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JOSEPHINE is a parallel Smoothed Particle Hydrodynamics program, designed to solve unsteady free-
surface flows. The adopted numerical scheme is efficient and has been validated on a first case,
where a liquid drop is stretched over the time. Boundary conditions can also be modelled, as it is
demonstrated in a second case: the collapse of a water column. Results show good agreement with
both reference numerical solutions and experiments. The use of parallelism allows significant reduction
of the computational time, even more with large number of particles. JOSEPHINE has been written so
that any untrained developers can handle it easily and implement new features.

Program summary

Program title: JOSEPHINE
Catalogue identifier: AELV_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELV_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 5139
No. of bytes in distributed program, including test data, etc.: 22833
Distribution format: tar.gz
Programming language: Fortran 90 and OpenMPI
Computer: All shared or distributed memory parallel processors, tested on a Xeon W3520, 2.67 GHz.
Operating system: Any system with a Fortran 90 compiler and MPI, tested on Debian Linux.
Has the code been vectorised or parallelised?: The code has been parallelised but has not been explicitly
vectorised.
RAM: Dependent upon the number of particles.
Classification: 4.12
Nature of problem: JOSEPHINE is designed to solve unsteady incompressible flows with a free-surface
and large deformations.
Solution method: JOSEPHINE is an implementation of Smoothed Particle Hydrodynamics. SPH is a
Lagrangian mesh free particle method, thus, no explicit tracking procedure is required to catch the
free surface. Incompressibility is satisfied using a weakly compressible model. Boundary conditions at
walls are enforced by means of the ghost particles technique. The free-surface dynamic and kinematic
conditions are applied implicitly.
Running time: 15 mn on 4 processors for the dam-break case with 5000 particles, dependent upon the
real duration (2 s here).

© 2012 Elsevier B.V. All rights reserved.

✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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0. Introduction

Most of the numerical methods (Boundary Element Method,
Volume of Fluid) experience some difficulties in modelling large
free-surface deformations. Since the last few years, Smoothed Par-
ticle Hydrodynamics (SPH) has been a growing interest thanks to
its ability to easily model violent free-surface flows with strong in-
terface motion. Since it is a Lagrangian particle method, it is well
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suited to simulate several phases with fewer difficulties than with
other methods. Indeed, no interface tracking algorithm is required
to see the interface evolution.

Some SPH codes are already available to compute free-surface
flows. A serial Fortran 77 program is provided with the book by Liu
and Liu [16], which does not include some of the latest improve-
ments (described hereinafter). The SPHysics group proposes a set
of free codes (serial, parallel, GPU or coupled with a shallow water
model) that includes many of the newest features, developed by
the SPH community (visit the following link for more information:
wiki.manchester.ac.uk/sphysics).

In this paper, the new program JOSEPHINE is described, and it
is based on an alternate SPH formulation than in SPHysics. The Eu-
ler equations are written in discrete form, following the work by
Colagrossi and Landrini [6] and Ferrari et al. [9], and in a different
manner than in SPHysics, which is based upon the formulation of
Monaghan [21], mainly concerning the choice of pressure gradient
approximation (see Section 1.3). The complete numerical scheme
is described, including a model of wall boundaries. Being the most
efficient way to model simple geometries, ghost particles [15,6,25]
have been preferred to the dynamic boundary particles technique
[8], available in SPHysics, or to the repulsive particles available in
the code by Liu and Liu [16]. JOSEPHINE is a parallel and opti-
mised Fortran 90 program, designed to deal with free-surface flows
in open basin [4]. It is well suited for developers who would like
to start from a robust code, written in an understandable way.

First, the SPH model that has been implemented in JOSEPHINE
is described. Then, two simulation cases are presented for vali-
dation. The deformation of an initially circular patch of fluid is
simulated to show the ability of JOSEPHINE to solve the Euler
equations, particularly at a free surface, without gravity force and
boundaries. Next, JOSEPHINE is validated in a context where wall
boundaries have to be modelled: the collapse of a water column
followed by its impact on a vertical wall. This case is well known
in the SPH community and a reference SPH solution [6] is used
for comparison. The third part of this paper is dedicated to the
parallel implementation in JOSEPHINE. A vertical domain decom-
position has been adopted and some details are given about the
load balancing strategy. Finally, the program structure is explained
and some details about the compilation and the use of JOSEPHINE
are given.

1. SPH model

The SPH method has been developed for simulations of grav-
itational systems in Astrophysics simultaneously by Gingold and
Monaghan [10] and Lucy [18]. SPH is a Lagrangian mesh-free
particle method. It is efficient for computational fluid dynamics
in opened domains. The system is modelled by a set of parti-
cles which carry their own physical properties (momentum, pres-
sure) and evolve according to chosen conservation laws. A nu-
merical approximation of the system solution is then obtained.
Monaghan [21] proposed its extension to free-surface flows, and
then introduced the so-called Weakly Compressible SPH approach
(WCSPH), which is used to model a nearly incompressible fluid
without the need to solve any Poisson equation, as done in the
ISPH approach [7]. Since, SPH has been applied to a large variety of
non-linear flows: interfacial flows [6], incompressible viscous flows
[24], magnetohydrodynamics [27], impacts simulations and explo-
sions [16] (see [22] for a review), thanks to its ability to deal with
large deformations of the fluid.

1.1. Integral interpolation

SPH can be seen as a way to discretise any set of equations, and
is based on the integral representation of a function [29]. Then,

Fig. 1. SPH interpolation.

the value � f (x)� of a field f () at position x can be reconstructed
by convolution of the known values f (y) with a smoothing kernel
η�(y − x) over the domain Ω .

�
f (x)

� =
�

Ω

f (y)η�(y − x)dy. (1)

Particles, which are the computational nodes, are primarily de-
fined by a position xi and a volume Vi . The previous formulae can
be discretised to represent the field value at the particle xi (see
Fig. 1).
�
f (xi)

� =
�

j

f (x j)η�(xi − x j)V j . (2)

The function η�(x) has to satisfy the following properties:
�

Ω

η�(x)dx = 1, (3)

also called the normalisation property, and:

lim
�→0

η�(x) = δ0(x), (4)

which ensures that the interpolation sum (1) converges to the
Dirac delta function δ0 when � goes to zero. The smoothing kernel
is commonly a compactly supported function of radius δc :

η�(x) = 0 if |x| > δc, (5)

so that the sampling points needed to compute (2) are all located
in the vicinity of the interpolation node. This property allows us
to introduce some optimised neighbours search algorithm in order
to reduce the computational time. In JOSEPHINE, the smoothing
kernel η�(x) is the modified Gaussian function, as proposed by Co-
lagrossi and Landrini [6]:

η�(x) = e−(
|x|
� )2 − e−( δc

� )2

2π
� δc
0 s(e−( s

� )2 − e−( δc
� )2)ds

. (6)

The cut-off distance δc has been introduced to satisfy (5), and
is set to δc = 3� . The smoothing length � is linked to the initial
inter-particle distance h by the following relation:

� = κh. (7)

κ = 1.33 has been used for all the following presented compu-
tations. This value of κ leads to 50 particles within the kernel
support, which can be seen as the interpolation stencil. Increasing
κ is a way to improve the accuracy of interpolations but it also
increases the computation time exponentially. A large variety of
smoothing kernels are available but the choice of a Gaussian ker-
nel has been motivated by its lower sensibility to particle disorder
[23]. This kernel is thus more adapted when considering various
cases.
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After some algebra (see [31,16]), the interpolation (2) can be
extended to the approximation of the gradient of f ():

�∇ f (xi)
� =

�

j

f (x j)∇η�(xi − x j)V j . (8)

1.2. Governing equations

The 2D Euler equations for mass and momentum conservation
of a compressible fluid, expressed in Lagrangian form, are:

Du

Dt
= −∇P

ρ
+ g, (9)

Dρ

Dt
= −ρ∇ · u + Boundary Conditions, (10)

where u, ρ , P are respectively the velocity, the density and the
pressure fields. g = (0,−g) stands for the action of gravity. The
system (9)–(10) is closed by an equation of state:

P = ρ0c20
γ

��
ρ

ρ0

�γ

− 1

�
, (11)

where c0 is the sound speed, ρ0 the density at the free surface
and γ the polytropic constant (γ = 7 for water). c0 could be set to
the real sound speed in the simulated media, leading to extremely
small timesteps to keep the time integration procedure stable. In
order to reduce the computational cost, c0 is set to a lower value
than the physical one, but large enough to model a nearly in-
compressible (weakly compressible) fluid. The variation rate of the
density can be approximated using [21]:

|δρ|
ρ

≈ |umax|2
c20

, (12)

where |umax| is the maximum expected velocity, which depends
on the case studied. In each simulation described after, c0 is then
defined to a value 10 times or more larger than |umax|, to ensure
that density oscillations would not exceed 1%. The numerical val-
ues of |umax| and c0 will be given for each test case in Section 2.

1.3. Numerical scheme

The derivation of Euler equations using the SPH formalism has
been widely studied [3,27]. Following [6,9], the system of discrete
Euler equations that has been implemented in JOSEPHINE is:

Dxi
Dt

= ui, (13)

Dui

Dt
= − 1

ρi

�

j

(Pi + P j)∇η�(xi j)
mj

ρ j
+ g + f iGi

, (14)

Dρi

Dt
= ρi

�

j

�
ui j + ni j

�
ci j
ρi

(ρ j − ρi − 
ρi j)

�

	 
� �
Rusanov flux

�
· ∇η�(xi j)

mj

ρ j
,

(15)

Pi =
ρ0c20
γ

��
ρi

ρ0

�γ

− 1

�
+ Boundary Conditions, (16)

with ui j = ui − u j and xi j = xi − x j . Eq. (13) is basically the equa-
tion for the displacement of particles. Eq. (14) stands for the mo-
mentum equation containing an extra term, f iGi

, which will be
described and discussed in Section 1.4. This discrete approximation
of the pressure gradient has already been employed by Colagrossi
and Landrini [6] and is known to be more accurate when simu-
lating various fluids [6]. Eq. (15) is the continuity equation, where

a Rusanov flux has been added, following the work by Ferrari et
al. [9]. It helps to enhance the scheme stability by reducing density
fluctuations, which are often observed with weakly compressible
models. The Rusanov flux involves the effective numerical sound
velocity ci j = max(ci, c j), which may be computed by:

ci =


∂ Pi

∂ρi
= c0

�
ρi

ρ0

� γ −1
2

, (17)

depending on the equation of state (16). ni j is the normal vector
between particle i and j:

ni j = xi j
ri j

, (18)

where ri j is the distance between the two particles. The present
model differs from the one proposed by Ferrari et al. [9] by adding
a corrective hydrostatic term, in the density difference, which is
computed as follows:


ρi j = δρi j + δρ ji

2
, (19)

δρi j =
�
ρ

γ −1
i + ρ

γ −1
0 (γ − 1)

c20
g(y j − yi)

� 1
γ −1

− ρi . (20)

This term helps to prevent excessive mass fluxes in the fluid,
especially where a density jump between two interacting parti-
cles is mainly due to the gravitational force. This correction term
may be inappropriate in the case of liquid drops freely falling in
the domain, where the pressure field does not contain any hydro-
static component. Another example could be the case of a plunging
jet (wave breaking), when the free surface is not a single value
function. But, this term is very small if compared to the density
difference and it only acts in the case of very long simulations.
A better but more computationally expensive corrective term could
be introduced, similarly to [19].

The choice of introducing this flux instead of the Moving Least
Square (MLS) density re-initialisation [6] has been motivated by
the lower numerical cost it provides and by the fact that no pa-
rameter calibration is required (i.e. the number of time steps be-
tween two re-initialisations). Recently, the new δ-SPH model has
been proposed by Molteni and Colagrossi [20], where the numer-
ical oscillations are removed by the use of a diffusive term in the
continuity equation and an artificial viscosity in the momentum
equation. Since, the δ-SPH scheme has been improved and applied
with success to free-surface flows in different contexts [2,1,19],
provided that the various parameters are carefully calibrated. As it
will be presented in the following of this paper, the present model
gives satisfactory results and seems to be more suited for a first
approach of SPH computations.

JOSEPHINE provides two schemes for the time-integration of
Eqs. (13)–(16): a predictor–corrector scheme and a fourth order
Runge–Kutta scheme, with a unique timestep for all the particles.
Both methods require to satisfy a Courant Friedrichs Levy condition
on the timestep to remain stable. The condition is


t = β
�

c0
, (21)

with β ≈ 0.1 in the case of the predictor–corrector scheme, and
β ≈ 0.3 with the fourth order Runge–Kutta scheme.

1.4. Boundary conditions

Various approaches are available in the literature to enforce
solid boundary conditions [21,30,8,12]. In JOSEPHINE, free-slip
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Fig. 2. The ghost particles technique for wall boundaries: axial symmetries are ap-
plied near straight lines, and central symmetries near corners.

Fig. 3. The ghost particles technique for wall boundaries: local coordinates system
used in the definition of ghost particles properties. n and t are respectively the
normal and tangent vectors to the wall, xi is the fluid particle position, xGi is the
position of the ghost particle and xw is the orthogonal projection of xi on the wall.

conditions on solid boundaries are modelled using the ghost parti-
cles technique [15,32,6]. It consists in mirroring all the fluid parti-
cles, whose kernel support intersects the wall (Fig. 2). These ghost
particles are updated at each time step and their density, pressure
and velocity are deduced from those of the linked real particles.
The ghost particles method may be more time-consuming than
others but, to our opinion, it seems to be the best compromise in
obtaining a physical non-penetrating boundary condition. However,
its extension to complicated shaped bodies can be difficult [13].
A fixed ghost particles method has been introduced by Marrone
et al. [19] to extend the classical method to arbitrary shaped bod-
ies, but has not been implemented in JOSEPHINE. Adopting the
notations described in Fig. 3, the position xGi of a ghost particle
is:

xGi = 2xw − xi, (22)

xi being the position of the original particle and xw , the position
of the orthogonal projection of xi on the wall. The velocity of the
ghost particle depends upon the condition to enforce, the shape
and the motion of the boundary. In the case of a free-slip condition
on a fixed plane wall, the velocity is computed as:

uGi = −uinn + uitt, (23)

where n and t are respectively the normal and tangent vectors
to the wall boundary. uin and uit are respectively the orthogonal
projections of ui onto n and t . The pressure boundary condition to
enforce on a fixed wall is:

∂ P

∂n
= ∂ P

∂ρ

∂ρ

∂n
= ρg · n. (24)

Combining the latter form with the equation of state (11) leads
to:

∂ρ

∂n
= ρ

ρ
γ −1
0

c20ρ
γ −1

g · n. (25)

Fig. 4. Evolution of a circular patch of fluid: definition of the initial fluid domain. A,
B and C are the locations of analytical and numerical comparisons. R is the radius of
the fluid domain Ω . ∂Ω is the free surface of the fluid domain, where the pressure
falls to zero.

Then, integrating the previous equation, one can define the
right density for a ghost particle near a fixed horizontal wall (see
[13,25]):

ρGi =
�
ρ

γ −1
i + ρ

γ −1
0 (γ − 1)

c20
g(yGi − yi)

� 1
γ −1

. (26)

In the case of a fixed vertical wall, this relation becomes:

ρGi = ρi . (27)

Using the equation of state (16), the pressure associated to this
ghost particle is obtained. The mass of a ghost particle being the
same as the original particle (mGi =mi), its volume is computed as
VGi = miρGi . This approach produces the desired repulsion mech-
anism at the wall. However, in some cases such as the impact of a
jet on a wall, or when the timestep is not sufficiently small to keep
all the fluid particles inside the domain, an extra force is added to
avoid any wall penetration. This force is inspired by the repulsive
particles method [21] but is computed only between a real particle
and its ghost:

f iGi
=

�
gH

��
�

2riGi

�4 − �
�

2riGi

�2� xiGi
r2iGi

if
�

�
2riGi

�
� 1,

0 otherwise,
(28)

with riGi being the distance between the real and the ghost parti-
cles, H is the fluid height in the simulated case, and xiGi = xGi −xi .
In this way, the exerted force is purely normal to the wall and only
acts in the extreme case, where the particle is at a distance lower
than �/4 from the boundary.

2. Validation results

2.1. Evolution of a circular patch of fluid

First, JOSEPHINE has been used to simulate a case where no
wall boundary condition has to be enforced. Thus, in this first step,
only the numerical model for Euler equations with a free surface
will be validated. Let us consider a circular patch of fluid of ra-
dius R , free from any external force (see Fig. 4). In the absence of
gravity, the correction term of Eq. (20) is zero. The initial velocity
and pressure fields are prescribed as:
⎧
⎪⎨
⎪⎩

u0(x, y) = A0x
v0(x, y) = −A0 y

P0(x, y) = 1

2
ρ0A2

0

�
R2 − �

x2 + y2
�� ∀(x, y), x2 + y2 � R.

(29)
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Fig. 5. Evolution of a circular patch of fluid: numerical solution using JOSEPHINE
at instants t A0 = 0.4, 0.8 and 2.0 (from top to bottom). The particles are coloured
according to the non-dimensional pressure p/ρ0 A2

0R
2. The red line figures the an-

alytical solution. The computation parameters are: R/� = 14.7, c0 = 14R A0 and

t A0 = 10−3. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Subjected to this initial field, the drop deforms as time evolves.
If A0 is positive, the drop is stretched along the x-axis and com-
pressed along the y-axis. The generated flow is irrotational, and
as a consequence of the incompressibility, the drop keeps an el-
liptical shape. An analytical solution is available [5]. This case has
already been investigated [21,3,33,9] in order to validate various
corrected SPH models. The main difficulty is to simultaneously
obtain a smooth pressure field solution together with the right in-
terface evolution, even up to large time (t A0 = 2).

This case has been computed using JOSEPHINE with three dif-
ferent particle spacings: R/� = 14.7, 29.4 and 58.8. Respectively,
1140, 4800 and 19150 particles have been spread on concentric
circles instead of on a Cartesian lattice to avoid any grid distor-
tion. For the three computations, the fluid properties have been
set as follows: ρ0 = 1000, c0 = 14RA0. |umax| is here RA0, which
ensures that |δρ|/ρ = 14−2 < 1%, according to Eq. (12). The solu-
tion has been integrated in time with a predictor–corrector scheme
and the following timesteps 
t A0 = 10−3 for the R/� = 14.7 case,

t A0 = 5 × 10−4 (R/� = 29.4) and 
t A0 = 2.5 × 10−4 (R/� =
58.8). This choice of 
t A0 satisfies the CFL condition (Eq. (21)),
for all the three presented computations. Fig. 5 depicts the time-
evolution of the drop (R/� = 14.7) and shows a good agreement
between the computed shape and the analytical solution. In the
upper part of Fig. 6, the time evolution of pressure at the centre
of the drop is plotted. The solution shows small amplitude oscil-
lations that come from the propagation of sound waves inside the
weakly compressible fluid. Filtering these results leads to a more
accurate solution: we kept only frequencies f < 3.5A0, which cor-
responds to the lower frequency of the dominant mode (see [5]
for details). The horizontal velocity at B is plotted in the lower
part of Fig. 6 and is very close to the analytical solution, even at
the lowest resolution (i.e. R/� = 14.7, red-squares line in Fig. 6).
The vertical velocity at C is shown on the same figure. The veloc-
ity magnitude decreases slowly and jump to zero at t A0 ≈ 0.8, this

Fig. 6. Evolution of a circular patch of fluid. Three SPH simulations using JOSEPHINE, with different discretisations, (colour lines) are compared to the analytical solution
(black line). Top left: time evolution of the pressure at point A (see Fig. 4). Top right: time evolution of filtered pressure (frequencies f � 3.5A0 have been filtered out by a
post-processing tool). Bottom left: horizontal velocity at B and vertical velocity at C. Computational parameters are: ρ0 = 1000, c0 = 14R A0, 
t A0 = 10−3 for the R/� = 14.7
case (red-squares line), 
t A0 = 5× 10−4 for the R/� = 29.4 case (green-circles line) and 
t A0 = 2.5× 10−4 for the R/� = 58.8 case (blue-triangles line). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Definition of the dam-break problem. A rectangular patch of water is initially
at rest behind a wall. H is the height of the water column, L is its length, d is the
length of the rectangular box that contains the fluid and D is its height. L/H = 2
and d/H = 5.366. A(3.721H,0), B(4.542H,0) and C(0,0.192H) are the locations of
analytical, experimental and numerical comparisons.

jump has been captured using an external post-processing code
and considering that point C is no longer in Ω when:

�

j

η�(xC − x j)
mj

ρ j
< 0.5, (30)

which corresponds to a half-empty kernel support and comes from
Eq. (3). This procedure is accurate regardless of the number of in-
volved particles. However, a finer resolution (i.e. R/� = 58.8, blue-
triangle line in Fig. 6) leads to a better velocity computation before
the passage of the interface through point C. The results of the
three discretisations show a fairly good convergence of the present
numerical scheme applied to this academic test case, in terms of
pressure, velocity and interface evolution.

2.2. Dam-break problem

The collapse of a water column is often considered in the SPH
literature, since this case shows the ability of SPH models to deal
with large deformation of the interface. Again, many corrected for-
mulations can be used in order to compute this kind of flow:
artificial viscosity and XSPH [21,6], re-normalisation [3,17], diffu-
sive terms [20,19], Riemann solvers [28] or turbulence models [34].
Some efforts by means of a fully incompressible SPH model can be
found [30,14] but these approaches require an accurate algorithm
for the detection of the free surface.

Fig. 7 shows a sketch of the initial setup for this test case. Com-
putations have been run with the same geometrical setup as [6]:
L/H = 2, d/H = 5.366. Particles are initially positioned on a Carte-
sian lattice. Three space resolutions have been studied: 25 × 50,
50 × 100 and 100 × 200. The solution has been integrated in time
by a fourth order Runge–Kutta scheme with 
t

√
g/H = 8 × 10−4,

4×10−4, 2×10−4 respectively and c0 = 10
√

gH , which satisfy the
previous incompressibility and CFL requirements. The flow starts
with the removal of the wall, which is not explicitly modelled (see
Fig. 8, τ0 = t

√
g/H = 0+). The pressure field is then initialised

with an approximate solution of the Laplace problem, where the
pressure is zero everywhere at the free surface (on the top and
right sides of the fluid domain) [11,5]. Under the action of grav-
ity, the water column collapses and propagates along the floor
(from τ1 to τ2). Then, the fluid impacts the right-hand side ver-
tical wall (τ3). A vertical jet grows up, overturns backward and
then falls down (from τ4 to τ6). Several reconnections of the inter-
face occur (from τ7 to τ10), that are not accurately computed here,
since the air phase is not taken into account (as in [6]).

The total energy can be obtained by:

E = 1

2

�

i

mi	ui	2
	 
� �

kinetic energy

+ g
�

i

mi yi

	 
� �
potential energy

+
�

i

miei

	 
� �
internal energy

, (31)

where the internal energy is approximated by:

Dei
Dt

= − Pi

ρi
(∇ · ui) = Pi

ρi

�

j

ui j · ∇η�(xi j)
mj

ρ j
. (32)

The time evolution of energy is plotted in Fig. 9. In a dimen-
sionless form, E0 stands for the initial total (potential and internal)
energy before the dam-break and 
E is the energy difference be-
tween the initial state and the hydrostatic final state, where the
fluid is again at rest. An advantage of the Rusanov flux used here,
see Eq. (15), is that it avoids the use of an artificial viscosity, and
the model becomes less dissipative. JOSEPHINE only loses 1% of
the total energy for the 50 × 100 case, which is less than the for-
mer result of Colagrossi and Landrini [6], who carefully tuned the
artificial viscosity, density re-initialisation and XSPH parameters to
reach the best conservation rate. Increasing the number of particles
even reduces the energy dissipation, which mainly comes from the
Rusanov Flux. Thus, the energy dissipation could be further im-
proved by reducing the impact of the Rusanov Flux, this aspect is
under investigation. However, for a similar space discretisation (i.e.
49 × 100, Fig. 9), the use of a Rusanov flux as in JOSEPHINE is
less dissipative than the use of an artificial viscosity and a density
re-initialisation [6].

Fig. 10 depicts the front position evolution computed, using the
three space resolutions, by JOSEPHINE. Results are very close to
the literature [6]. The water heights at points A(3.721H,0) and
B(4.542H,0) (see Fig. 7) have been extracted and compared to nu-
merical results of Colagrossi and Landrini [6] and experiments by
Zhou et al. [35]. Figs. 11 and 12 show a good agreement between
both numerical solutions at the earlier stages of flow (before τ8,
the collapse of the entrapped air cavity). The experimental water
heights are larger than the numerical results between τ1 and τ3,
these differences are mainly due to the way the experimental runs
start. Considering both the position of the water front and the evo-
lution of water heights, the results of JOSEPHINE converge to a
single value, which is close to the numerical and the experimental
data.

The impact pressure at point C(0,0.192H) has been interpo-
lated and is plotted in Fig. 13. JOSEPHINE slightly underestimates
this pressure during the earlier instants following the impact (from
τ3 to τ4), but this small difference is reduced as time evolves. The
first peak (τ8) comes from the impact of the backward plunging jet
while the second one is generated by the collapse of the air cav-
ity (τ10). The numerical results of Colagrossi and Landrini [6] and
our results are in good agreement. In [6], the author also shows a
two-phase solution, which is closer to the experiments since air-
cushion effects are taken into account. Increasing the number of
particles in JOSEPHINE allows to converge to a single and less os-
cillating solution (Fig. 13).

3. Parallel implementation

3.1. Domain decomposition

To cope with large number of particles and to compute the
previous cases with higher performance, JOSEPHINE has been
parallelised. The present program has been designed to handle
two-dimensional flows in open basins, so we chose to distribute
the computational effort by dividing the domain into vertical sub-
domains. There are as many vertical sub-domains as the desired
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Fig. 8. Time evolution of the water domain after the dam breaking, using JOSEPHINE, involving 5000 particles. The solution is shown at twelve dimensionless instants and
particles are coloured by the dimensionless pressure P/ρ0gH . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

number of processors. All communications are realised thanks to
the use of dedicated MPI libraries, in order to optimise the number
and the size of the messages between processors. On both sides of
the interface between processors, the data transfer for the eval-
uation of Eqs. (14)–(15) is only required on a vertical stripe, the
length of which is basically the radius of the interpolation kernel
(see Fig. 14 for details). The size of these interaction zones is then
optimised for applications, where the domain height is weak com-
pared to its length (a wave tank, for example). Moreover, the initial
domain division between processors is easily made thanks to the
use of the first position coordinate of the particles. For extended
computational domains, this allows a significant gain in memory
since all particles data is never stored on a single machine. The

number of information updates is minimised too, since one pro-
cessor have a maximum of two neighbouring processors.

3.2. Load balancing

At the end of a timestep, particles may have crossed processors
interfaces. These particles and their related information are then
transferred towards the processor treating the considered domain,
to preserve the vertical shape of each sub-domains. However, these
transfers may lead to important load imbalances, which eventually
damage the CPU time consumption. To handle with this, the pro-
cessor interface is updated at the end of each time step in order
to keep a constant number of particles in the interaction zones.
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Fig. 9. Total energy evolution. Three SPH simulations using JOSEPHINE (colour lines) are compared to numerical results of Colagrossi and Landrini [6] (black line). Computa-
tional parameters are: ρ0 = 1000, c0 = 10

√
gH , 
t

√
g/H = 8 × 10−4 for the 25 × 50 case (red-squares line), 
t

√
g/H = 4 × 10−4 for the 50 × 100 case (green-circles line)

and 
t
√

g/H = 2 × 10−4 for the 100 × 200 case (blue-triangles line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Water front evolution after the dam-breaking. Three SPH simulations us-
ing JOSEPHINE (colour lines) are compared to numerical results of Colagrossi and
Landrini [6] (black line). Computational parameters are: ρ0 = 1000, c0 = 10

√
gH ,


t
√

g/H = 8 × 10−4 for the 25 × 50 case (red-squares line), 
t
√

g/H = 4 × 10−4

for the 50×100 case (green-circles line) and 
t
√

g/H = 2×10−4 for the 100×200
case (blue-triangles line). (For interpretation of the references to colour in this fig-
ure legend, the reader is referred to the web version of this article.)

Fig. 15 summarises the three steps of the load balancing proce-
dure:

(a) At the beginning of the timestep, particles in the interaction
zone are detected by the left processor and right processors.

(b) At the end of the timestep, particles are advected according
to their own velocity. The number of particles remaining in
the interaction zone is evaluated showing, as scheduled, a dif-
ference with the initial number. The first coordinate of these
particles is stored in a table and the new interface position is
computed thanks to the determination of the abscissa value,
that allows to conserve a constant number of particles in the
interaction zone. This operation, only realised by one of the
two processors, actually uses a fast algorithm, Quickselect [26],
whose complexity is of O (log(N)). Quickselect allows to find
the kth greatest value in any unordered list. The CPU time ded-
icated to this task is negligible if compared to the overall CPU
time consumption.

(c) Particles are affected to a processor according to their relative
position with the new border.

This algorithm reveals to be very efficient. However, we have ob-
served that a disequilibrium of a single particle might occur from
time to time. Such small disequilibria may lead, at the end of
a complete computation of thousands of timesteps, to important
load imbalance and performance losses. These successive disequi-
libria come from the step (b) of the previous procedure. Trying to
maintain a constant number of particles in each interaction region
does not imply that the local number of particles of each proces-
sor will remain constant. Let Nzi

n be the initial number of particles
in the interaction zone of interest, before the nth timestep and
Quickselect(list, N) be the calling sequence to find the Nth largest
number in list. Calling Quickselect(Particles in interaction zone,
Nzi
n ) allows to find the new boundary position for the (n + 1)th

timestep that minimises the number of particles to transfer, but
this is not sufficient to conserve the local number of particles.
Calling Quickselect(Particles in the processor, N0), N0 being the lo-
cal number of particles of the processor, will strictly conserve the
number of particles, but will be more time consuming too, since
the search procedure is called with the whole particles list. Intro-
ducing a memory 
N = Nn − N0, which is the difference between
the initial local number of particles and the new one, the call of
Quickselect(Particles in interaction zone, Nzi

n + 
N
2 ) allows to keep

a constant local number of particles on each processor for a lower
number of processor operations. Fig. 16 shows the behaviour of
such a parallel algorithm on the dam-break case. This computa-
tion case, with rapid dynamics requires an efficient load balancing
between processors owing to the important fluid domain defor-
mation and stretching. Particles are coloured according to their
depending processor. One can observe the important domain ex-
tension associated with the 4th processor (red colour) between τ0
and τ3, when the whole fluid domain is stretched. It is then bru-
tally narrowing after the impact occurs, between τ4 and τ6.

CPU time performance of the parallel implementation have
been realised and compared with the sequential computations.
Fig. 17 depicts the speed up of the parallel implementation for
the dam break case for several numbers of particles varying from
5000 to 1,280,000. These results show that the parallel implemen-
tation allows important CPU time savings for computations with
significant number of particles. For low numbers of particles, load
balancing operations take significant CPU time, if compared with
the overall computation, which makes the use of additional pro-
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Fig. 11. Water height evolution at point A (see Fig. 7). Three SPH simulations using JOSEPHINE (colour lines) are compared to numerical results of Colagrossi and Landrini [6]
(black line) and to experimental data by Zhou et al. [35] (black triangles). Computational parameters are: ρ0 = 1000, c0 = 10

√
gH , 
t

√
g/H = 8× 10−4 for the 25× 50 case

(red-squares line), 
t
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g/H = 4× 10−4 for the 50× 100 case (green-circles line) and 
t
√

g/H = 2× 10−4 for the 100× 200 case (blue-triangles line). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Water height evolution at point B (see Fig. 7). Three SPH simulations using JOSEPHINE (colour lines) are compared to numerical results of Colagrossi and Landrini [6]
(black line) and to experimental data by Zhou et al. [35] (black triangles). Computational parameters are: ρ0 = 1000, c0 = 10
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g/H = 4× 10−4 for the 50× 100 case (green-circles line) and 
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g/H = 2× 10−4 for the 100× 200 case (blue-triangles line). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Pressure evolution at point C (see Fig. 7). Three SPH simulations using JOSEPHINE (colour lines) are compared to numerical results of by Colagrossi and Landrini [6]
(black line) and to experimental data by Zhou et al. [35] (black triangles). Computational parameters are: ρ0 = 1000, c0 = 10
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g/H = 2× 10−4 for the 100× 200 case (blue-triangles line). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. JOSEPHINE parallelisation strategy: the whole domain is divided in several vertical sub-domains. Between two consecutive sub-domains, an interaction zone must
be defined to perform the calculations properly.

Fig. 15. Load balancing strategy.

cessors inefficient. For the higher numbers of particles (i.e. 320,000
and 1,280,000), the serial CPU time, used in the computation of
the speedup, is biased, probably due to the use of swap memory,
resulting in a speedup higher than ideal. This phenomenon is ob-
vious for 2, 4 and even 8 processors with 1,280,000 particles. The
present parallel implementation is efficient and is intrinsically de-
signed to minimise the number of communications. Synchronous
MPI communications have then been preferred, to prevent any er-
ror during the simulations. The use of asynchronous calls and its
impact on the CPU time consumption is currently under investiga-
tion.

4. Program documentation

4.1. Folder structure

The source code is divided in several .F files which are stored
in the following folder structure. Each Fortran 90 file contains
some comments for description of the algorithms.
.
|-- DATA data output folder
|-- make.inc compilation parameters
|-- param_cir.dat parameters file for the circular patch
| case
|-- param_dam.dat parameters file for the dam-break case
|-- param_io.dat input/output parameters
|-- param_sim.dat simulation parameters
|-- param_sph.dat SPH model parameters
‘-- SRC main sources folder

|-- BOUND boundary conditions
|-- CORE equation of state, kernel,
| Navier-Stokes equations
|-- INIT initialization routines
|-- INTERFACES Fortran 90 interfaces
|-- IO input/output routines
|-- ITER time integration schemes
|-- MAKE compilation parameters templates
| (gfortran, ifort)
|-- Makefile
|-- MODULES Fortran 90 modules
|-- PAIR neighbours search routines
|-- PARA parallelization routines
‘-- josephine.F main program

4.2. Compilation

The make.inc file has to be edited before trying to compile
the whole code. The name of the desired compiler can be men-
tioned. Program name, debugging and optimisation options can
also be defined. Templates are provided for mpif90 compilers
based on gfortran or ifort, in folder SRC/MAKE/. To com-
pile the code, the following commands may be used:

cd SRC/
(make clean)
make

In order to switch to debugging mode, the folder structure has
to be cleaned up with make clean and the last command is re-
placed by make dbg.

4.3. Running JOSEPHINE

All running options are contained in .dat files, at the root of
the folder structure. These files can be edited but the number of
lines or the order must be kept, otherwise errors may occur run-
ning the program. So, a backup is recommended before editing. To
run the program, simply type the following command:

mpirun -np #NUMBER_OF_PROCESSORS# ./josephine.exe

4.4. Data output

In this first version of JOSEPHINE, data output is only avail-
able under ASCII format, and all files are put in the DATA
folder. A different file, containing every particles data, is gen-
erated according to the param_io.dat parameters. Fluid par-
ticles are saved in part#######.dat files (where #######
stands for the iteration number). Ghost particles (if present) are
saved in virt#######.dat files. GnuPLOT (version 4.4 or
newer) configuration and animation commands are also generated
in .gnu files, for data visualisation. For example, to plot parti-
cles coloured by pressure, as in Fig. 8, type the following com-
mands:
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Fig. 16. Evolution of the domain decomposition for the dam-break case. Each colour corresponds to a different processor: one can easily observe that the domain extends
horizontally in order to preserve a constant number of particles for each processor. (For interpretation of the references to colour in this figure, the reader is referred to the
web version of this article.)

cd DATA/
gnuplot
load "dam_pre.gnu" (settings)
load "pre.gnu" (animation)

All .gnu files are only scripts that have been provided to
handle JOSEPHINE quickly, one can modify them by editing the
corresponding source code file SRC/IO/io_write_gnu.F. Each
part#######.dat particle file contains the following data for-
matted in eight columns:

1. x-coordinate
2. y-coordinate
3. x-component of the velocity
4. y-component of the velocity
5. pressure
6. density

7. mass
8. internal energy

Any modification of this format can only be made in the
SRC/IO/io_write_dat.F source file, and the SRC/IO/io_
write_gnu.F should be modified accordingly to make the pre-
vious visualisation scripts work.

5. Conclusion

In this paper, a new parallel program has been described.
JOSEPHINE can be employed to compute free-surface non-viscous
flows. Validation results have been given, in two different contexts,
together with convergence analysis. The first one shows the abil-
ity of JOSEPHINE to deal with free-surface flows in open domain.
The second one demonstrates that simple solid boundaries condi-
tion can also be enforced using JOSEPHINE.
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Fig. 17. Parallel speedup of JOSEPHINE computed the dam-break case for five num-
bers of particles.

The source code has been designed to allow any developer to
extend its features easily. It might be also helpful for any student
who would like to investigate SPH methods without starting from
scratch.

JOSEPHINE will be extended in the future. Some new bound-
ary conditions will be integrated and the program should be able
to deal with 3D, multi-fluids cases soon. Alternative methods of
stabilisation should also be added.

Appendix A

DAM-BREAK RUN OUTPUT

__ ____ _____ _____ ____ __ __ __ _ __ _____
/ // __ \ / ___// ___// __ \ / / / // // | / // ___/

__ / // / / / \_ \ / _/ / /_/ // /_/ // // |/ // _/
/ /_/ // /_/ /___/ // /__ / ____// __ // // /| // /__
\____/ \____//____//____//_/ /_/ /_//_//_/ |_//____/

##########################################################
# #
# DOUBLE PRECISION #
# #
##########################################################
# #
# DAM COLLAPSE #
# #
# N= 5000 h= 0.16E-01 C= 0.24E+02 #
# B/(RHO*G*H)= 0.14E+02 C/SQRT(GH)= 0.10E+02 #
# CFL= 0.304 #
# #
##########################################################

##########################################################
# #
# RUNGE-KUTTA 4 TIME-INTEGRATION #
# #
# ITERATION | REALTIME | INTERACTIONS #
# 0 | 15:10:05.415 | 0 #
# 1000 | 15:12:38.501 | 122368 #
# 2000 | 15:15:26.091 | 123968 #
# 3000 | 15:18:26.730 | 122993 #
# 4000 | 15:21:50.795 | 123467 #
# 5000 | 15:25:28.033 | 123230 #
# 6000 | 15:29:19.331 | 122473 #
# 7000 | 15:33:17.864 | 121695 #
# 8000 | 15:37:20.395 | 121490 #
# 9000 | 15:41:27.395 | 118114 #
# 10000 | 15:45:19.366 | 115952 #

# 11000 | 15:49:27.425 | 119315 #
# 12000 | 15:54:04.575 | 119938 #
# 13000 | 15:58:34.801 | 118313 #
# 14000 | 16:02:58.086 | 121027 #
# 15000 | 16:07:17.807 | 121120 #
# 16000 | 16:11:28.228 | 121334 #
# 17000 | 16:15:26.751 | 121649 #
# 18000 | 16:19:18.647 | 121540 #
# 19000 | 16:23:15.296 | 122252 #
# 20000 | 16:27:23.785 | 122127 #
# #
##########################################################
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