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Abstract

We assess the fuzzy vault’s security against the exploitation of statistical bi-
ases, conducting bias examination through features on a sample of biometric
set. Our comparative analysis quantifies the scheme’s vulnerability to security-
compromising attacks, using three bases of feature templates derived from real
biometric databases of various modalities, showcasing variable quality levels, and
quantifying scheme weaknesses. This study shows a decrease in the scheme’s se-
curity under such attacks and significantly contributes to understanding the fuzzy
vault’s limitations regarding biases in the stored set. Moreover, we propose the
first solution without requiring additional information, preserving the security of
the fuzzy vault against such attacks.

1 INTRODUCTION
Biometric authentication systems enhance security compared to traditional methods
like passwords or keys. They refer to individual traits like fingerprints, facial features,
retinal scans, and iris patterns for identification (Dargan and Kumar, 2020; Daugman,
2004). To authenticate, biometric data is captured, converted into a digital template,
and compared to the enrolled template to confirm the individual’s identity (Sharma
et al., 2015). Since biometric templates are sensitive, various cryptographic methods
are implemented to secure them (Uludag et al., 2004). A particularly effective solu-
tion in addressing the variability of biometric data involves adopting the cryptographic
scheme of the fuzzy vault, developed by (Juels and Sudan, 2002). This scheme, incor-
porating error correction codes and an unordered set, enables error-tolerant authentica-
tion while preserving the confidentiality of the data. The standard fuzzy vault process
hides a set by connecting it to a nonce with Reed-Solomon error correction codes.
Authentication succeeds when a presented set closely matches the reference.

Despite significant progress in studying fuzzy vault schemes recently, each pro-
posed approach is tailored to the context examined and the biometrics modalities
used (Uludag et al., 2005; Nandakumar et al., 2007a; Rathgeb et al., 2023). Numerous
studies have adapted the scheme to biometrics, focusing primarily on security (Ben-
hammadi and Bey, 2014; Radha et al., 2010). The original article established an upper
security bound based on the assumption of uniform distribution. However, deviations
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from this assumption in real data distributions have been noted, which could lower the
security level.

It has been recognized that biases exist, but the correlation between their nature,
magnitude, and impact on fuzzy vault security is yet to be defined. Our study quantifies
the impact of the lack of a uniform distribution on the fuzzy vault security deterioration,
highlighting its overall significance by generally rendering the scheme unusable. Addi-
tionally, we underscore that the attacker model proposed by Juels and Sudan, possess-
ing partial knowledge of the information, lacks realism and relevance. In the literature,
some studies have proposed incorporating a password as a solution to mitigate bias
issues and enhance the fuzzy vault’s security against statistical attacks (Benhammadi
and Bey, 2014; Radha et al., 2010). However, introducing passwords fundamentally
establishes strong multi-factor authentication, differing from the original fuzzy vault
scheme, and other vulnerabilities may arise with a multi-factor scheme. No secure
single-factor fuzzy vault solution has been proposed yet. Our investigation specifically
focuses on examining the single-factor fuzzy vault as initially proposed, to lead to a
new secure single-factor system.

Our approach manages feature templates generic from various biometric modali-
ties. We use three bases of biometric templates-fingerprint, face, and electrocardio-
gram, represented as feature vectors. A distinctive attribute of the fuzzy vault is its
use of an unordered set of elements. In our work, the term biometric set refers to the
outcome of transforming a biometric template of features, into a set of elements within
a finite field, as illustrated Figure 1.

Figure 1: Biometric set construction for
fuzzy vault

Our analysis focuses specifically on applying the fuzzy vault scheme as origi-
nally proposed, without incorporating additional information altering the authentica-
tion type. For the first time, we introduce the quantification of the significant advan-
tage of an attack exploiting biases by features within a sample biometric set. Our results
from different template bases show that the scheme as presented in the original article
is ineffective and lacks relevance against such attacks. Taking into consideration these
biases, we propose the first solution for applying the fuzzy vault scheme without pass-
words, using quantile methods during the transformation into a biometric set to ensure
an equitable distribution of elements for each feature. The aim is to ensure the security
of the single-factor fuzzy vault authentication scheme and neutralize attacks exploiting
biases by features.

The remainder of this article follows this structure: Section 2 recalls the fuzzy vault
concept and existing work on its application in biometrics. Then, Section 3, we explain
our generic methodology for any biometric template base in a feature vector format.
Within Section 4 we outline the conditions of the upcoming attack and the biometric
templates used. Then Section 5, we present the obtained results. This understanding of
biases allows us to propose Section 6 the first solution to secure the fuzzy vault without
any additional information.
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2 BACKGROUND
In this section, we aim to provide a more detailed explanation of the fundamental en-
coding and decoding process of the fuzzy vault scheme. Following that, we present an
extensive review of prior research on applying this cryptographic scheme in a biometric
domain.

2.1 Fuzzy Vault
The fuzzy vault concept is a versatile cryptographic approach that applies to various
domains, like privacy-protected matching, personal entropy systems, and biometrics.
Its strength lies in effectively handling differences between sets and having the capabil-
ity to correct them, which is a standout feature of this approach. Its primary objective
is to authenticate an individual based on a comparison between an authentication set B ,
and another enrollment set A , concealed within a vault using a nonce K . Linear error
correction codes, particularly Reed-Solomon codes (Juels and Sudan, 2002), are cru-
cial to ensure reliable and efficient recovery of the nonce in this cryptographic system,
allowing to handle variability in the enrollment and authentication sets effectively.

2.1.1 Enrollment Stage

The first stage, referred to as enrollment, involves recording user information into the
system. This corresponds to a reference set V within the fuzzy vault, known as the
vault. To construct it, a Reed-Solomon error correction code is employed, incorpo-
rating a biometric set A with n elements from a finite field Fq, along with a random
nonce vector K of length k. where each component corresponds to a coefficient of the
polynomial P ∈ Fq[X ]. The choice of n exceeding k introduces redundancy to permit
error detection and correction during decoding. Concurrently, to ensure confidentiality,
additional chaff points are uniformly integrated, forming the vault V as illustrated Fig-
ure 2b. This stage consists of two steps: encoding and adding noise.

a) Encoding: the biometric set is encoded with the nonce K by associating the ele-
ments of A with their polynomial evaluations. Each element x in A is evaluated
by applying the polynomial P, resulting in a value P(x) = y. These pairs (x,y)
represent points in the fuzzy vault (Refer to Figure 2a).

b) Noise: at this step, random pairs (x′,y′) ∈ F2
q, known as chaff points, are in-

troduced into the set V . They are specifically chosen to not correspond to
genuine points of A and do not follow the pattern of polynomial evaluations:
∀x′ /∈ A , y′ ̸= P(x′) (see Figure 2b). Adding these chaff points aims to make it
challenging for attackers to discern genuine points from chaff points within set
V .

2.1.2 Authentication Stage

The subsequent stage, denoted as authentication, serves to verify the user’s identity and
grant access to appropriate resources. Authentication evaluation depends on the simi-
larity between enrollment set A and authentication set B , both of size n, irrespective of
the order of their elements.
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Elements of A Chaff points
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Figure 2: Enrollment stage of the fuzzy vault scheme.

The retrieval of the random nonce K used during enrollment is contingent upon the
similarity of these sets. This condition is ensured by a decoding algorithm associated
with the codes used during the enrollment process, having the ability to correct up to
e errors, referred to as the decoding radius. Therefore, to accurately recover the nonce
K , we check if the number of discrepancies between the two sets A and B is bounded
by e.

The authentication stage can be divided into three steps: extraction, decoding, and
verification.

a) Extraction: from the reference set V , we extract pairs (x,y) where x belongs
to the authentication set B; thus, the set Q of size less than or equal to n is
composed of the extracted pairs (see Figure 3a).

b) Decoding: in this phase, a Reed-Solomon decoding algorithm is employed, re-
ceiving the set Q and the length k as inputs. The algorithm produces a secret
K ′ if there’s adequate matching, facilitating potential error correction (see Fig-
ure 3b). Alternatively, it may return a null value if no polynomial aligns with the
decoding of the received set Q .

c) Validation: authentication is successful, enabling user authentication, only if the
candidate nonce K ′ is identical to the nonce K used during enrollment. This
condition corresponds to the sufficient sharing of elements between two sets A
and B (see Figure 3c).

2.2 Related Work
Original fuzzy vault scheme proposed by Juels and Sudan, is generic and can be applied
to different purposes. When employed in a biometric context, it requires specific ad-
justments, primarily driven by considerations related to security, the choice of modal-
ity, the error correction codes parameters choice, and the concept of a set which is a
fundamental characteristic of the fuzzy vault. This is why numerous different works
have been done, to use it in a practical world. Highlighting the inability to directly
implement this scheme.

The initial difficulty in implementing the fuzzy vault lies in transforming a bio-
metric template into a biometric set, a process influenced by the biometric modality
and extraction algorithm. Notably, the minutiae template, is extensively explored in
the fuzzy vault implementations (Uludag et al., 2005; Nandakumar et al., 2007a; Poon
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Figure 3: Authentication stage of fuzzy vault scheme

and Miri, 2012; You and Wang, 2018). Each minutia is characterized by three values
(x,y,θ). The set is achieved through the concatenation of bits derived from x,y, or x,y
and θ. Minutiae template is a rare case where the concept of a set is inherently present.
However, alignment issues complicate this process (Merkle et al., 2010; Nagar et al.,
2008). Many studies have investigated the application of the fuzzy vault with biometric
templates represented as feature vectors. The type of template we are interested in our
study for different modalities. For example, in study (Lee et al., 2008), a secure fuzzy
vault system employs local iris features and clustering techniques for accuracy, ensur-
ing proximity between sets A and B in both biometric data and error-correcting codes.
Another instance is seen in (Rathgeb et al., 2016), which introduces a multi-instance
iris biometric cryptosystem, requiring a partitioning method for subsets based on each
feature set.

The secondary difficulty pertains to the parameter selection of an error correction
code and its contextual relevance. Various methodologies are employed in reconstruct-
ing the secret K from Reed-Solomon codes. Some researchers, faced with issues,
opt for using a secret structured by a code such as Cyclic Redundancy Check (CRC),
involving polynomial reconstruction through exhaustive search (Nandakumar et al.,
2007a; You and Wang, 2018; V.S.Meenakshi and Padmavathi, 2010), aiming to avoid
False Rejects. However, considerations regarding execution time are discussed (Khalil-
Hani et al., 2013). Different studies have highlighted concerns about the efficiency and
this approach’s security, suggesting the use of decoding algorithms for Reed-Solomon
codes (Velciu et al., 2015).

The scheme’s security is a major concern, evaluated in various contexts and against
different attack scenarios (Nandakumar et al., 2007b; Benhammadi and Bey, 2014;
Radha et al., 2010). Studies focus on improving biometric data integrity, especially
by assessing the False Acceptance Rate (FAR). Another approach involves evaluat-
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ing min-entropy in protected models, offering insights into leaked information and
the maximum probability of uncovering the secret (Merkle et al., 2010; Dodis et al.,
2008). In their theoretical framework, Juels and Sudan do not explicitly consider biases
in security analysis. They rely on a uniform distribution, establishing a security upper
bound, and acknowledging the lack of justification for assuming uniformity. Other re-
search supports this assertion by noting that non-uniformity in stored data can jeopar-
dize the scheme’s security (Nandakumar et al., 2007a; Merkle et al., 2010; Nagar et al.,
2008). To overcome this limitation, some studies propose adding a password (Reddy
and Babu, 2008; Nandakumar et al., 2007b; Benhammadi and Bey, 2014), known as a
Hard fuzzy vault. The user is required to capture their biometric data and enter a pass-
word. Currently, no proposal for a secure fuzzy vault against such statistical attacks
without additional information is known.

3 BIOMETRIC SET AND BIAS ASSESSMENT
This section details vault construction and its bias resistance, particularly against
database attacks. We discuss the set creation function designed for feature models,
explore theoretical measures for bias assessment in biometric sets, and review attacker
models to evaluate fuzzy vault security.

3.1 Construction Biometric Set
The fuzzy vault scheme is characterized by its use of unordered sets. Our methodology
employs a transformation approach tailored for feature templates from diverse bio-
metric modalities, conceptually similar to the method in (Rathgeb et al., 2016) which
encodes already features as unordered sets. However, our approach differs by taking
into account individual variability and specific parameters, thereby enhancing authen-
tication reliability and ensuring accuracy and compatibility with various biometric sys-
tems.

Feature values in biometric templates vary across captures from the same user. To
ensure reliable identification and appropriate access, we use min-max normalization to
address this variability. This technique, widely acknowledged for enhancing system
reliability through precise and consistent data representation, is crucial for maintain-
ing consistency in each feature’s distribution relative to the initial data and effectively
managing data variability (Zheng and Casari, 2018). Employing this approach also fa-
cilitates the security assessment of the fuzzy vault system by accounting for statistical
biases in feature distributions within biometric samples.

This methodology enables the grouping of multiple feature values within a similar
range. The normalization process converts the real values of each feature i into values
ranging from 0 to 1 (⋆), using the minimum mini and maximum maxi values associated
with each feature. Subsequently, the value is encoded using m1 bits, representing the
exponent of a prime number in our system. The selection of m1 is based on the template
base, aiming to choose the value that best distinguishes users. This selection results
from experiments to determine the optimal number of bits to use, which may vary
from one base to another.

Given a template containing n features, the normalized value fni of each features
fi, encoded in m1 bits, is obtained by applying the following formula:

fni = ⌊ ( fi−mini)
maxi−mini

×2m1⌋. (⋆)
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To construct a biometric set, we introduce the function S that maps elements en-
coded with m1 bits into a biometric set within a finite field F2p , where each element
corresponds to specific features. Let S represent function (⋆⋆), which takes as input the
m2 bits of the index, encoded with the binary length of the biometric template size, and
the m1 bits of the feature value obtained from (⋆). Through the concatenation of these
input elements, this function produces an element within the finite field F2p , where
p = m2 +m1.

S : {0,1}m2 ×{0,1}m1 → F2p

(i, fni) 7→ e = i| fni . (⋆⋆)

3.2 Bias Quantification
Our analysis specifically focuses on statistical biases in biometric sets by features, aim-
ing to understand how they affect the fuzzy vault system’s security and quantitatively
evaluate their effects. Using a training sample TrainingS of the biometric template,
we generate the biometric set from this sample using the specific transformation func-
tion (⋆⋆). We propose quantifying these biases in two distinct scenarios.

A. Scenario 1: in this context, we disregard features and calculate the frequencies
of elements in the finite field F2p within biometric sets of TrainingS. This calcu-
lation is established by scaling the repetitions of each element e ∈ F2p (denoted
as rep(e)) by the product of sample size |TrainingS| and 2m2 , representing the
total number of elements (Rice, 2006):

freq(e) =
rep(e)

|TrainingS|×2m2
.

B. Scenario 2: in this context, the significance of the order of features is considered.
We calculate the frequencies of elements fni for each feature, from biometric sets
of TrainingS. We compute the frequencies of the 2m1 elements for each feature
i, using the following formula:

freq( fni) =
rep( fni)

|TrainingS|
.

To assess the overall distribution of these elements in each scenario, we employ
Shannon entropy, a metric designed to measure the distribution of occurrences and its
proximity to a uniform distribution.

Shannon entropy (Cover and Thomas, 2006), denoted Hb(X ,D), quantifies the
uncertainty of a random variable X with outcomes in a finite field and their asso-
ciated probabilities D = (p1, . . . , pn), where pi = Pr(X = ei). It is calculated using
the base 2 logarithm to express information in bits and is defined as: Hb(X ,D) =
−∑

n
i=1 pi log2(pi). Subsequently, for a uniform distribution DU , where all outcomes

are equally probable, the entropy simplifies to Hb(X ,DU ) = log2(n), serving as a
benchmark to compare D against an ideal scenario of equal likelihood.

Finally, we propose assessing this outcome through the measure of statistical bias,
denoted as M (D). This measure is defined as the ratio of Shannon entropy of the
calculated distribution to the entropy of the uniform distribution, formulated as follows:

M (D) =
Hb(X ,D)

Hb(X ,DU )
.
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The measure M generates a numerical value lower than 1. Any deviation from M
compared to 1 indicates that the distribution is far from being uniform. This obser-
vation facilitates the quantification of the effect of statistical biases, thereby aiding in
evaluating their influence on the security of the fuzzy vault.

3.3 Authentication Attacker Models
We evaluate the impact of statistical biases on security by introducing an attacker
model that uses knowledge of biometric set distribution. This model contrasts with
Juels and Sudan’s, which is based on partial knowledge and is less clear. Addition-
ally, we propose a model based on vault knowledge alone. To compare these models
and understand how vault size and attacker knowledge influence security, we assess
authentication efficacy across various vault sizes and attack scenarios.

A- Distribution-Knowledge Attacker (DKA): in this model, the attacker, having
gained access to the vault, also possesses knowledge of the distribution of el-
ements from the biometric set within the finite field. To generate n elements for
an authentication set B , the attacker draws from the vault according to this distri-
bution. When the vault’s size is smaller than the size of elements with probabil-
ity in the sample, it becomes vital to concentrate solely on the present elements
in the vault. To address this, we use a smoothing technique (Simonoff, 2012)
to establish a new probability distribution. This method assigns a minimal, yet
nonzero, probability to elements not found in r. This probability is contingent on
the lowest probability within the sample, signifying that absent occurrences are
improbable but not impossible. Using this updated distribution, the attacker ran-
domly chooses elements from r to compose n elements within the authentication
set.

B- Partial Knowledge Attacker (PKA): this model, proposed in (Juels and Sudan,
2002), formalizes the security framework by incorporating the concept of par-
tial knowledge attributed to the adversary. Authors assume that the enrollment
set is chosen according to a potentially non-uniform distribution, but they do not
quantify security with biases, they assume a scenario where an attacker possesses
knowledge of a part of the set. However, these are two distinct concepts. To il-
lustrate, consider attempting to guess a password. Knowing the distribution of
passwords provides a significant advantage, but it doesn’t reveal specific letters
in a given password from that distribution. Conversely, knowing specific let-
ters offers an additional advantage. Thus, these two forms of knowledge appear
complementary.

To identify values of the partial set α that hold significance for the attacker and
serve as a realistic prerequisite, we analyze this attack scenario to evaluate the
vault’s security across different knowledge levels. Our method entails being in-
formed about different values of α elements from A . To complete the remaining
n−α elements, we use a uniform selection from the remaining elements of V .

C- Uniform Attacker (UA): we intend to compare the advantage of the previous
model with that observed when no prior information is available. In this context,
the attacker possesses only knowledge about the vault itself. To generate the au-
thentication set B , the attacker uniformly selects n elements from the r elements
contained in the vault. This implies that each element in the vault has an equal
probability of being chosen to be part of the authentication set B .
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Studying and comparing the attacker’s advantage in these three models provides
valuable insights into assessing the impact on the security of the fuzzy vault. This
analysis aids in identifying the most sensitive or vulnerable information within each
model, facilitating adjustments in security measures and countermeasures accordingly.

4 FUZZY VAULT CONSTRUCTION
In this section, we introduce the three biometric template bases derived from different
modalities, each exhibiting unique quality levels. Quality Quality assessment of each
base relies on False Rejection Rates (FRR) and False Acceptance Rates (FAR). When
these rates are equal, they represent the Equal Error Rate (EER). Minimizing these
rates enhances the system’s authentication performance. Next, we present the fuzzy
vault parameters obtained for each base used.

4.1 Biometric Templates Bases
Our approach is dedicated to biometric template bases categorized by features, We
use three bases derived from different modalities (see Table 1), each exhibiting varying
levels of quality in terms of EER. These include the FVC fingerprint base, the PTB base
of electrocardiograms used in (Gernot and Lacharme, 2022), and the higher-quality
LFW base, used in (Dong et al., 2019). Each base contains T biometric templates for
each of the N distinct individuals. An extraction algorithm applied to the image yields
a feature vector of size n.

Table 1: Biometric templates bases

FVC PTB LFW
Modality Fingerprints Electrocardiogram Face
Image
database

FVC2002 (Maio
et al., 2002)

LFW (Bousseljot et al., 1995; Gold-
berger et al., 2000)

(Huang et al.,
2008)

Extraction
algorithm

Gabor fil-
ters (Belguechi
et al., 2016)

ECG wave delineation (Martinez
et al., 2004; Makowski et al., 2021)

deep network
Insight-
Face (Dong
et al., 2019)

N 100 158 158
T 8 7 10
n 512 990 512

4.2 Fuzzy Vault Parameters
This section provides a concise overview of the essential parameters for constructing
the reference set V , stored in the fuzzy vault. The specifications are tailored to the
specificities of each biometric template base, as presented Table 2.

A. Biometric set size n: our set construction function establishes a mapping between
each binary feature sequence of m1 bits and an element of the finite field F2p

associated with the biometric set. The set size corresponds to the number of
features in the template specific to the biometric template base, denoted as n.
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B. Secret length k: the secret length k is directly linked to e and influences the
authentication algorithm based on Peterson-Berlekamp-Massey. This algorithm
can correct up to e = ⌊ n−k

2 ⌋ errors. The minimal intersection I between the sets
A and B is crucial, where I = n− e = ⌊ n+k

2 ⌋.

To select k, we calculate the FAR and FRR rates for various threshold values
I. The objective is to achieve a balance between security (minimized FAR) and
user-friendly interaction (controlled FRR). The optimal threshold I is determined
as the intersection between the discrete curves of FAR and FRR, corresponding
to the (EER) with the biometric set. If achieving this equality proves impossible,
a preferred threshold is selected to minimize FAR. Depending on each base,
different thresholds are obtained. To maintain these levels of authentication as
indicated Table 3, we select k with consideration to variable I, taking into account
error corrections with the decoding algorithm, k = 2I −n.

C. Vault size r: the construction of the set V relies on the addition of chaff points,
dependent on the function S and parameters (m1,m2) specific to each biometric
template base, ensuring their indiscernibility from the biometric set’s elements.
The choice of variable m1 is made to allow better differentiation between bio-
metric sets of different users and to manage variability among different templates
from the same user. This decision is also correlated with the FAR and FRR rates.
Thus, following tests on our bases, the appropriate choice is m1 = 2. As for m2,
it represents the smallest possible value satisfying the condition n ≤ 2m2 , with n
being the number of features in the vector. Our construction of set V involves
choosing sizes ranging from n×2 to n×2m1 .

Table 2: Fuzzy vault parameters for each template base

Fuzzy vault parameters
Biometric template base (m1,m2) n k r

FVC (2,9) 512 65 [1024,2048]
PTB (2,10) 990 273 [1980,3960]
LFW (2,9) 512 9 [1024,2048]

The objective of the fuzzy vault is to enable comparison for authentication. Our en-
coding method effectively protects data with minimal impact on authentication system
performance, as evidenced by the obtained rates Table 3. The degradation in the au-
thentication rate remains limited, with an observed impact of about 7%. For example,
in the FVC base, an EER of 17% is obtained. However, in the PTB base, our method
leads to an improvement in authentication and a reduction of approximately 3.8% in
the EER. For the LFW base, no EER is obtained, and therefore, we choose a threshold
of k = 9 for which FAR rates are minimal and do not impact security.

5 CONDUCTING AUTHENTICATION ATTACKS
Based on the framework from Section 4, this section evaluates the security and practi-
cality of the fuzzy vault. We detail quantitative results on its resilience against statisti-
cal biases exploited through biometric set features. Multiple vaults are constructed for
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Table 3: Authentication rates

biometric template biometric set
Biometric template base EER FAR FRR EER

FVC 10% 17% 17% 17%
PTB 10.8% 7% 7% 7%
LFW 0.2% 9.5×10−4% 4% -

each base, followed by authentication tests against various attacker models previously
introduced.

During each testing phase, a sample TrainingS, comprising 60% of individuals
from the base, is used to evaluate biases in the biometric set, with one template per
person. The remaining 40% sample, referred to as TestS, is reserved for authentication
testing. This distribution is consistently maintained across all three template bases.
The initial stage in the fuzzy vault process is enrollment. Considering sample TestS
with |TestS| = N ∗ 40%, we construct the associated vault by incorporating the previ-
ously presented parameters, generating vaults with sizes r ranging from 2n to n×2m1 .
During authentication stage, we create 50 authentication sets B for each vault. This
authentication process is conducted using the three attacker models, depending on the
specific scenario being investigated.

The validity of authentication is conditioned by the number of common elements
between the authentication set B and enrolment set A . We define two sets to be close if
their intersection is at least equal to ⌊ n+k

2 ⌋, and then the decoding algorithm guarantees
the correction of other errors. To calculate the authentication rate for each vault, we
determine the ratio of valid sets B to the total number of constructed sets, which is
|TestS|×50. The success rates computed for each attacker model will be compared to
analyze the impact of the acquired knowledge, as visualized in the graphs below.

5.1 Results
To exploit biases, we focus on two attack scenarios. The first scenario relies on a global
frequency analysis, where the assembly of the biometric set is performed without con-
sidering the order of elements. Conversely, the second scenario takes into account the
specific distribution of each feature, thus adopting a more in-depth approach based on
feature-based construction. Starting from each of the three template bases, we initially
assess the biases inherent in the associated biometric sets and perform quantitative
measurements M . Subsequently, we conduct authentication by leveraging the quan-
tified biases, as well as considering two other attacker models. The outcomes of the
authentication rates are then presented in the form of curve graphs for each reference
vault set of size r.

Every color in graph denotes the authentication rate associated with a specific at-
tacker model, the red represents an attacker with knowledge of the distribution (DKA),
while the black signifies a uniform attacker (UA). The green, purple, and blue shades
represent attackers with partial knowledge, each having different levels of information
(PKAα%).

A. Scenario 1: in this context, the order of features is disregarded. From a sample
of the biometric set, the frequency of each element e ∈ F2p is calculated, thereby
determining the measure M .
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The specific results for the FVC, PTB, and LFW bases are 0.92 and 0.93, 0.94
respectively Table 4, indicating that they deviate significantly from a uniform
distribution. Notably, there is a range of information concentration levels ob-
served among the three bases, reflecting their divergence from uniformity. This
observed diversity is associated with the quality of the base. A less pronounced
dispersion is noted in the FVC database, which exhibits an EER rate of 17%,
while the results for the LFW database, with a FAR of 4% and an FRR close to
0%, show greater dispersion.

Table 4: M (D) of biometric set.

template base FVC PTB LFW
M (D) 0.92 0.93 0.94

Overall, the measurements indicate pronounced diversity within the biometric
set, with significant deviations from the uniform distribution. Specifically, pro-
nounced disparities are observed in biases among biometric sets from different
biometric template bases, particularly with the FVC showing a more marked
deviation with a measurement of 0.92 compared to the uniform distribution, in
contrast to the set from the base LFW with a measurement of 0.94. Through sub-
sequent tests, we will seek to determine whether the slight differences observed
among these measures will have a significant or negligible impact on the vault’s
security.

(a) FVC (b) PTB (c) LFW

Figure 4: Authentication for scenario 1

The results from Figure 4 indicate that, across all bases, the advantages of the
three applied attacker models gradually decrease as the size of the vault r in-
creases. With the FVC base, it is observed that knowledge of the set distribution,
as depicted by the red curve, provides a significant advantage to the attacker
compared to the other two bases where this advantage decreases for sizes start-
ing from 3∗n.

For the partial knowledge attacker model, we possess, in each case, knowledge
of proportions of 25%, 40%, and 50% of the enrollment biometric set. The
results obtained reveal that for all bases, knowledge of the distribution is al-
ways more important than knowledge of 25% of the information (represented
in green), which still constitutes a significant bound. Even in the case of the
FVC with multiple vault size r Figure 4a, the advantage obtained using the dis-
tribution is more significant than knowledge of 40%, and close to 50%. On the
PTB base, we achieve the best rate with the red curve, surpassing the advantage
gained with the knowledge of 50% of the enrollment set Figure 4b. However, it
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is important to note that these knowledge percentages are unrealistic and do not
represent a plausible attacker model, unlike knowledge of the distribution, which
seems more practical.

The fifth black curve illustrates the advantage of a database-side attacker with-
out any additional information, attempting to build elements of the set by draw-
ing uniformly. It is observed that the vault’s security remains intact, with the
attacker frequently unable to gain any advantage. This supports the highest se-
curity threshold of the fuzzy vault under uniform conditions, consistent with
assertions made by prior researchers. Comparing (DKA) and (UA) models, the
red curve’s notable advantage over the black indicates that exploiting set biases
can weaken the fuzzy vault’s security.

In connection with the base quality and measure M , it is observed that the dif-
ference of 0.1 between the calculated measures Table 4 significantly impacts the
vault’s security against the attacker model considering the distribution. This is
evident when comparing the degradation of the red curve across the three bases.

B. Scenario 2:

In this context, the relevance of knowledge through distribution becomes more
pronounced, allowing for the provision of specific information regarding the dis-
tribution of each feature. We calculate the Mi metric for each feature i among
the n in the template to assess the irregularity or dispersion of the feature values
distribution.

The results from measuring feature biases reveal pronounced differences across
the various bases. The majority of features for all three bases showed a M value
ranging between 0.6 and 0.8, suggesting significant biases when compared to
a uniform distribution. A few features, however, scored above 0.9, indicating
less bias. Notably, in the FVC and PTB bases, some features recorded entropy
measures below 0.5. A few feature groups even demonstrated distributions that
were quite structured or condensed, with measures below 0.3. These findings
will be used to assess their impact on the security of the vault.

In establishing the construction of the authentication set based on features, using
each of the considered models. For the partial knowledge attacker model, we
assume knowledge of 25%, 30%, and 35% proportions of the enrollment set.

(a) FVC (b) PTB (c) LFW

Figure 5: Authentication for scenario 2

The results presented Figure 5 highlight a significant deterioration in the vault’s
security through this feature-based approach. The three bases corroborate this
observation. In general, authentication rates in this scenario are significantly

13



higher, attributable to additional specific information associated with each fea-
ture. With FVC Figure 5a, success rates approach 40% for most vault sizes
and reach around 10% for sizes approaching the maximum value of r. In this
scenario, compared to Figure 4b and 4c, we observe that more chaff points are
needed to diminish the significance of the distribution advantage, as illustrated
in Figure 5b and 5c.

Furthermore, with these bases of varying quality, a correlation is observed be-
tween the base quality and knowledge of the distribution: the higher the base
quality, the less significant the impact of biases. As depicted Figure 5c, know-
ing the distribution is more advantageous than knowing 25% of the biometric set
with the LFW base, in contrast to the PTB and FVC bases. In these cases, knowl-
edge of the distribution proves to be more advantageous than knowing 35% of
the set, with the distribution conferring a more substantial advantage over all
other models.

5.2 Discussion
We have presented the results of our attack scenarios applied to three distinct template
bases, characterized by different modalities and qualities. We assessed the resilience
of the fuzzy vault against these three different attacker models.

Our initial observation reveals that the authentication rates obtained using the distri-
bution model are substantial, affirming the scheme’s inability to withstand such attacks,
this casts doubt on its feasibility in such conditions and raises concerns about the fuzzy
vault’s security, especially in the case of feature-based construction, where we quantify
biases related to features.

In comparison with the model suggested by Juels and Sudan, we illustrate that this
model requires substantial knowledge to achieve a security level comparable to distri-
bution knowledge, necessitating at least 30% of the enrollment set. This significant
requirement is less apparent in the context of individual sensitive data.

In the scenario involving global data, the advantage is less pronounced than with
feature-based construction. However, we observe a convergence of success rates with
a non-realistic information knowledge model. This underscores the critical importance
of the model used and its direct impact on security. It calls into question the scheme’s
ability to withstand this specific model, highlighting a potential vulnerability.

6 SECURE SINGLE-FACTOR FUZZY VAULT
The results of the previous section indicate that the original fuzzy vault cannot be con-
sidered secure, particularly when exploiting biases by features. This quantification,
along with the suggested attacker model, helps us understand the dispersion of ele-
ments in the set. Differently from previous studies, we present the first solution while
maintaining the original proposition of the fuzzy vault scheme, without modifying its
inherent nature.

For our proposed solution, the goal is to avoid significant concentration within
value ranges for each feature, thereby reducing biases in biometric sets by ensuring a
balanced distribution for each feature. We rely on a quantile method, dividing the data
for each feature into intervals of equal probability, where each integer appears with the
same frequency.
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6.1 Fuzzy Vault Parameters
Using the quantile method to mitigate biases in each feature decreases dominant fea-
ture values, consequently lowering the system’s authentication level. Therefore, we
reassess our selection of the value m1 for the quantile method. Setting m1 = 1 uses
binary encoding for each feature based on its median, which minimizes data dispersion
and aids in managing template value variability to achieve an EER with the biometric
set. However, this parameter decreases the number of image elements of the func-
tion (⋆⋆), resulting in fewer chaff points for vault V . Assuming the attacker knows
all parameters, this compromises the vault’s security. Despite reduced authentication
from increased data dispersion, for security reasons, we choose m1 = 2, providing four
possible values corresponding to employing the quartile method. This divides the data
into four equal parts, each representing 25%. Subsequently, an integer between 0 and
2m1 − 1 is associated with each interval, aiming to generate a sufficiently large finite
field with function (⋆⋆). With this choice of m1, we obtain the same values for n and r
as those presented Table 2.

The correlation between the secret length k and authentication rates indicates that
longer lengths are associated with reduced error correction. Employing the quartile
method reveals variations in FAR and FRR rates. Regardless of specific k values, an
increase in length is associated with higher FRR and lower FAR. During vault con-
struction, emphasis is placed on selecting the smallest suitable value for k, tailored to
the biometric template base. The following Table 5 presents the FAR and FRR results
obtained for each base along with the corresponding k.

Table 5: Authentication rates

biometric template biometric set
Biometric template base EER k FAR FRR

FVC 10% 5 1.3% 56%
PTB 10.8% 9 2% 6%
LFW 0.2% 4 0% 75%

Overall, the three bases do not exhibit an EER, displaying FAR rates below 2%
for all bases, thereby enhancing the fuzzy vault’s security. However, the FRR rate has
shown a significant increase for two databases, FVC and LFW, making usability less
straightforward, requiring the user to authenticate repeatedly with a more precise repre-
sentation of the biometric data until successful, while with PTB bases, no degradation
is observed Table 5. Using our method removes biases from features, but considering
the FRR results for some bases, one approach to reducing them could involve retain-
ing certain biases, balancing system usability and security against statistical biases in
features.

6.2 Results
Given that scenario 2, characterized by a feature-based attack, poses the most
formidable threat compromising the integrity of the fuzzy vault and rendering it in-
tricate to use. In this same scenario, we aim to quantify the biases of each feature
obtained through the application of the quartile method. Subsequently, we intend to
assess the advantages resulting from the exploitation of these biases and determine if
this compromises the security of the fuzzy vault scheme once again.
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The objective of our quartile method is to obtain features with more balanced val-
ues closer to uniformity. Reassessing the biases of features using the measure M , as
expected, reveals a predominance of features with a M measurement exceeding 0.9,
contrasting with previous results where the majority were between 0.6 and 0.8.

To quantify the effectiveness of our proposed solution, we replicate the attack on
the three bases using identical attacker models similar to those in scenario 2. The
results are visually presented Figure 6.

(a) FVC (b) PTB (c) LFW

Figure 6: Authentication rate with quantile method

The advantage of an attacker exploiting biases decreases significantly. Based on the
results from the three bases, in line with our method used to remove biases by features,
we achieve an advantage of the red curve similar to that of the black curve, obtained
through uniform sampling. Specifically, with vault sizes much smaller than n∗3, it is
observed that the vault becomes more secure without the need to add numerous chaff
points. These conclusions also hold for Scenario 1, where there is no knowledge of
biases specific to the features. Thus, the quartile method eliminates the effectiveness
of bias attacks while preserving the nature of the proposed original scheme.

To conclude this study, we have proposed a first method based on eliminating bi-
ases from each feature during the transformation of a template into a biometric set,
This approach employs the quantile method to ensure a fair presentation of each fea-
ture’s values. Unlike methods to enhance the vault’s security by adding passwords,
our single-factor-based proposal maintains an equivalent level of security in the case of
uniformity without requiring additional information. We have presented a solution to
mitigate biases in each feature and mitigate attacks specifically aimed at these features.
Nonetheless, the potential for an attack exploiting the correlation between features per-
sists. This scenario could render biases exploitable, thus compromising the vault’s
security.

7 CONCLUSION
In this study, we have quantified the advantage of exploiting statistical biases in the
biometric sets of the fuzzy vault, compromising its security and rendering its use by
the initial proposal unfeasible. In response to these vulnerabilities, we have introduced
a first method for a secure single-factor fuzzy vault authentication, aligned with the
initial proposition. Quantiles were employed to achieve a balanced distribution of the
values for each feature, eliminating the need for additional information and avoiding
the use of multi-factor authentication.

We have obtained preliminary results supporting the effectiveness of the single-
factor fuzzy vault, which is not sensitive to feature biases, highlighting a significant
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correlation between its security and the construction function of the biometric sets.
Currently, it is still possible to deduce the corresponding feature of the biometric tem-
plate from an element of the biometric set. One method to prevent this is to add a
secret on the server side to protect the parameters of the construction function, thereby
enhancing security while maintaining the single-factor scheme and eliminating attacks
based on features, thus avoiding a correlation attack between features. This approach
also helps avoid constraints related to parameter choices, improving system perfor-
mance.

REFERENCES
Belguechi, R., Hafiane, A., Cherrierand, E., and Rosenberger, C. (2016). Comparative study on

texture characteristics for fingerprint recognition: application to the biohashing template
protection scheme. Journal of Electronic Imaging.

Benhammadi, F. and Bey, K. B. (2014). Password hardened fuzzy vault for fingerprint authenti-
cation system. Image and Vision Computing.

Bousseljot, R., Kreiseler, D., and Schnabel, A. (1995). Nutzung der ekg-signaldatenbank car-
diodat der ptb über das internet.

Cover, T. M. and Thomas, J. A. (2006). Elements of information theory. Wiley-Interscience.
Dargan, S. and Kumar, M. (2020). A comprehensive survey on the biometric recognition systems

based on physiological and behavioral modalities. Expert Systems with Applications 143.
Daugman, J. (2004). How iris recognition works. IEEE TRANSACTIONS ON CIRCUITS and

SYSTEMS FOR VIDEO TECHNOLOGY.
Dodis, Y., Ostrovsky, R., Reyzin, L., and Smith, A. (2008). Fuzzy extractors: How to generate

strong keys from biometrics and other noisy data. SIAM Journal on Computing.
Dong, X., Jin, Z., and Jin, A. T. B. (2019). A genetic algorithm enabled similarity-based attack

on cancellable biometrics. In IEEE Inter-BIBLIOGRAPHIE 119 national Conference on
Biometrics : Theory, Applications and Systems (BTAS).

Gernot, T. and Lacharme, P. (2022). Biometric masterkeys. Computers Security.
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus,

J. E., Moody, G. B., Peng, C. K., and Stanley, H. E. (2000). Physiobank, physiotoolkit, and
physionet : Components of a new research resource for complex physiologic signals.

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller, E. (2008). Labeled faces in the wild:
A database for studying face recognition in unconstrained environments. in Workshop on
faces in’Real-Life’Images: detection, alignment, and recognition.

Juels, A. and Sudan, M. (2002). A fuzzy vault scheme. Proceedings IEEE International Sympo-
sium on Information Theory.

Khalil-Hani, M., Marsono, M. N., and Bakhteri, R. (2013). Biometric encryption based on a
fuzzy vault scheme with a fast chaff generation algorithm. Future Generation Computer
Systems.

Lee, Y. J., Park, K. R., Lee, S. J., Bae, K., and Kim, J. (2008). A new method for generating an
invariant iris private key based on the fuzzy vault system. IEEE Transactions on Systems
Man and Cybernetics Part B (Cybernetics).

Maio, D., Maltonil, D., Cappelli, R., Wayman, J., and Jain, A. (2002). Fvc2002: Second finger-
print verification competition. Proceedings of the 16th International Conference on Pattern
Recognition (ICPR).

Makowski, D., Pham, T., Lau, Z., and Brammer, J. (2021). Neurokit2 : The python toolbox for
neurophysiological signal processing. https://github.com/neuropsychology/NeuroKit.

Martinez, J., Almeida, R., Olmos, S., Rocha, A., and Laguna, P. (2004). A wavelet-based ecg de-
lineator : evaluation on standard databases. IEEE Transactions on Biomedical Engineering,
51(4) :570–581. 28.

17



Merkle, J., Niesing, M., Schwaiger, M., Ihmor, H., and Korte, U. (2010). Security capacity of
the fuzzy fingerprint vault. International Journal on Advances in Security.

Nagar, A., Nandakumar, K., and Jain, A. K. (2008). Securing fingerprint template: Fuzzy vault
with minutiae descriptors. 19th International Conference on Pattern Recognition.

Nandakumar, K., Jain, A. K., and Pankanti, S. (2007a). Fingerprint-based fuzzy vault: Imple-
mentation and performance. IEEE Transactions on Information Forensics and Security.

Nandakumar, K., Nagar, A., and Jain, A. K. (2007b). Hardening fingerprint fuzzy vault using
password. Advances in Biometrics International Conference ICB.

Poon, H. T. and Miri, A. (2012). On efficient decoding for the fuzzy vault scheme. 11th In-
ternational Conference on Information Science, Signal Processing and their Applications
(ISSPA).

Radha, N., Karthikeyan, S., and P.Anupriya (2010). Securing retina fuzzy vault system using
soft biometrics. Global Journal of Computer Science and Technology.

Rathgeb, C., Tams, B., Merkle, J., Nesterowicz, V., Korte, U., and Neu, M. (2023). Multi-
biometric fuzzy vault based on face and fingerprints. Computer Science.

Rathgeb, C., Tams, B., Wagner, J., and Busch, C. (2016). Unlinkable improved multi-biometric
iris fuzzy vault. EURASIP Journal on Information Security.

Reddy, E. S. and Babu, I. R. (2008). Performance of iris based hard fuzzy vault. IEEE Interna-
tional Conference on Computer and Information Technology Workshops CIT, 8.

Rice, J. A. (2006). Mathematical statistics and data analysis. Duxbury Press.
Sharma, A., Raghuwanshi, A., and Sharma, V. (2015). Biometric system-a review. Int. J.Comput.

Sci. Inf. Technol.
Simonoff, J. (2012). Smoothing methods in statistics. Springer Science Business Media.
Uludag, U., Pankanti, S., and Jain, A. K. (2005). Fuzzy vault for fingerprints. Audio- and

Video-Based Biometric Person Authentication.
Uludag, U., Pankanti, S., Prabhakar, S., , and Jain, A. K. (2004). Biometric cryptosystems:

issues and challenges. Proceedings of the IEEE, 92(6):948–960.
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