Vision sensors Mapping
Mean errors are 0.04 m

and 0.17 m in the lat. and
long. directions.

NA Low complexity Real-world

[16] GPS, IMU,
LiDAR PF and UKF Mean error is less than 0.3

m
Result refresh time is

8.2 ms
Good real-time
performance Real-world

[127] IMU, LiDAR ACSCA RMSE is less than 0.05 m NA High accuracy GPS-denied

[128] IMU, vision
sensor EKF RMSE is less than 0.3 m NA High reliability GPS-denied

[133] GNSS, UWB
sensor

Math
framework

Mean error is less than
0.08 m NA Low cost Real-world

[134] Radar, GPS KF RMSE is less than 0.5 m NA High scalability Real-world

[139] GNSS, camera,
LiDAR SCIF RMSE is 0.27 m NA High accuracy

and robustness Real-world

TABLE 5. Details of multi-sensor based algorithms.

the surrounding environment characteristics on the perfor-
mance of vehicle localization. Moreover, the security of vehi-
cle communication networks has always been a serious topic.
In the future, the impact of network attack methods, such as
replay attacks, on the localization performance of vehicles in
the localization system will be investigated. Finally, specific
research on the impact of time delay and energy consumption
on localization performance during data transmission and
processing in the future ITS will be proposed.
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APPENDIX A METHOD OF SELECTING THE
COMPETITIVE REFERENCES
In our work, the ‘Google scholar’ is used to search related
literature. We first use the keyword ‘Vehicle localization’ and
select the publication year from 2017 to 2023. We obtained
about 16900 results. Then, other keywords are added to find
more precise methods, which is shown in the table 6.

TABLE 6. Number of publications with different keywords.

Keywords Number of publications
Vehicle localization 16900

GPS-based vehicle localization 5340
IMU-based vehicle localization 2870

LiDAR-based vehicle localization 11700
Cooperative vehicle localization 16400

Data-fusion based vehicle localization 9820
Map-based vehicle localization 10100

Camera-based vehicle localization 10700

Moreover, based on the searching result provided by
‘Google scholar’, we read the reference title, year of publi-
cation, publisher, and number of citations, and selected the
most relevant literature for reading.

We have selected references published in the most re-
cent year possible, and publications from excellent publish-
ers, such as IEEE Transaction on intelligent transportation
systems, IEEE Transaction on vehicular technology, IEEE
Access, and so on. Please note that the journal papers are
preferred over conference papers.

In addition, the publication year of references that we cite
in our paper is shown in the figure 7.
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FIGURE 7. The number of our cited references in different year.

Furthermore, the citations of the references we used is
shown in the figure 8. We sorted the citations of all references
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in descending order, and then we plotted this figure. Please
note that about 60 percent od the references are cited over 20
times. However, some of them not have reached 20 citations
yet, because they were published in the last two years.

LIST OF ABBREVIATIONS
Abbreviations Description
5G 5th generation mobile network
6-DoF Six degrees of freedom
AI Artificial intelligence
APs Wi-Fi access points
A-SMGCS Advanced-surface movement guidance and

control system
AWGN Additive white Gaussian noise
BRAIM Bayesian receiver autonomous integrity

method
CL Collaborative localization
CMAD Cross mean absolute difference
C-TD Clustering-based truth discover
CVLMS Collaborative vehicle location manage-

ment service
CVT Common virtual transmitters
DMR Drivable moving search region
DOA Direction-of-arrival
DR Dead reckoning
DT Delaunay triangulation
EKF Extended Kalman filter
FRPDM Free-resolution probability distributions

map
GDOP Geometric dilution of precision
GNSS Global navigation satellite system
GPS Global positioning system
HD High-definition
ICP Iterative closest point
IMU Inertial measurement unit

IoT Internet of things
IoV Internet of vehicle
ITS Intelligent transportation system
KF Kalman filter
LHCP Left-hand circular polarized
LiDAR Light detection and ranging
Los Line-of-sight
MAS-DQN Multi-agent system deep Q network
MAV Micro aerial vehicles
MAVIO Monocular Ackermann visual-inertial

odometry
MCL Monte Carlo localization
MM Map matching
MMSE Minimum mean square error
MSMV Multi-sensor and multi-vehicle
MVS Multi-vehicle system
NCC Normalized cross-correlation
NLOS Non-line-of-sight
OBU Onboard unit
ORB Oriented fast and rotated brief
PF Particle filter
RAM Random access memory
RANSAC Random sample consensus algorithm
RHCP Right-hand circular polarized
RMSE Root mean squared error
RNN Recurrent neural network
ROS Robot Operating System
RSSI Received signal strength indication
RSUDA Roadside units with directional antennas
RSUs Roadside units
SBL Sparse Bayesian learning
SH Speed humps
SLAM Simultaneous localization and mapping
SRM Symbolic road markings
SVM Support vector machines
TDOA Time difference of arrival
TPSM Third party sparse maps
UAV Unmanned aerial vehicle
UGV Unmanned ground vehicle
UKF Unscented Kalman filter
UPS Urban localization system
USV Unmanned surface vehicle
UT Unscented transformation
V2I Vehicle-to-infrastructure
V2V Vehicle-to-vehicle
V2X Vehicle-to-everything
VANETs Vehicular ad hoc networks
vSLAM Vision SLAM
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