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Starch is a primary energy storage for plants, making it an essential component 
of many plant-based foods consumed today. Resistant starch (RS) refers to those 
starch fractions that escape digestion in the small intestine and reach the colon 
where they are fermented by the microflora. RS has been repeatedly reported 
as having benefits on health, but ensuring that its content remains in food 
processing may be challenging. The present work focuses on the impact RS on 
health and explores the different processes that may influence its presence in 
foods, thus potentially interfering with these effects. Clinical evidence published 
from 2010 to 2023 and studying the effect of RS on health parameters in adult 
populations, were identified, using PUBMED/Medline and Cochrane databases. 
The search focused as well on observational studies related to the effect of 
food processes on RS content. While processes such as milling, fermentation, 
cooking and heating seem to have a deleterious influence on RS content, other 
processes, such as cooling, cooking time, storage time, or water content, may 
positively impact its presence. Regarding the influence on health parameters, 
there is a body of evidence suggesting an overall significant beneficial effect 
of RS, especially type 1 and 2, on several health parameters such as glycemic 
response, insulin resistance index, bowel function or inflammatory markers. 
Effects are more substantiated in individuals suffering from metabolic diseases. 
The effects of RS may however be exerted differently depending on the type. 
A better understanding of the influence of food processes on RS can guide 
the development of dietary intake recommendations and contribute to the 
development of food products rich in RS.
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Introduction

Carbohydrates (CHO) are fundamental components of human 
nutrition, serving as the primary source of energy in most diets. 
Additionally, they play a significant role in human health through 
their influence on glucose homeostasis via their metabolism in the 
gastrointestinal tract. Carbohydrates are abundantly found in cereals, 
fruits, vegetables and legumes. Among them, starch is the most 
abundant digestible polysaccharide in human diets, playing a crucial 
role in numerous plant-based foods such as wheat, maize, rice, rye, 
potato or peas (1, 2). Starches are classified based on their digestion 
rates into three major categories: rapidly digestible starch (RDS), 
slowly digestible starch (SDS) and resistant starch (RS). RDS and SDS 
are both fully digested in the small intestine, though at different rates: 
within 20 min for the former versus 120 min for the latter (3–5). In 
contrast, RS mostly escapes digestion in the small intestine and is 
fermented in the colon by microorganisms, producing short-chain 
fatty acids (SCFA) (3, 4, 6). This metabolic pathway looks like that of 
dietary fibers, plant components, originally defined as “portion of food 
which is derived from cellular walls of plants which are digested very 
poorly by human beings.” This led to an expansion of the definition to 
encompass RS along with other compounds such as resistant 
oligosaccharides or hydrocolloids (7). Dietary fibers have long been 
recognized as an important component of a healthy diet and are 
emphasized in dietary guidelines worldwide. For example, a daily 
intake of at least 25 grams per day is recommended in Europe to 
reduce the risk of chronic diseases (1). However, actual intake of 
dietary fibers in Europe varies significantly across countries, and often 
falls short of these recommendations. Reports indicate an average 
intake of 12.5 g/d in Spain, 17 g/d per day in Belgium, 20 g/d in France, 
Sweden, and the Netherlands, 21 g/d in Austria and Finland, with only 
Norway and Germany approaching the recommended 25 g/d (8). In 
the United States, it was estimated that only 7.4% of adults reached the 
recommended intake of 14 g/1000 kcal (9). In Australia, a typical diet 
provides 4 times less than the 15–20 g/day recommended for 
supporting bowel health (10). More limited data are available 
regarding RS consumption. Global intake is estimated to be between 
3 and 10 g per day. In Europe, intake ranges from approximately 3 to 
6 g/d, while in China, it is about 15 g/d, mainly from wheat and rice 
products. In Africa, intake can be as high as 20–30 g/d (11).

Apart from its contribution to fiber intake, increasing the RS 
content in foods may be an opportunity to promote health since starch 
microstructure manipulation may modulate health parameters such 

as those related to metabolic response. However, the influence of food 
processing on RS content appears as a key determinant in this respect.

In the present work, we aim to describe the influence of various 
food processes on RS content, and to review clinical evidence related 
to the effects of RS on health, in order to highlight the barriers and 
knowledge gaps that remains to be addressed before developing public 
health strategies.

Methods

To compile this narrative review, a comprehensive literature 
search was conducted on 3 scientific databases: Medline, 
COCHRANE, and The Lens. The focus was on articles examining the 
health benefits of RS and the dietary processes that may influence its 
content in foods were searched. The keyword “resistant starch” was 
combined with others, related to health conditions, as follows: 
“resistant starch” AND (“glycemic response” OR “glycaemic response” 
OR diabetes OR diabetics OR metabolic OR overweight OR obese 
OR glucose OR insulin OR lipids OR inflammation OR microbiota 
OR microflora OR gastrointestinal OR oxidative OR antioxidant). 
Searches with keywords related to food processes were performed in 
parallel: “resistant starch” AND (cooking OR cooling OR milling OR 
storage OR heating OR breeding OR microwave). The retrieved 
records were screened by reviewers, and studies were selected based 
on title, abstract and keywords, according to the following eligibility 
criteria: peer-review publications in English, published in the last 
20 years, either randomized controlled trials, systematic reviews, 
meta-analyses or observational trials, conducted in the general adult 
population. Studies conducted on tertiary-care patients, such as those 
suffering from cancer or undergoing hemodialysis were excluded. 
Cross-reference searches were performed during the selection and 
reviewing processes. Following selection by the authors, full-text 
articles were retrieved and analyzed.

Types of resistant starch and their 
properties

RS is usually listed in five categories (see Table 1). Resistant starch 
type 1 (RS1) is physically entrapped, non-accessible, in a non-digestible 
matrix such as whole grains (intact cells) due to wall barrier. This 
starch is heat-stable and does not break during cooking, but it does 
during milling. It is commonly found in products such as whole bread, 
seeds or legumes. Resistant starch type 2 (RS2), is a native granular RS 
found in raw potatoes or green bananas. Its crystalline organization 
protects it from digestive enzymes. RS2 has been widely investigated 
in clinical trials, notably through the use of HI-MAIZE® 260 
(Ingredion United Kingdom, Ltd) as an additive to the test products. 
Resistant starch type 3 (RS3) is also known “retrograded starch” which 
results from the formation of double helixes by long-branch chains of 
amylopectin following the cooling of foods cooked in the presence of 
moisture. It cannot be hydrolysed by digestive enzymes. Resistant 
starch type 4 (RS4) is a chemically-modified starch engineered to 
resist to enzymatic digestion. As well as RS2, it can be added to foods 
as an ingredient. Products containing RS4 might be derived from 
sources such as potato, high-amylose maize, or tapioca starches 
(VERSAFIBE™ 1,490, VERSAFIBE™ 2,470 or NOVELOSE®3,490, 

Abbreviations: BMI, Body Mass Index; CHO, Carbohydrates; CRP, CI, C-reactive 

protein confidence intervals; HS, CRP, High sensitivity C-reactive protein; EFSA, 

European Food Safety Agency; FPG, Fasting Plasma Glucose; GIP, Glucose-

dependent insulinotropic polypeptide; GLP-1, Glucagon-Like Peptide-1; GT, 

gelatinization temperature; HbA1c, Glycated hemoglobin; HDL-C, High-Density 

Lipoprotein Cholesterol; HMT, heat-moisture treatment; IL-6, Interleukin 6; LDL-C, 

Low-density lipoprotein cholesterol; NDA, EFSA Panel on Dietetic Products, 

Nutrition, and Allergies; RCT, Randomized controlled trial; RMD, Resistant 

maltodextrin; RS, Resistant starch; RDS, Rapidly digestible starch; SCFA, Short-

chain fatty acids; SDS, slowly digestible starch; SMD, Standardized mean difference; 

TAC, Total antioxidant capacity; TNF-α, Tumor necrosis Factor; T2DM, type-2 

diabetes mellitus.
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respectively) (6). Initially, a fifth class of resistant starch (RS5) was 
established to characterize cases where RS is modified and form 
starch-lipid complexes with resistant properties. However, recent 
evidence has described the generation of starch complexes that involve 
other molecules, such as amino acids, peptides, polysaccharides or 
polyphenols, and have a similar structure to starch-lipid complexes. 
Therefore, an update of the “RS5” category has been suggested to 
include these new complexes as well (14, 15).

Effects of food processing on resistant 
starch content

The preservation of starch’s crystalline structure is crucial for 
maintaining low digestibility to maximize their nutritional properties 
(low glycaemia index, satietogenic properties ….). Some foods, such 
as unriped bananas and uncooked oats, are naturally rich in 
RS. However, various factors may alter this content in one direction 
or another (16). These factors may be encountered at an early stage 
(e.g., arising from varietal selection), or later as a result of the physical 
treatments occurring in various steps of food processing, from milling 
to food storage (17).

Varietal differences and breeding techniques
Developing crops with a modified amylose-to-amylopectin ratio 

can enhance RS levels in foods. Higher amylose content promotes 
the retrogradation after cooking, thus regenerating RS. This is 
because amylose has a smaller and more flexible structure due to its 
linearity, making it easier to regenerate compared to amylopectin 
(17–20). Several studies have demonstrated that using a wheat 
cultivar with elevated amylose content significantly increases the 
final RS content in bread, compared to a conventional cultivar (18, 
21–23). This elevated content seems to translate into health benefits, 
as the production of high-amylose rice (24), noodles (25), or wheat 
(26) positively impacted postprandial glycemia in several 
randomized controlled trials. However, it is worth noting that, using 
specific high-amylose cultivars may negatively impact the 
characteristics of dough and bread (27).

Milling
Milling disrupts the crystalline structure of starch, increasing its 

exposure to enzymatic degradation and leading to a significant loss of 
RS. Compared to whole grains, cereal flours, especially wheat, are 

typically lower in RS (12, 28, 29). Coarse milling or selecting larger 
particles after fractionation could attenuate this loss (19), though 
other production steps also significantly affect RS content (18). 
Additionally, whole grain products are more likely to contain RS1, as 
starch is encapsulated within a plant structure (28).

Cooking/heating
Cooking has a major influence on both starch organization and 

its level in foods. At or above a defined temperature called the 
“gelatinization temperature” (GT), and in the presence of sufficient 
water, the crystalline structure of the starch granule is disrupted, 
making starch resistant (both RS1 and RS2) more digestible. However, 
during cooling, starch polymers (mostly amylose), tend to reassociate, 
forming packed structures which remain unavailable for enzymatic 
hydrolysis. This process is called retrogradation (29, 30).

This new fraction, retrograded starch (RS3), is the main form of 
RS in processed foods (22) and the major contributor to RS intake (13).

Microwave cooking, through dielectric heating and 
electromagnetic effects, generally leads to retrogradation (31). 
Microwave reheating of rice, regardless of water content, increase RS 
while reducing digestible starch fractions (32, 33). This effect seems to 
extend to other foods such as potatoes (34). Cooking wheat noodles 
in a microwave was found more effective than boiling or steaming in 
preserving RS and lowering glycemic index (35). In a meta-analysis of 
31 articles investigating the effect of microwave treatment on starch 
content of high-carbohydrate foods, Isra et al. highlighted that this 
method of cooking significantly increased the level of RS, whatever 
the food matrix [2.755% (95% CI: 2.106 to 3.403); p < 0.001]. 
Moreover, RS enrichment resulted in enhanced prebiotic properties, 
based on several parameters, namely starch composition, amylose 
interaction, lactic acid bacteria viability, and enteropathogenic 
Escherichia coli viability (36).

Control over starch-to-moisture ratio, temperature, and heating 
time can significantly alter the resulting starch levels (37). For 
example, heat-moisture treatment (HMT) and annealing are two 
hydrothermal treatments commonly used to alter starch properties 
(38). HMT consists in heating the starch granule at high 
temperature (ranging from 84 to 140°C) while maintaining low 
moisture (10 to 35%) for specific period of time, in order to prevent 
gelatinization. Studies assessing the effects of different HMT 
treatments on starch characteristics have been extensively reviewed 
(38). Recently, progressive increase in temperature during HMT has 
been shown to reduce the digestibility of sweet potato starch by 

TABLE 1 Characteristics of resistant starch fractions (5, 12, 13).

Type of RS Description Food sources Digestion in small intestine

RS 1 Non-accessible, physically 

entrapped

Whole or partly milled grains, seeds or legumes Slow rate; partial degree; totally digested if properly 

milled

RS 2 Ungelatinized resistant granules Raw potatoes, green bananas, some legumes, high-

amylose corn, specific ingredients (e.g., HI-MAIZE® 260)

Very slow rate; little degree; totally digested when 

freshly cooked

RS 3 Retrograded starch Cooked and cooled potatoes, bread, cornflakes, food 

products with repeated moist heat treatment

Slow rate; partial degree; reversible digestion; 

digestibility improved by reheating

RS 4 Chemically modified starches due to 

cross-linking with chemical reagents

Foods in which modified starches have been used (e.g., 

breads, cakes). Example of ingredients: VERSAFIBE™ 

1,490, VERSAFIBE™ 2,470, NOVELOSE®3,490

Result of chemical modification; can resist hydrolysis

RS 5 Amylose-lipid complexes Foods with high amylose content Can resist enzymatic digestion
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decreasing RDS and increasing RS fractions, with optimum 
conditions at 110°C, 25% moisture for 4 h (39). Similar results were 
observed in rice starch (40, 41), and starch from other foods under 
various conditions (38). Subjecting barley to HMT has been 
reported to improve glycemic response and to promote the growth 
of SCFA-producing bacteria in rats (42). Overall, the ability to 
modify starch swelling capacity, crystallinity, gelatinization or 
retrogradation, digestibility through HMT gives an indication of its 
potential to impact metabolic response to foods and thus, its 
benefits on health.

Modifications of RS crystallinity and organization may also 
be obtained through the treatment of starch with excess water 
and limited temperature, using a process called annealing. 
Typical treatment conditions are around 50°C temperature for 
24 h or more (38). However, the ability of annealing to modify the 
characteristics of starch seems dependent on the botanical 
source: Zheng et al. recently evidenced increased crystallinity of 
maize and potato starch with increasing time of annealing 
treatment, while the effect on pea starch was limited. An increase 
in RS together with a decrease in RDS were noted after potato 
starch treatment, while no such changes were observed in the 
case of maize or pea starch (43). In another study, a decreased in 
proso millet starch digestibility was observed after annealing 
without modifications of the crystallinity (44). Annealing was 
found to raise RS content of cornstarch by almost 9-fold, and was 
shown to be more effective in this respect than HMT, autoclaving 
or microwave treatments (45). Therefore, the use of annealing to 
enhance starch functional properties needs cautious selection of 
the appropriate conditions and substrate.

Autoclaving (i.e., high temperature, high-pressure treatment) is 
also known to induce RS3 formation, especially when coupled to 
cooling (4). Based on a meta-analysis of 10 studies, Faridah et al. 
highlighted that the effect of autoclaving-cooling treatment was 
dependent on the food source, the water ratio, as well as treatment 
time and temperature. Thus, using corn, oat or rice as food source, 
having a starch-to-water ratio of 1:4 and performing two cycles of 
autoclaving-cooling for 30 min of autoclaving at 121°C were the 
conditions allowing maximization of the RS content (46).

Long and low-temperature bread baking (e.g., pumpernickel 
conditions: 20 h, 120°C), significantly increases RS content compared 
to standard baking (45 min at 200°C) (18, 21–23). For instance, white 
wheat bread baked at 120°C for 4 h, and another at 150°C for 3 h, 
showed, respectively, a 24% (1.46 g/100 g) and 15% (1.36 g/100 g) 
increase in RS content, compared to the same bread baked for 30 min 
at 200°C (1.18 g/100 g) (30).

Cooling/storage
Storage conditions, particularly cooling after cooking, play key 

role for the RS content in foods. Cooling after cooking is a crucial step 
during which starch retrogrades, partially restoring its crystallinity 
(17, 28). In a study, freshly baked bread was stored at ambient (20°C), 
frozen (− 17°C) or refrigerated (3.5°C) temperatures for 7 days; 
authors reported that the RS content was significantly increased in the 
refrigerated bread compared to the other storage conditions (47). 
Cooling white rice for 24 h at 4°C before reheating resulted in a higher 
RS content of 1.65 g/100 g compared to the rice cooled at ambient 
temperature for 10 h. In addition, the glycemic response was 

significantly reduced compared to freshly cooked white rice in healthy 
individuals (48). Similar preparation conditions also showed a 
significant reduction of postprandial glycemia in type 1 diabetics 
compared to rice served immediately after cooking (49). Another 
study noted that the impact of refrigeration on RS content differs 
depending on the rice variety. Maximization of RS content was 
attained when long-grain rice was prepared using a rice cooker and 
then refrigerated for 3 days at 4°C (2.55 g RS per 100 g). In contrast, 
short-grain rice prepared in a pressure cooker and similarly 
refrigerated showed the lowest RS dose among the tested combinations 
(0.20 g RS/100 g rice) (50). The influence of storage time and 
temperature on RS content appears to be food-specific: RS content in 
noodles was maximized when microwave-heated and stored for 48 h 
at room temperature (51).

One study highlighted a steady increase in RS content in 
sourdough teff breads over 5 days of storage, with retrogradation was 
evidenced by a concomitant decrease of RDS (52). The effect of storage 
time on RS content, regardless of temperature, has been observed in 
wheat bread as well (30). Interestingly, the rate of starch 
recrystallization during storage varies among cereals. For instance, rye 
sourdough bread exhibits a slower crystallization rate than wheat 
bread (53).

Fermentation conditions
Several studies reported an effect of fermentation conditions on 

the RS content of foods.
One study found that sourdough bread, regardless of flour type 

(whole or white wheat), had a significantly higher RS content 
compared to yeast bread. Furthermore, at the same fermentation 
temperature, using type-2 sourdough fermentation using indigenous 
strains (Lactobacillus brevis ELB99, Lactiplantibacillus plantarum 
ELB75, and Saccharomyces cerevisiae TGM55) yielded higher RS 
content in bread compared to type-1 (spontaneous) fermentation. In 
white wheat bread, lower fermentation temperature (25°C vs. 30°C) 
also increased the RS content of bread, whatever the fermentation 
type. In whole wheat bread, this was the case only for type-1 
fermentation (54). In contrast, another study did not find any 
significant impact of sourdough addition on the RS in white flour (30). 
In the case of Teff bread, Shumoy et al. reported that the RS content 
increased with the proportion of incorporated sourdough (52).

In experiments involving barley malt production, Teixeira et al. 
highlighted that the increase in RS was correlated to the barley variety 
used, particularly its amylose content. Specifically, steeping with 0.4% 
lactic acid in Tipple, regardless of the temperature used, was shown to 
enhance RS content (55).

Impact of resistant starch on health based 
on a clinical perspective

The effects of RS on health have been widely investigated in the 
past decades. For this review, a total of 14 meta-analyses compiling 
data from these studies were retrieved (56–70). These meta-analyses 
vary in their focus on different types of RS and target populations. The 
following sections will review and summarize the impact of RS on 
different health parameters. Characteristics of the meta-analyses are 
detailed in Table 2.
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TABLE 2 Characteristics of included meta-analyses.

Studies characteristics Results

Reference Nb of 
studies

Type Design Total nb 
of 

subjects

Target 
population

Intervention Control RS 
dose 
range 
(g/d)

Study 
duration 

range 
(weeks)

RS type Outcomes

(59) 14 RCT // or CO 515 T2DM or obesity w/o 

T2DM

RS supplementation non-RS 

supplementation

4–6 4–52 Any fasting insulin, fasting 

glucose, BMI and 

HOMA-IR;

↓ FPG in T2DM + OB; 

↓ FPI in T2DM + OB; 

= FPI in T2DM; = 

BMI in T2DM; ↓ 

HOMA-IR in 

T2DM + OB; = 

HOMA-IR in T2DM

(61) 19 RCT // or CO 1,014 Any RS supp or 

intervention

intake of 

digestible 

starches or other 

CHOs

8–34 3–48 Any 

(mostly 

RS2)

glycemic status, serum 

lipoproteins and 

inflammatory markers

↓ FPG; ↓ FPI; = 

HOMA-IR; ↓ HbA1c; 

↓TC; ↓ LDL; = HDL; = 

TAG; = IL-6; ↓ TNF-α; 

= CRP

(64) 31 RCT Any 982 T2DM or prediabetes; no 

other chronic conditions

Resistant starch type 

1–5, starch-

containing foods

Starch ot other 

carbohydrates

1–45 0–52 Any Markers of glycemia ↓ PPG; = PPI; ↓ FPG; 

↓ FPI

(66) 22 RCT Any 670 Healthy or MetS or 

T2DM

Resistant starch type 2 Any 8–66 1–12 RS2 

(mostly 

high 

amylose 

maize 

starch)

fasting blood glucose, 

glycated hemoglobin 

(HbA1c), insulin 

resistance, appetite/

satiety levels, lipid levels 

or body weight

= FPG, ↓ body weight; 

= HOMA-IR; = 

HbA1c; = TC; = LDL; 

= HDL; = TAG

(70) 15 RCT Any 503 Any resistant starch 

supplementation 

(excluding type 1)

Any 5,1–66 2–12 Any 

(mostly 

RS2)

blood glucose or insulin ↓ FPG; = FPI; = 

HbA1c;

(68) 13 RCT Any 428 Overweight / Obesity RS Any 10–45 2–12 Any fasting glucose or fasting 

insulin or plasma lipid or 

insulin sensitivity or 

insulin resistance

↓ FPG; ↓ FPI; = 

HOMA-IR; ↓ HbA1c; 

= TC; ↓ LDL; = HDL; 

= TAG

(71) 14 RCT Any 820 Adults, healthy or not,no 

lipid-lowering medication

RS placebo without 

the functions of 

DF or diets low 

in resistant 

starch

10–66 2–52 Any 

(mostly 

RS2)

TC, LDL-C, TGs, HDL ↓ TC; ↓ LDL; = HDL; 

=TAG

(Continued)
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Studies characteristics Results

Reference Nb of 
studies

Type Design Total nb 
of 

subjects

Target 
population

Intervention Control RS 
dose 
range 
(g/d)

Study 
duration 

range 
(weeks)

RS type Outcomes

(60) 8 RCT Any 308 Any but inflammatory 

diseases

RS2 Placebo 10–45 4–12 RS2 (Hi-

maize 260)

IL-6, hs-CRP, TNF-a as 

outcomes

= IL-6; = TNF-α; = 

CRP

(63) 16 RCT Any 706 Any RS alone Any 6–27 4–12 RS2 Inflammatory or 

oxidative stress 

biomarkers

↓ IL-6 in non-T2DM; 

↓ TNF-α in non-

T2DM; ↓ CRP in 

T2DM; = uric acid; ↑ 

TAC; ↑ SOD; ↓ MDA

(67) 13 RCT Any 672 Adults, healthy or not Resistant Starch 

(“resistant 

maltodextrin,” 

“resistant dextrin,” 

“indigestible starch,” 

“high amylose starch”)

Any but RS 10–45 4–14 Any 

(mostly 

RS2)

IL-6, CRP, hs-CRP and 

TNF-α

↓ IL-6; ↓ TNF-α; = 

CRP

(69) 16 RCT Any 739 Adults RS Any Any 2–12 Any IL-6, CRP, hs-CRP and 

TNF-α

↓ IL-6; ↓ TNF-α; = 

CRP; ↑ TAC; = SOD; = 

MDA

(65) 9 RCT Any 193 Healthy adults RS Any 22–45 

(avg 33)

1–4 RS2, RS3 

and RS4

butyrate concentration, 

defecate frequency, fecal 

wet weight, fecal PH

↑ stool volume; = stool 

frequency; ↑ butyrate 

levels; ↓ fecal pH

(57) 7 Any Any 248 Any RS Baseline Any NA Any microbial diversity, 

bacterial counts

↓ gut microbial 

α-diversity; ↑ counts of 

Ruminococcus, 

Agathobacter, 

Faecalibacterium and 

Bifidobacterium

(72) 29 RCT SB or DB 1,208 Healthy adults RMD Any w/o RMD 3,8-13,5 1–3 RMD stool frequency and stool 

volume

↑ stool volume; ↑ stool 

frequency

(73) 20 RCT Any Colorectal cancer, familial 

adenomatous polyposis 

(FAP), Lynch syndrome 

(LS), sporadic adenoma 

(SA) and healthy subjects

RS/inulin with or 

without other drugs

Digestible 

carbohydrate or 

low-dose NDC

10–60 4–116 Any SCFA production = SCFAs; = butyrate

BMI, body mass index; CRP, c-reactive protein; FPG, fasting plasma glucose; FPI, fasting plasma insulin; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide 1; HbA1c, glycated hemoglobin; HDL, high-density lipoproteins cholesterol; 
HOMA-IR, homeostatic model assessment of insulin resistance; IL-6, interleukin 6; LDL, low-density lipoprotein cholesterol; MDA, malondialdehyde; PPG, postprandial glucose; PPI, postprandial insulin; SOD, superoxide dismutase; TAC, total antioxidant capacity; 
TAG, triacylglycerol; TC, total cholesterol; TNF-α, tumor necrosis factor alpha; ↓: significantly decreased vs. control; ↑ significantly increased vs control.

TABLE 2 (Continued)
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Resistant starch and gastrointestinal outcomes 
(stools characteristics, microbiota and 
short-chain fatty acids)

RS has been reported to impact gastrointestinal outcomes, from 
microbiota population counts and activity, to stools characteristics.

A meta-analysis included 9 randomized controlled trials 
administering RS at doses varying from 22 g/day to 45 g/day (average 
33 g/day) to healthy subjects. Control groups typically followed 
low-RS diets. The pooled analysis revealed significant improvements 
in fecal weight, butyrate levels, and fecal pH following RS 
supplementation, compared to the control. Conversely, defecation 
frequency was not significantly changed (65).

In another meta-analysis (72) a significant increase in stool 
volume and frequency compared to the control was found based on a 
pooled analysis of 29 randomized controlled trials administering 
resistant maltodextrin (RMD) from 3.8 to 13.5 g daily to 
healthy individuals.

Regarding studies focusing on bacterial counts in human gut 
microbiota, pooled data from 7 studies involving 248 individuals 
revealed an association between RS consumption and an increased 
abundance of Ruminococcus, Agathobacter, Faecalibacterium and 
Bifidobacterium. RS appeared to impact mechanisms related to 
carbohydrate and lipid metabolism. Notably, different RS types were 
found to alter differently microbiome responses (57).

Focusing on gut microbiota activity, one meta-analysis reported 
no significant changes in total SCFAs or butyrate concentration 
following RS intervention, based on data from 4 and 3 studies, 
respectively. Similarly, total SCFAs and butyrate excretion were 
unchanged in the intervention group (RS2 or inulin) compared to 
control (placebo or digestible CHO), based on data from 5 and 3 
studies, respectively. The same study also assessed the potential of 
non-digestible fibers in reducing the risk of colorectal cancer, but the 
evidence reviewed did not support this hypothesis (73).

Resistant starch and metabolic response 
(glucose, insulin)

RS may dampen glycemic and insulin responses by delaying the 
absorption of food boluses. This topic has been the subject of extensive 
research in recent years, as evidenced by 7 meta-analyses published 
between 2018 and 2023.

Most recently, RS was found to significantly reduce postprandial 
glucose following both acute [−0.65 (95% CI: −0.98, −0.32); 
p < 0.0001; 14 studies] and chronic [−0.31 (95% CI: −0.50, −0.13), 
p = 0.001; 7 studies] intake. Chronic intake of RS also led to a 
significant reduction in fasting blood glucose [−0.31 (95% CI: −0.51, 
−0.11); p = 0.002; 14 studies], with doses used in studies ranging from 
6 to 40 g/d. Interestingly, both RS1 and RS2, but not RS3 achieved this 
reduction. For fasting blood glucose, significant results were observed 
only with chronic intake of RS2. Focusing on the target population, 
the authors noted that the acute postprandial glycemic response was 
significantly reduced in both prediabetics and type-2 diabetics, but the 
chronic response was effective only in diabetics subjects. Other 
metabolic markers such as glucagon-like peptide-1 (GLP-1), glucose-
dependent insulinotropic polypeptide (GIP), and insulin sensitivity 
(HOMA-IR) remained unaffected by RS (64).

In another paper (70), results from a pooled analysis showed 
significant improvements in fasting plasma glucose (FPG) [−0.09 
(95% CI –0.13, −0.04) mmol/l; p = 0.001; 16 trials] and insulin 

resistance (HOMA-IR) [−0.33 (95% CI –0.51, −0.14); p = 0.001; 3 
trials], in 503 individuals, healthy or not, receiving RS (except type 1) 
compared to unsupplemented control food. However, no significant 
effects of RS were observed on other parameters such as fasting plasma 
insulin, glycated hemoglobin (HbA1c) or insulin sensitivity; of note, 
high heterogeneity between studies was observed for these outcomes. 
Higher doses of RS (≥ 26 g/d) compared to a lower dose (< 26 g/d) 
appeared more effective on FPG, as well as longer intervention 
duration (≥ 8 weeks vs. < 8 weeks). The effect was more pronounced 
in overweight subjects or those at risk of having diabetes, compared 
to healthy or diabetic subjects.

Aggregating data from 19 randomized controlled trials involving 
1,014 individuals at risk of metabolic diseases (e.g., type 2 diabetics, 
prediabetics, overweight or dyslipidemic subjects) resulted in 
significant reductions in fasting plasma glucose [−4.28 (95% CI: 
−7.01, −1.55); p = 0.000; 14 studies], insulin [−1.95 (95% CI: −3.22, 
−0.68); p = 0.000; 12 studies] and HbA1c [−0.60 (95% CI: −0.95, 
−0.24); p = 0.000; 8 studies] due to RS interventions compared to 
digestible starches, other carbohydrates or other fibers. However, 
insulin resistance (HOMA-IR) was not significantly impacted (10 
studies). Fasting plasma glucose or insulin resistance were significantly 
impacted in subjects with metabolic or renal diseases but not in at-risk 
subjects. Of note, using maize as a RS source appeared to not 
significantly affect FPG (61).

Gao et al. included 14 articles with a total of 515 subjects in their 
meta-analysis. Individuals presented obesity (6 studies) or had type-2 
diabetes mellitus (T2DM) (6 studies) or without (2 studies) obesity. The 
studies included all forms of RS, and control typically consuming 
unfermented digestible carbohydrates. No significant effects of RS 
supplementation on either body mass index (BMI) or fasting plasma 
glucose were found after pooling 8 and 11 studies, respectively. 
However, a significant reduction was noted in patients with T2DM and 
obesity [−0.19 (95% CI: −0.29, −0.10); p < 0.0001; 5 studies]. Fasting 
plasma insulin was significantly lower in the RS supplementation group 
compared to the controls [−2.07 (95% CI: −3.25, −0.89); p < 0.0006; 8 
studies], albeit with high heterogeneity (I2 = 84%). A more significant 
reduction was observed in the subgroup receiving 10 g/d of RS versus 
30–40 g/d. Insulin sensitivity (HOMA-IR) was significantly reduced 
versus control only in the subgroup with T2DM [−0.71 (95% CI: 
−1.23, −0.20); p < 0.007; 4 studies], and that of T2DM with obesity 
[−0.91 (95% CI: −1.36, −0.45); p < 0.0001; 8 studies] (59).

In another meta-analysis, the investigators focused on 20 studies 
(670 participants) administering RS from high amylose maize starch 
(type 2) at doses ≥8 g per day (66). Participants included healthy 
individuals, as well as those overweight/obese, or with metabolic 
syndrome or type-2 diabetes mellitus. No significant effect of RS 
against placebo was reported on fasting plasma glucose, based on 15 
studies. Subgroup analyses by health status did not reveal any 
significant changes. Similarly, HbA1c and HOMA-IR appeared 
unaffected by RS compared to placebo. However, body weight was 
significantly reduced compared to control [−1.19 (95% CI: −2.27, 
−0.12); p < 0.03; 6 studies], with subgroup analysis indicating this 
effect was heavily influenced by studies focusing on type-2 diabetics.

Finally, Wang et al. reported that RS administered at doses ranging 
from 10 to 45 g per day to 428 overweight or obese participants from 
13 randomized controlled trials significantly reduced fasting plasma 
glucose [−0.26 (95% CI: −0.5, −0.02); p = 0.035; 12 trials], insulin 
[−0.72 (95% CI: −1.13 to −0.31); p = 0.001; 10 trials], and glycated 
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hemoglobin [−0.43 (95% CI: −0.74, −0.13); p = 0.005; 4 trials] 
compared to control, in both diabetic and non-diabetic subjects. 
However, no significant changes were reported for HOMA-IR (68).

Resistant starch and lipoproteins response
A meta-analysis specifically examined the effects of RS on blood 

lipids through randomized controlled trials. This pooled analysis 
included 14 studies with a total of 820 participants, both healthy or 
others, who were administered RS (mostly of type 2) at a dose ranging 
from 10 to 66 g per day. The authors reported significant decreases 
serum total cholesterol [−7.33 mg/dL (95% CI: −12.15, −2.52 mg/dL); 
19 trials] and Low-Density Lipoprotein Cholesterol (LDL-C) 
[−3.40 mg/dL (95% CI: −6.74, −0.07 mg/dL); 16 trials] compared to 
control. Serum triglycerides and High-Density Lipoprotein 
Cholesterol (HDL-C), however, remained unaffected. The authors 
noted that longer RS supplementation periods (>4 weeks) had a more 
significant impact on total cholesterol and LDL-C levels. A higher 
dose (>20 g/d) of RS also appeared to lower triglyceride levels (71).

Other meta-analyses, initially focusing on glycemic response, also 
reported findings on lipoproteins. One such meta-analysis reported 
that RS significantly reduced serum total cholesterol [−8.19 (95% CI: 
−15.38, −1.00); 13 trials] and LDL-C [−8.57 (95% CI: −13.48, −3.66); 
10 trials] while HDL-cholesterol and triglycerides remained unaffected 
compared to control (61). Snelson and colleagues, however, did not 
observe a significant effect of RS on blood lipoproteins (66), while 
another meta-analysis reported a significant reduction LDL-C levels 
[−0.35 (95% CI: −0.61 to −0.09; p = 0.008; 6 trials)] (68).

Resistant starch and inflammatory response
A total of 3 papers reporting the impact of RS on inflammatory 

mediators were retrieved by the present review.
One pooled result from 16 trials, primarily using RS2 (13 out of 

the 16 studies). The RS dose ranged from 6 g/d to 27 g/d, with controls 
being digestible cornstarch, manioc or maltodextrin. Subjects 
included those with type-2 diabetes, end-stage renal disease, chronic 
kidney disease, or at risk of having diabetes, along with two trials 
involving healthy participants. Significant improvements were 
observed in total antioxidant capacity [2.64 (95% CI: 0.34, 4.94); 
p = 0.03; 3 trials], and blood malondialdehyde [−0.55 (95% CI: −0.94, 
−0.17); p = 0.01;6 trials] in the intervention groups vs. control. 
Regarding inflammatory biomarkers, a significant reduction in blood 
C-reactive protein was observed in individuals with T2DM [−0.35 
(95% CI: −0.65, −0.05); p = 0.02; 3 trials], but not in other subjects. 
Similarly, interleukin-6 [−0.90 (95% CI: −1.36, −0.45); p < 0.01; 3 
trials] and tumor necrosis factor alpha (TNF-α) [−0.55 (95% CI: 
−1.02, −0.09); p = 0.02; 4 trials] levels were significantly reduced 
compared to control. Others parameters were not significantly altered 
between intervention and control groups (63).

Haghighatdoost et al. performed a meta-analysis of 8 randomized 
controlled trials (RCTs) including a total of 308 individuals. Four 
studies included individuals with renal disease, 3 with diabetes, 
prediabetes, or diabetes risk factors, and one study focused on 
overweight or obese individuals. Included studies investigated RS2, 
more specifically high amylose maize RS (“Hi-maize® 260”). Control 
food was mostly waxy corn starch, manioc or regular wheat flour. No 
significant effect of RS2 on hs-CRP or IL-6 could be observed based 
on a meta-analysis of 7 and 4 studies, respectively. Finally, a small but 
significant decrease in TNF-α levels following RS consumption was 

noted compared to control, [−0.003 pg./mL (95% CI: −0.004, −0.001); 
p < 0.0001; 4 trials], though with significant heterogeneity (I2 = 98.0%). 
The authors noted that the effect of RS on CRP was significantly more 
pronounced when considering studies using an intervention dose 
above 20 g/d compared to less than 20 g/d. Similar observations were 
made for overweight compared to normal-weight individuals and for 
studies with an intervention period of 6 weeks or more, compared to 
a shorter period. Overall, the authors concluded that RS failed to 
significantly reduce inflammatory mediators (60).

According to another meta-analysis, only TNF-α was significantly 
reduced following RS administration compared to control [−2.02 
(95% CI: −3.14, −0.90); 5 trials] (61).

Pooling results from a total of 13 randomized controlled trial 
involving 672 subjects overall, Vahdat et  al. evidenced that RS 
administered to individuals at doses ranging from 10 to 45 g per day 
did reduce significantly inflammatory biomarkers such as IL-6 [−1.11 
(95% CI: −1.72, −0.50); 7 trials] or TNF-α [−2.19 (95% CI: −3.49, 
−0.90); 8 trials], though not CRP, whatever the subjects’ conditions 
(healthy, healthy overweight, type-2 diabetics, hemodialytics) (67).

Finally, it was reported in a pooled analysis of 16 randomized 
controlled trials, including a total of 739 individuals, that RS intake 
decreased significantly TNF-α [−0.711 (95% CI: −1.227, −0.194); 
p = 0.007] and IL-6 [SMD: −0.609 (95% CI: −0.924, −0.294); 
p < 0.001]. A significant increase in total antioxidant capacity (TAC) 
was also reported in the RS intervention group versus control [2.543 
(95% CI: 0.069: 5.017); p = 0.044)]. No significant changes on other 
parameters were noted, except for CRP levels that were significantly 
reduced, though only in the subgroup of diseased subjects (69).

Discussion

The available evidence, as summarized in this narrative review, 
suggests that RS may have a positive impact on health parameters 
related to glycemic control in individuals with impaired metabolic 
control. However, consensus has not been firmly established for the 
general population or for other outcomes such as inflammatory 
response or variations in lipoproteins. Notably, the meta-analyses 
included in this review mostly considered RS as a whole, and did not 
allow comparisons of RS types. Nonetheless, Pugh et  al., in their 
subgroup analyses, highlighted that significant effects on glycemic 
response were primarily observed with RS1 and RS2 but not with RS3. 
This observation can be attributed to the fact that RS1 and RS2 received 
more extensive research attention across the scientific literature, 
whereas the analysis of RS3 was based on only two studies (64). A 
limited number of clinical trials also focused on RS4. For instance, in 
a randomized controlled trial involving 38 healthy adults, Gourineni 
et  al. reported that a RS4 nutritional bar significantly decreased 
postprandial glucose compared with a control bar (74). Similar 
conclusions were drawn in another study comparing a RS4 muffin with 
a control muffin in 28 healthy individuals (75), while mixed results 
were reported in another study (76). Additionally, increased short-term 
satiety was reported after consumption of a RS4 scone compared to a 
standard scone (77). Interestingly, Cai et al. highlighted that factors 
such as a high amylose content, less-gelatinized starch, the presence of 
retrograded starch, and the maintenance of a larger particle size were 
significant determinants of an attenuated glycemic and insulinemic 
response in healthy individuals (78).
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Overall, the benefits of the different types of RS are likely exerted 
through different pathways (64), as demonstrated by the varying 
microbiota responses to different types of RS. For instance, after 
12 weeks of consuming 12 g of RS4 daily, a significant decrease in bile 
acid in stools were reported compared to control (79). In an in vitro 
study, both RS2 and RS4 in rice sticks led to significantly higher counts 
of Bifidobacterium and Lactobacillus compared to the control food 
under pH-controlled batch culture conditions. While the bifidogenic 
effect of RS2 seemed stronger with RS2, Lactobacillus counts were 
maintained longer with RS4. Of note, selective suppression of 
Clostridium was shown with RS4, while RS2 seemed to target 
Bacteroides. Moreover, both RS2 and RS4 significantly increased 
production of total SCFA and butyric acid compared to the control, 
though the concentration was highest with RS2 after 24 h fermentation 
(80). Another study by Li et al. also investigated the human microbiota 
response to RS2 (Hi Maize® 260), RS3 (Novelose® 330) and RS4 
(Fibersym® RW) through in vitro culture and metaproteomic, and 
reported that responses seemed highly dependent on the individual 
microbiome characteristics. Nonetheless, a shift in microbiome 
response was highlighted following RS2 and RS3 culture. Both types 
had similar abilities to increase butyrate-producing bacteria, possibly 
because both products originated from high-amylose maize, according 
to the authors. RS3 significantly increased protein production of 
Bifidobacteriaceae and Ruminococcaceae (81). It is worth noting that 
this significant inter-individual variation in microbiota response to RS 
has already been reported (82). Among the different types of RS, RS5 
has evolved and is still under investigation. Complexation of RS with 
lipids has the potential to present high resistance to enzymatic 
hydrolysis, and more stability than RS3 (83). RS5 has also potential as 
a functional ingredient as replacement of fat in white pan bread was 
shown to reduce bread energy value and delay retrogradation while 
maintaining acceptable bread characteristics (40). Accordingly, rice 
starch-lipid complex has been shown to improve body weight, 
dyslipidemia and SCFAs production in obese rats (84), and to dampen 
glycemic response in mice (85). Furthermore, the recent developments 
related to the classification of RS5, and the extension of possible 
complexes with other components than lipids raises the potential of 
RS5 has a health promoting ingredient. Owing to their V-type 
crystalline structure, most RS5 complexes presents high resistance to 
digestion, though to various extents depending on the non-starch 
component (14). Wheat starch complexation with gluten or with pea 
protein hydrolysates was reported to hinder α-amylase activity (86, 
87). A complex of rice starch with xanthan gum and locust bean gum 
undergoing HMT was shown to significantly raise RS content (88). 
Research continues on the identification of starch complex 
components that would present the best characteristics to constitute a 
health-promoting ingredient.

Overall, the complexity of establishing whether RS confers health 
benefits arise from both the variability in inter-individual response 
and the different metabolic pathways affected by the different RS 
types. Furthermore, different modifications of starch structures during 
food processing or physical treatments also impact physiological 
response differently. From most of the studies presented in this review, 
none really correlated RS effects on health to the food process used.

Despite all these variables, the documented benefits of RS on 
health cannot be dismissed. The European Food Safety Authority 
(EFSA) established that “health claims related to the benefits of RS on 
postprandial glycemic response may be made when digestible starch 

in a given food has been replaced by RS so that the final content of RS 
is at least 14% of total starch” (89). While much of the evidence belong 
to RS2 from high amylose maize, the EFSA considered that all sources 
of RS would achieve a similar effect, as it would consist in replacing 
digestible CHO by indigestible CHO.

In conclusion, according to the current state of the literature, the 
relationship between RS and health appears to be multifaceted, with 
different RS types exerting distinct effects. Further research is needed 
to comprehensively characterize the specific properties and 
mechanisms of action of various RS forms.
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