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Abstract—We introduce a novel deep neural network architec-
ture based on Dempster-Shafer theory capable of handling large
image datasets with numerous classes, such as ImageNet. Our
approach involves analyzing images through multiple experts,
composed of convolutional deep neural networks that predict
mass functions. These experts are then merged using Dempster’s
rule, thereby returning a set of potential classes by selecting
the best expected utility based on the previously computed
mass functions. Our innovative algorithm can identify the best
set of classes among the 2K possible sets for K classes while
maintaining a complexity of O(K log(K)). To illustrate our
approach, we apply it to an out-of-distribution example search
problem, demonstrating its efficiency.

Keywords: Dempster-Shafer theory, evidence theory, belief

function, deep learning, out-of-distribution.

I. INTRODUCTION

In recent years, image classification has made remarkable

strides with the advent of deep neural networks (DNNs).

However, high ambiguity in the feature vector may lead

to missclassification due to the fact that multiple classes

share similar expected probabilities. Moreover, a model only

trained for precise classification may struggle to detect out-of-

distribution (OOD) data.

One promising solution to this problem is set-valued clas-

sification [1], [2]. This method allows the model to assign

a new data to a non-empty set of classes, particularly when

uncertainty is high and precise classification is challenging.

In the context of Out-of-Distribution (OOD) detection, a

prevalent approach is the utilization of a classification method

with a reject option [3], [4], which can be seen as a special case

of set-valued classification. Rejection is defined by assigning

a data to the set of all possible classes, indicating a state of

high uncertainty.

Recently, several works have sought to integrate the

Dempster-Shafer theory (DST) into deep neural networks,

aiming to leverage the power of evidential reasoning [5]–[7].

However, these attempts have been confined to relatively small

and well-structured datasets such as MNIST [8] or CIFAR-

10 [9]. The primary impediment has been the algorithmic

complexity of DST, which scales exponentially with the size

of the frame of discernment Ω, containing 2K subsets where

K = |Ω|.

Based on [10], [11] proposed an end-to-end deep evi-

dential neural network that allocates mass values only to

singletons and Ω. This method addresses this computational

bottleneck, effectively reducing the spatial complexity from

O(2K) to O(K + 1) for the training phase. Nevertheless, the

decision-making process for set-valued classification during

the evaluation phase remains a computationally expensive task,

requiring an exhaustive selection from all possible subsets of

Ω, still operating at O(2K) complexity. Thus, they selected

the possible subsets of Ω based on the distance between the

classes derived from the confusion matrix.

We propose in this work an algorithmic solution to mitigate

the O(2K) complexity, making set-valued decisions derived

from a mass function output by a Convolutional Neural Net-

work (CNN) feasible with linear complexity without interme-

diate steps to restrict the number of subsets. Additionally, we

introduce mathematical optimizations to enhance numerical

computations, enabling scalable implementation of set-valued

classification evidential models. These contributions pave the

way for the application of the DST theoretical framework

to high-dimensional real-world datasets with many classes.

They offer significant potential for improving the reliability

of deep learning models in various applications such as OOD

detection.

The remaining parts of this work are organized as follows.

In section II we recall basics of Dempster-Shafer theory. In

section III, we present the evidential neural network architec-

ture we use and the algorithmic solution we propose to make

set-valued decision in linear complexity. The experiments and

preliminary results on large datasets are presented in section

IV. Finally, we conclude in section V.

II. BELIEF THEORY

A. Background on belief functions

Belief function theory, called also Evidence theory or

Dempster-Shafer theory [12], [13], is able to model and reason

about imprecise and uncertain problems, and has more obvious

advantages in the representation and combination of uncertain

information.

To represent partial knowledge in the belief function theory,

let consider the frame of discernment Ω as a finite set of
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variables ω which refers to K elementary events to a given

problem (Ω = {ω1, ω2, ..., ωK}).
The power set of Ω is the set of all the 2K possible subsets.

It is presented as follows:

2Ω = {∅, {ω1}, ...., {ωk}, {ω1, ω2}, {ω1, ω3}, ....,Ω}, (1)

where the {wi} elements are titled as singletons and ∅ denotes

the empty set.

The key point of Dempster-Shafer theory is the basic belief

assignment (bba) which represents the partial knowledge about

the value of w. A bba is a function from 2Ω to [0, 1] defined

as follows:

m : 2Ω → [0, 1]

A 7→ m(A)
(2)

where m satisfies the following constraint:
∑

A⊆Ω

m(A) = 1. (3)

An element A of Ω is called a focal element when

m(A) > 0, and the set containing all these elements is called

a body of evidence (BOE). When each element in BOE is a

singleton, m is named a Bayesian bba. On the other hand,

when BOE contains only Ω as a focal element, we are in the

complete ignorance situation and m is called vacuous belief

function. However, when it contains only one singleton of Ω
as a focal element, m is presented as a Certain mass function.

A bba function is normalized when the mass given to

the empty set is constrained to be zero (m(∅) = 0). In that

case, it corresponds to the closed-world assumption [13].

A contrary explanation is that the frame of discernment Ω
can be incomplete and the value of w can be taken outer

Ω. Accordingly, the mass of belief that is not linked to Ω
can allowed to be strictly positive (m(∅) > 0). That case

corresponds to the open world assumption [14].

B. Information fusion

The most common way to combine two bbas m1 and m2

defined on the same frame of discernment Ω is the Dempster’s

rule [13], denoted as ⊕. It is defined by mDS(∅) = 0 and

∀A ∈ 2Ω\{∅} by

mDS(A) = (m1 ⊕m2)(A) =
1

1− κ

∑

B∩C=A
B,C∈2

Ω

m1(B)m2(C)

(4)

where κ is the degree of conflict between the two sources of

evidence defined by:

κ =
∑

B∩C=∅
B,C∈2

Ω

m1(B)m2(C).

This fusion can be seen as the normalized version of the

conjunctive rule which is defined by:

m∩(A) =
∑

B∩C=A
B,C∈2

Ω

m1(B)m2(C). (5)

C. Decision-making

The most common way of making decisions with belief

functions is to apply the pignistic transformation [15] to

obtain a probability vector of size K , then the predicted class

corresponds to the argmax of this vector. However, such a

strategy does not allow the model to predict a set of classes.

To this end, [16] defines the lower and upper expected utilities

of selecting A ⊆ Ω as follows:

E(fA) =
∑

B⊆Ω

m(B) max
ωj∈B

uA,j (6)

E(fA) =
∑

B⊆Ω

m(B) min
ωj∈B

uA,j (7)

where uAj ∈ [0, 1] designates the utility of the act of

selecting A ⊆ Ω denoted as fA when the ground truth is ωj .

The utility matrix U2|Ω|×K is computed following [17], [18]

with a parameter γ ∈ [0.5, 1] that represents the imprecision

tolerance degree. If the true class is ωj , the utility of assigning

a sample to set A is calculated as an Ordered Weighted

Average (OWA) aggregation [18] of the individual utilities

associated with each precise assignment within A as follows:

uA,j = g|A|1{ωj∈A} (8)

where g ∈ R
|A| is a weight vector whose elements represent

the decision making strategy’s tolerance to imprecision, and

1{ωj∈A} = 1 if ωj ∈ A for A ⊆ Ω, and 0 otherwise. For

example if g = (1, 0, . . . , 0), then the decision making’s

strategy will be totally intolerant to imprecision, thus forcing

the model to output only one class.

Following [17] and [19], this weight vector is obtained by

maximizing the following entropy:

Ent(g) =

|A|
∑

k=1

log gk (9)

subject to constraints

|A|
∑

k=1

gk = 1,

|A|
∑

k=1

|A| − k

|A| − 1
gk = γ and

gk ≥ 0 where γ is a parameter representing the tolerance

to imprecision. An example of a utility matrix with γ = 0.9
and Ω = {ω1, ω2, ω3} is shown in Table I. As we can see,

the values in the utility matrix are the same according to

the cardinality of the selected set. This means that instead

of computing every values of the utility matrix, we only need

to compute a value Uk for each possible cardinality of the

subsets of Ω. In this example, we have U1 = 1, U2 = 0.9 and

U3 = 0.8263.

Since we have:

min
ωj∈A

uA,j =

{

Uk if A = Ω
0 else

(10)

and

max
ωj∈A

uA,j = U|A| (11)

the equations (6) and (7) can be simplified as illustrated in

section III-C.



Figure 1. Architecture of an evidential deep neural network.

ω1 ω2 ω3

f{ω1} 1 0 0

f{ω2} 0 1 0

f{ω3} 0 0 1

f{ω1,ω2} 0.9 0.9 0

f{ω1,ω3} 0.9 0 0.9

f{ω2,ω3} 0 0.9 0.9

f{Ω} 0.8263 0.8263 0.8263
Table I

UTILITY MATRIX WITH γ = 0.9 AND K = 3.

The expected utility is then obtained using the generalized

Hurwicz decision criterion [20], [21] as follows:

E(fA) = νE(fA) + (1− ν)E(fA). (12)

Where ν ∈ [0, 1] is the pessimism index.

When γ = 0.5, the decision-making strategy is totally

intolerant to imprecision so that uij = 1 if ωi = ωj , else

uAj = 0. In this sense, we can see the expected utility as

a generalized accuracy. The other extreme strategy is totally

tolerant, which is achieved when γ = 1 where uAj = 1 if

ωj ∈ A, else uAj = 0 so that a model that always outputs Ω
will get an expected utility of 1.

We chose this decision-making strategy among all those

proposed in [16] since it is the most general form of decision

criterion resulting from Jaffray’s axioms [21]. Moreover, the

expression of the expected utility leads to interesting simpli-

fications in the restricted framework where we only consider

the singletons and Ω.

III. SCALABLE EVIDENTIAL NEURAL NETWORK

In this section, we present how the DST framework can be

incorporated into a deep neural network architecture. Based

on some assumptions on the structure of bbas, we propose

an algorithmic solution to make set-valued decision in linear

complexity along with mathematical optimizations for a more

scalable implementation.

A. Evidential deep neural network

As depicted in Figure 1, the proposed evidential neural

network architecture is very similar to a probabilistic one. Our

architecture is based on the evidential deep neural network

architecture introduced in [11]. The main difference resides

in the construction of the mass function. The given image

of size (C ×H ×W ) first passes through the backbone of a

convolutional neural network, resulting in a feature map of

size (C′ × 1× 1). This feature map captures the data’s latent

representation.

In the work presented in [11], the construction of mass

functions involves the use of a distance-based layer. The

classifier is composed of p prototypes ti in R
P , where P

is the dimension of the feature map. In their method, the

first step is to compute the distance-based support between

the feature map x of a data and each prototype ti. For the

second step, the mass function mi associated to ti is computed

by multiplying the distance-based support si by a weight hij

which characterizes the degree of membership of prototype ti
to the class ωi.

Our method for constructing the mass functions is more

computer vision oriented and is inspired by mixture of experts

approaches [22]. Instead of considering prototypes, we con-

sider p experts that see the feature map of a data from different

points of view. For this purpose, the classical fully connected

layer is replaced by a depthwise convolution [23] with a

kernel of size (1 × 1) and p groups. For a given feature map

and a given number of experts p, the depthwise convolution

will output a matrix of size (p× (K + 1)), namely one mass

function per expert. Each mass function holds |Ω|+ 1 values,

with one value dedicated to each singleton and an another

one for the entire set Ω. This vector is then reshaped into a

matrix of experts of size p× (|Ω|+ 1). We apply a softmax

activation to satisfy the equation (3). In this matrix, the i-th
row represents the mass function associated with expert pi.
The bbas of this matrix are then fused with Dempster’s rule

to obtain a final bba of size |Ω|+ 1 which we will present in

the next section.

B. Computational optimization of Dempster’s rule

As seen in the previous section, since our network is only

considering the masses assigned to singletons and Ω, the

expression of the conjunctive rule simplifies to formula (13)

∀A ∈ Ω

m∩(A) =
∑

B∩C=A
B,C∈2

Ω

m1(B)m2(C)

= m1(A)m2(A) +m1(A)m2(Ω) +m1(Ω)m2(A)
(13)



This brings us to an iterative algorithm for performing

Dempster’s rule as shown by the Algorithm 1. We define

µ1 = m1 and µi+1 = m∩(µi,mi) where µi represents the

mass function obtained by the fusion of the i first expert’s

mass functions by the conjunctive rule.

Algorithm 1 Iterative Dempster’s rule

Require: p mass functions m1, . . . , mp

µ1 ← m1

for i = 2, . . . , p do

for j = 1, . . . ,K do

µi({ωj}) = µi−1({ωj})mi({ωj})
+µi−1({ωj})mi(Ω)+µi−1(Ω)mi({ωj})

end for

µi(Ω) = µi−1(Ω)mi(Ω)
end for

return µp/Z
where Z is a normalization term.

The expression of µi({ωj}) can be rewriten as follows:

µi({ωj}) = µi−1({ωj})mi({ωj}) + µi−1({ωj})mi(Ω)

+ µi−1(Ω)mi({ωj})

= (µi−1({ωj}) + µi−1(Ω))× (mi({ωj}) +mi(Ω))

− µi−1(Ω)mi(Ω)
(14)

which leads to an improved algorithm that only iterates on

the number of classes K as presented in the Algorithm 2.

Algorithm 2 Scalable Dempster’s rule

Require: p mass functions m1, . . . , mp

µp(Ω) =

p
∏

i=1

mi(Ω)

for j = 1, . . . ,K do

µp({ωj}) =

p
∏

i=1

(mi({ωj}) +mi(Ω)) − µp(Ω)

end for

return µp/Z where Z is a normalization term.

The algorithm 2 is highly parallelizable and each element

of the loop can be calculated independently of the others,

unlike the algorithm 1 where each element depends on the

previous iteration. In practice, this second algorithm provides

a very fast implementation of Dempster’s rule in the restricted

framework chosen where we only consider singletons and Ω
as focal elements.

C. Scalable decision making

Since we only consider the singletons and Ω for the con-

struction of the mass function, we can simplify the equations

(6) and (7) as follows:

E(fA) =
∑

ωi∈Ω

(m({ωi})uA,i) +m(Ω) max
ωk∈Ω

uA,k, (15)

E(fA) =
∑

ωi∈Ω

(m({ωi})uA,i) +m(Ω) min
ωk∈Ω

uA,k. (16)

During the training phase, we want fA to be a singleton.

That’s to say uii = 1 and uij = 0 ∀i 6= j which can be seen

as the classical accuracy metric. Under those hypotheses, we

can simplify the equations (15) and (16) as follows:

E(fωi
) = m({ωi}) +m(Ω) (17)

E(fωi
) = m({ωi}) (18)

leading to this simplified expression of the expected utility:

E(fωi
) = νm({ωi}) + (1− ν) (m({ωi}) +m(Ω))

= m({ωi}) + (1− ν)m(Ω).
(19)

This expression can be considered as a rewriting of the

pignistic transformation in our restricted framework. Indeed,

taking ν = 1− 1

|Ω| in equation (19) leads to the pignistic

probability expression when m(A) = 0 ∀A ⊂ Ω such that

|A| ≥ 2.

We propose to use the cross-entropy loss on the expected

utilities vector for training our network:

−
n
∑

i=1

K
∑

k=1

yi,k log (E(fωk
(xi))) (20)

with n is size of training dataset, yi,k is 1 if the label of

example xi is ωk and 0 otherwise.

For decision-making during the evaluation and test phase,

we want our network to be able to output a subset of Ω.

The main obstacle is the algorithmic complexity since it

would require to compute 2|Ω| expected utilities to choose the

subset that maximizes it. To solve this issue, [11] proposes to

compute the confusion matrix from the training set generated

by an evidential deep neural network as explained above.

Based on the distance between the classes, they only keep

the classes and groups of classes that are similar enough by

thresholding. Although in practice this strategy reduces the

number of expected utilities to be computed, it remains in 2|Ω|

in the worst case (when the result is to be attributed to the Ω
set). Furthermore, we are not convinced that this strategy is

sufficient to scale to databases with a large number of classes

such as ImageNet [24] where |Ω|=1000. Moreover, it requires

a costly intermediate step between the training phase and the

evaluation and test phases.

To this end, we propose a very simple and computation-

ally efficient iterative algorithm (3) to determine the argmax

between all subsets of Ω without any a priori about the

correlation between the classes nor intermediate step to restrict

the number of subsets of Ω. The first step is to compute

the expected utilities of singletons using the equation (19)

and to sort them in a decreasing order. We then compare

the higher singleton expected utility with the expected utility

of the subset composed of the two best singletons using the

equations (12),(15),(16) and so on until adding a new singleton

to the subset decreases the expected utility. Let’s consider Ω =
{ω1, ω2, ω3, ω4} with E(ω1) > E(ω2) > E(ω3) > E(ω4). We



then compute E({ω1, ω2}) and compare it with E(ω1). Let’s

suppose that E({ω1, ω2}) is effectively higher than E(ω1), we

now have to compute E({ω1, ω2, ω3}). By considering that

E({ω1, ω2}) > E({ω1, ω2, ω3}), we obtain A⋆ = {ω1, ω2}. If

E(A⋆) > E(Ω) then the model outputs A⋆, else it ouputs Ω.

Algorithm 3 Argmax of the Expected Utility

Require: sorted singletons expected utilities E({ωα1
}) ≥

E({ωα2
}) ≥ . . . ≥ E({ωαK

}).
A⋆ ← ωα1

for i = 2, . . . ,K do

A⋆
temp ← {A

⋆, ωαi
}

if E(A⋆
temp) > E(A⋆) then A⋆ ← A⋆

temp

end if

end for

return A⋆

This strategy allows the model to output a set of classes

among all the possible subsets of Ω while maintaining a

complexity of O(K log(K)) without requiring any limitations

on the number of subsets of Ω to compare their expected

utilities.

IV. EXPERIMENTS

To demonstrate the relevance of our model, we conducted

several experiments. Firstly, we carry out a study on the

impact of the various parameters on our model. Secondly, we

sought to demonstrate the ability of our model to process large

databases containing a large number of classes and compare

our model with a standard probabilistic model for classification

problem. Finally, we demonstrated the superiority of our

approach over the standard probabilistic model for an OOD

detection task.

In all our experiments, we assume that the backbone used

is of type ResNext50 [25]. This applies both to our model

and to the probabilistic models to which the comparison is

conducted.

A. Datasets

We conducted our experiments using the following 3

databases: CIFAR-100, ImageNet and SVHN dataset.

CIFAR-100 [26] is a database of low-resolution 28 × 28
images. It contains 60, 000 images divided into 100 classes

with 600 images per class.

ImageNet [24] contains 1.5 million images of 224 × 224
resolution, manually annotated in 1, 000 categories. The an-

notation is based on the WordNet hierarchical object catego-

rization structure (augmented by 120 dog categories).

The SVHN (Street View House Numbers) database [27] is a

collection of 32× 32 digital images that includes handwritten

digits from photos of house numbers taken in street scenes.

The database contains 10 classes, corresponding to digits from

0 to 9.

B. Ablation study

In this section, we present some experiments designed to

measure the impact of the various parameters of our approach

on its performances. We measure two metrics: expected utility

and average cardinality.

Given that the accuracy is obtained by fixing the imprecision

tolerance degree γ to 0.5 while computing the expected utility,

we propose to evaluate the expected utilities across a range of

γ values from 0.5 to 0.95.

We compute the average cardinality of the predictions

according to γ as follows:

AC(T ) =
1

|T |

|T |
∑

i=1

|A(i)| (21)

where T = {x1, . . . , x|T |} is the test set and A(i) is the set-

valued output for the data xi ∈ T . It is clear that for γ = 1, the

model will always output fΩ since E(Ω) = 1 and the average

cardinality will be equal to the number of elements in Ω.

Figure 2. Expected Utility according to the number of experts on CIFAR-100.

Firstly, we need to determine the hyperparameters of our

model, namely the number of experts p and the degree of

pessimism ν. Since this search process is quite time-intensive,

we restrict it to the CIFAR-100 dataset. To identify the optimal

number of experts, we fix ν to 0.99 so that the equation(19)

corresponds to the pignistic probability. As shown on Figure

2, the impact of the number of experts does not appear to

be significant. This is mainly because there is no guarantee

that the experts simulated by the fully connected layer will be

independent. So we choose p = 4 as there is no need for a lot

of experts. Then we search for the optimal ν by setting the

number of experts p = 4. As depicted in Figure 3, the model

learns in a similar way, independently of ν. Indeed, the model

always outputs a value very close to zero for m(Ω) for precise

classification task, so the impact of ν is not significant during

the training phase. Consequently, we have selected ν = 1

|Ω| ,

namely ν = 0.99 for CIFAR-100 and ν = 0.999 for ImageNet.



Figure 3. Expected Utility according to ν on CIFAR-100.

C. Comparison with probabilistic approaches for image clas-

sification

Now that we have fixed the model hyperparameters, we can

compare the evidential neural network with the probabilistic

one on precision classification. As mentioned previously, the

probabilistic model used corresponds to a ResNext50 type

backbone. This is followed by a fully connected layer and

a softmax.

For fair comparison between our method and the proba-

bilistic approach, we have to allow the probabilistic network

to output set-valued predictions in order to compute the

expected utility. To do so, we consider the probability vector

output by the model as a mass function with m(Ω) = 0 and

m({ωj}) = p(ωj) ∀j = 1, . . . ,K .

The Expected Utility and Cardinality curves over 10 runs

on CIFAR-100 are respectively presented in Figure 4 and

Figure 5. The Expected Utility and Cardinality curves on

ImageNet are respectively presented in Figure 6 and Figure

7. Due to the size of the database, we limited the ImageNet

experiments to a single run and were therefore unable to

calculate standard deviations. For both experiments, we can

see that there is almost no difference between the two models

from γ = 0.5 to γ = 0.7 where the decision-making strategy

is quite intolerant to uncertainty, forcing the model to output

one or two classes. For γ = 0.75 to γ = 0.95 the evidential

model is less confident than the probabilistic one and outputs

sets with a higher cardinality, which decreases the Expected

Utility. On Imagenet the performance of the probabilistic

model is 77.77% in accuracy against 77.65%. The difference

in performance is relatively small.

D. OOD detection

For OOD detection task, we want to evaluate the capability

of the network to output Ω if, and only if, the data does not

belong to the classes from the training set. For this purpose,

Figure 4. Expected Utility on CIFAR-100.

Figure 5. Average Cardinality on CIFAR-100.

we evaluate the rate of fΩ by varying γ from 0.5 to 0.95. A

good model has to get a high rate of fΩ on out-of-distribution

data and a low rate of fΩ on in-distribution data. For γ = 1,

the model will always predict Ω since all the non-zero values

in the utility matrix will be equal to 1. So the fΩ rate will

always be equal to 100%.

The results on the OOD detection task for the models trained

on CIFAR-100 and ImageNet are respectively presented in

Figure 8 and Figure 9. As expected, the fΩ rate is very low for

the evidential and the probabilistic models on in-distribution

test set. However, it is clear that the evidential network

outperforms the probabilistic network for OOD detection task

when we evaluate them on the SVHN dataset.



Figure 6. Expected Utility on ImageNet.

Figure 7. Average Cardinality on ImageNet.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we have presented a novel deep neural

network based on Dempster-Shafer theory capable of handling

large datasets for image classification. Furthermore, we have

introduced mathematical optimizations to improve numerical

computations, facilitating a scalable implementation of eviden-

tial models for set-valued classification. This approach makes

it possible to obtain results on databases with a large number

of classes, while avoiding the problem of traversing the 2K

subset of possible classes.

The proposed evidential neural network shows similar re-

sults to the probabilistic one for precise classification task.

One way to improve it can be to ensure the independence of

the experts with a Deep Ensemble approach [28], [29].

However, our network clearly outperforms the probabilistic

one for OOD detection task regarding the fΩ rate. This

Figure 8. fΩ rate for OOD detection, CIFAR-100.

Figure 9. fΩ rate for OOD detection, ImageNet.

illustrates that the proposed method overcomes one of the

main problems of neural networks, namely the overconfidence

even if the data is out-of-distribution. Of course, the scope of

our method does not limit itself to image classification. We

can adapt it to other computer vision tasks such as semantic

segmentation and instance segmentation.

Another way of improving our method would be to also take

into account the partial ignorance of the experts when fusing

the mass functions and making a decision. This would require

to overcome computational bottlenecks but would open the

doors for other decision-making strategies and more optimal

fusion rules.
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