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Abstract 17 

Correlative Species Distribution Models (SDMs) are powerful tools for understanding the spatial 18 

structure of ecological patterns and serve as a foundation for predicting the short-term effects of 19 

environmental changes on biological populations and for improving ecosystem management. However, 20 

due to complex and often non-linear interactions between biotic and abiotic factors, as well as irregular 21 

data distributions, SDMs are notoriously challenging to construct and validate, highlighting the need for 22 

continued research and methodological advancements in this active field of study. Quantile regression 23 

is a promising statistical technique to improve SDM as it can deal with data heteroskedasticity and 24 

provide a description of habitat suitability consistent with Liebig's Law of the Minimum. The aim of this 25 

study is to propose a tool for assessing habitat suitability of an estuary for a species, by defining its 26 

optimal ecological niche, which can be used for estuarine management, with a study case of 27 

Cerastoderma edule in the Seine estuary. The method involved applying quantile regression to a 20-28 

year biological dataset coupled with a hydro-morpho-sedimentary model data set validated over a 25-29 

year period, both at the scale of the estuary. To account for the complex distributional shapes, this study 30 

was carried out comparing three different types of equation (linear, Gaussian and B-spline). On the basis 31 
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of a preliminary multivariate analysis of the physical descriptors, two models were built representing 32 

hydrodynamic, morphodynamical and sedimentary features: daily maximum current speed, inundation 33 

time and daily salinity range or mud content as a third predictor. The Gaussian quantile regression 34 

produced the best description of the optimal niche, at the 97.5th centile and using the biomass. The 35 

optimal ecological niche for C. edule appeared to be lower intertidal marine areas, with low current 36 

speed, low salinity fluctuation and a sediment bed composed of muddy sand in the Seine estuary. The 37 

calculation of suitability index in this ecosystem was explored over a period of 25 years and analysed in 38 

isolated sectors to be applied in different scenarios related to global warming. The model using daily 39 

maximum current speed, inundation time and daily salinity range was also applied to data from the 40 

Scheldt basins, to test the reliability of the model, thus demonstrating that the model performs quite well, 41 

even though there were some differences of habitat suitability between these estuaries. This approach 42 

can allow direct comparisons of SDMs with one single Gaussian model and may offer new perspectives 43 

to investigate SDMs on a large scale. 44 

Highlights 45 

• Gaussian quantile regression at the 97.5th centile was the most performant model to define the 46 

optimal ecological niche of C. edule at the scale of the Seine estuary. 47 

• Daily maximum current speed, inundation time and daily salinity range were the predictors the 48 

most adequate to build the optimal ecological niches. 49 

• Optimal Cerastoderma edule conditions corresponded to low intertidal marine shores, 50 

moderate current speed, low salinity fluctuations in muddy sand sediment. 51 

• The best model applied to the Scheldt basins shows some differences in the definition of 52 

optimal habitat compared with the Seine. 53 

Graphical abstract 54 

 55 
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1 Introduction 60 

A species distribution model (SDM) is an approach that provides practical information on the spatial 61 

distribution of species based on ecological niche modelling (ENM) by investigating correlative interaction 62 

to predict the occurrence or the abundance of species as function of predictor variables. An ENM is 63 

defined in an n-dimensional environmental space that can be geographically projected as a SDM, 64 

providing managers and decision-makers with information about species distribution to help 65 

stakeholders to define conservation plans (Austin, 2007, 2002). A wide choice of statistical models for 66 

constructing SDM is available, with two main categories: the correlative ones (Austin, 2002; Guisan and 67 

Zimmermann, 2000) and the mechanistic ones (Kearney and Porter, 2009), the latter being based on 68 

eco-physiological laws. Each approach has advantages and disadvantages (Kearney and Porter, 2009; 69 

Melo-Merino et al., 2020), but the vast majority of studies carried out to date are correlative (Melo-Merino 70 

et al., 2020; Robinson et al., 2011, 2017). 71 

Correlative SDMs link the presence-absence or population quantitative information (abundance, 72 

biomass) of a targeted species with spatio-temporal habitat data, thereby quantifying the relation 73 

between environmental factors and species distribution (Elith and Leathwick, 2009; Franklin, 2010; 74 

Guisan and Thuiller, 2005). These methods generally use geo-localised biological data of a species and 75 

abiotic parameters measured by techniques such as remote measurements or modelling (Brown et al., 76 

1996; Guisan and Zimmermann, 2000; Melo-Merino et al., 2020; Van Der Wal et al., 2008).  77 

Correlative SDMs encompass a multiplicity of statistical techniques, which can be divided into two 78 

approaches: algorithmic modelling (AM) and data modelling (DM) (Warren and Seifert, 2011). AM 79 

methods, such as MaxEnt or random forest, involve a statistical comparison of abiotic and biological 80 

data, without defining the type of relationship, embracing the overall intrinsic complexity of the 81 

environment, with the aim of maximum prediction performance, but without describing the physiological 82 

processes involved. These methods have recently undergone considerable development, thanks to the 83 

increasingly easy access to the computer tools needed to implement them, they have been applied for 84 

instance on cockle populations (Matos et al., 2023; Singer et al., 2017). The DM approach, which is 85 

more historical, consists of defining a priori a type of relationship between abiotic factors and biological 86 

response, based on the state of the art of the species and its environment, in a principle of parsimony 87 

and simplification of the description of an environment. The aim is then to highlight the main physiological 88 
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processes explaining population dynamics, and to provide tools that can be applied in spatially and 89 

temporally diverse contexts. 90 

In the context of a DM approach, various regressions techniques can be used, which are often based 91 

on Ordinary Least Squares (OLS), which defines the conditional mean function between the biological 92 

response and selected predictors (Koenker and Hallock, 2000). Whatever the number of factors used, 93 

there will always be unmeasured or unknown factors, which may have a limiting effect on the biological 94 

response, which then reflects the response to these unknown limiting factors. This is the statement of 95 

Liebig's law of minima: if other resources are not optimal for some observations, the measured response 96 

of the species will be lower than the maximum possible response to the recorded resource (Anderson, 97 

2008; Cade and Noon, 2003). This generates heteroskedasticity in bivariate or multivariate data 98 

distributions, as the mean and variance of the species abundances along environmental gradients tend 99 

to be positively correlated, thereby violating one of the fundamental assumptions of OLS modelling. It 100 

follows that the construction of a OLS-based SDM cannot take into account all meteorological, 101 

hydrodynamic, morphological or sedimentary factors, such as the patchy spatial distribution of many 102 

species, variations in recruitment from one year to the next, and the complex life cycles of some species 103 

(Ysebaert and Herman, 2002) that may partly bias the biological response to a set of selected factor 104 

(Austin, 2007; Cade et al., 1999). 105 

The use of quantile regression (QR) can counteract this limitation, by defining different quantiles of 106 

biological response depending on the abiotic factors chosen (Koenker and Hallock, 2000; Koenker and 107 

Machado, 1999). Studies have been conducted for more than 40 years to apply QR, and recent 108 

advances in computer tools have improved its use and facilitated its interpretation especially for 109 

ecological applications, such as SDM (Austin, 2007; Cade et al., 2005, 1999; Cade and Noon, 2003; 110 

Jiménez-Valverde et al., 2021). The variability of the biologic response to a fixed environmental condition 111 

could be considered to reflect the expression of other more or less limiting factors. By targeting the 112 

upper quantiles in a QR, it is possible to define the best maximum biological response to selected abiotic 113 

predictors, with any other factors, whether biological, environmental or mobility being considered as 114 

non-limiting (Schröder et al., 2005). In other words, while classical ENM focus on modelling the average 115 

response to the environment, QR ENM focus more on modelling extremes, thus providing a description 116 

of species abundance distribution consistent with the theoretical principle of Liebig's Law. The modelling 117 

of extremes, if based on a sufficiently rich dataset (over the long term, in various environmental 118 

conditions), has the potential to outline the boundaries of species niches, describing what we named 119 

Optimal Ecological niche (OEN), by removing particular conditions recorded (meteorological conditions, 120 

sanitary events, lifespans).  121 

This type of OEN can be a key tool for estuarine and coastal management in the context of climate 122 

change and anthropogenic pressures (Crossland et al., 2005; Grassle, 2013). Indeed, understanding 123 

the links and interactions between abiotic and biotic components is necessary to preserve biodiversity 124 

and restore areas affected by environmental fluctuations and human activity, in order to conserve the 125 

benefits of their functional ecosystem services (Richards and Lavorel, 2023). Among a vast list of 126 

ecosystem services, an estuary is a shipping lane, a fishing ground and an area comprising diverse 127 
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natural habitats (Hughes et al., 2014). All these activities compete for space and have different needs 128 

and yet are linked to each other, so it is necessary to have decision support tools that improve their 129 

management and enable their future development (Degraer et al., 2008; He et al., 2015; Schickele et 130 

al., 2020). In particular, the vulnerability of estuarine sediments to the sea level increase and coastal 131 

squeeze has been identified for a long time with a strong negative impact on the trajectory of tidal flats 132 

(Healy et al., 2002; Murray et al., 2019). Many studies highlight the relevance of ecological gradients in 133 

estuaries (Brown et al., 1996; Guarini et al., 1998; Van Der Wal et al., 2010), where intertidal areas are 134 

undeniably subject to massive and frequent gradients, due to both actions of the tide and the river 135 

discharge, modifying the physico-chemical environment of water bodies. Physical gradients drive the 136 

set of interaction links with fauna in estuaries (Chapman et al., 2010, p. 20; Herman et al., 2001).  137 

Within estuarine fauna, benthic macrofauna (or macrozoobenthos) is a key element in ecosystem 138 

functioning. Often primary consumers, they are a source of trophic support for the higher levels, in 139 

particular for fish and shorebirds (Saint-Béat et al., 2013). Their presence on or in the sediment 140 

contributes to sediment biogeochemical fluxes and morphological dynamics of their environment 141 

through a series of eco-engineering processes (Arlinghaus et al., 2021; Jones et al., 1994; Kristensen 142 

et al., 2012). The capacity of benthic macrofauna to resist external stressors is yet not fully understood, 143 

but abiotic factors are habitat-defining parameters on which a cohort of species depends (Ysebaert and 144 

Herman, 2002). In particular, sediment and hydrological parameters have a direct impact on the activity 145 

and spatial distribution of macrozoobenthos, with sediment acting as a food source, habitat, shelter and 146 

breeding ground but which can also cause discomfort and stressful conditions (erosion, mud 147 

accumulation, anoxic episodes…). Sediment indicators, including grain size median and fine silt content, 148 

have been shown to strongly contribute to explaining variations in macrozoobenthic communities 149 

(Anderson, 2008; Thrush et al., 2005, 2003). It is therefore very relevant to focus on the response of 150 

macrozoobenthos not only to temperature or salinity changes, but also to physical dynamics occurring 151 

in an estuary (Shi et al., 2020; Van Der Wal et al., 2017) such as sea level rise, increases in wave and 152 

current intensity related to more frequent storms or also the risk of coastal squeeze. 153 

The benthic macrofauna of the Seine Bay (Normandy, France) has been extensively studied in recent 154 

decades (Bacouillard et al., 2020; Baffreau et al., 2017; Dauvin, 2015; Le Guen et al., 2019) and 155 

estuarine management included in subsequent regional program frameworks (https://www.seine-156 

aval.fr/). Accessing abiotic factors, and especially physical forcings, in an estuary is a challenge that can 157 

be solved by developing hydro-morpho-sedimentary (HMS) models, which use principles of fluid and 158 

particle physics to define the parameters of interest in the estuary at an intermediate scale. The Seine 159 

estuary (Normandy, France) was the subject of the Mars3D model adjustment, which describes the 160 

dynamics of the physical parameters in an estuary, such as bottom elevation, salinity, temperature, 161 

current velocity, water surface elevation, with a particular effort invested in describing the erosion, 162 

deposition and consolidation properties of sand-mud mixtures (Grasso et al., 2021, 2018; Grasso and 163 

Le Hir, 2019; Mengual et al., 2020; Schulz et al., 2018). Such tools allow temporal projection on a 164 

regional spatial scale and therefore to develop climate-focused forecasts and scenarios. On the basis 165 

of this available information, on both biological and abiotic components, it is then possible to model the 166 
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spatial distribution of the targeted species, in order to better define the fauna-environment interactions 167 

that shape the presence and the performances of the species in the estuary under consideration.  168 

Investigating populations of Cerastoderma edule, the common cockle, as an example in the Seine 169 

estuary, the aim of this study is to assess the ENM following the principles of the DM approach, with the 170 

biological response (biomass and density) as a function of the hydro-morpho-sedimentary factors of the 171 

estuary extracted from a 3D model. With the aim of proposing an OEN transferable to other estuarine 172 

environments, we used quantile regression at higher quantiles, with either linear or non-linear curve 173 

responses (Gaussian and B-spline). While linear responses are the simplest, there's a danger of 174 

oversimplifying species-environment relationships as in nature there are often "shortages" or 175 

"surpluses". Furthermore, univariate linear relationship cannot account for the effect of subsidiary factors 176 

the responses to which are inversely correlated with the variable of interest. For instance, the preference 177 

of C. edule for the intermediate tidal flat can be intended as a combination between a positive response 178 

to submersion time (longer feeding time) and negative response to increased current velocity 179 

(dislocation). As a large number of subsidiary factors generally interact in shaping species distribution 180 

along single gradients, Gaussian responses are useful for modelling species with a clear environmental 181 

optimum, but still oversimplify the effect of interactions with co-varying subsidiary factors. Flexible shape 182 

responses (like B-splines) provide a more nuanced view, capturing asymmetry in species responses to 183 

environmental gradients, but less intuitive and more data-intensive. Building on the work done by 184 

(Cozzoli et al., 2017, 2014, 2013), we propose to take the use of QR a step further by 1) showing that 185 

using a Gaussian equation rather than a linear or B-spline equation is more appropriate to describe a 186 

typical biological response, 2) building two models based on three environmental variables to reflect the 187 

effects of hydrodynamic (including meteorological), morphological and sedimentary processes in an 188 

estuary. These models were applied and analysed geographically in the Seine estuary, in the form of 189 

suitability indices, as a tool for developing conservation and management plans. In addition, one of the 190 

models was applied to an independent dataset from the Scheldt estuary (Cozzoli et al., 2014) in order 191 

to discuss the transferability potential of an ENM for cockles at a more global scale. 192 

2 Materials and Methods 193 

All data processing was conducted in R version 4.2.2 (2022-10-31 ucrt) except for Mars3D pre-194 

treatment in Matlab 2019a. 195 

2.1 Study area 196 

The Seine estuary in Normandy, north-west France, is defined as the last 170 km of the river leading 197 

to the marine ecosystem close to Le Havre, starting at Poses weir upstream and ending in the bay of 198 

Seine downstream. The Seine estuary is macrotidal (with a maximal tidal range of 8 m during spring 199 

tides at Honfleur), and is subject to fresh water discharge ranging from 100 to more than 1000 m3.s-1, 200 

with a mean of 450 m3.s-1 in the two last decades. Tidal dynamics and the wave regime have a significant 201 

impact on the hydro-sedimentary dynamics of the mouth of the estuary (Grasso et al., 2021; Lesourd et 202 

al., 2003; Schulz et al., 2018). 203 
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The mouth of the estuary hosts a variety of habitats that provide many ecosystem services (Beck et 204 

al., 2001; Boesch and Turner, 1984). In particular, intertidal mudflats play a crucial role in the Seine 205 

estuary and constitute areas of major interest including nutrient recycling, coastline protection, trophic 206 

networks, nesting sites for migratory birds and fish nurseries. The Seine estuary is marked by artificial 207 

structures that have profoundly modified this ecosystem, which is still undergoing changes that began 208 

at the beginning of the 20th century (Lesourd et al., 2016). Numerous dykes were built and sediment 209 

dredging was carried out to increase the capacity of the navigation channel, which contributed to the 210 

disconnection of the two banks of the estuary and reduced the extent of wetlands, hence provoking a 211 

“coastal squeeze”. Some of these works were large-scale projects: the construction of the Pont de 212 

Normandie (1989-1995), which crosses the Seine estuary, and the “Port 2000” project (2000-2005) to 213 

expand the port of Le Havre, mainly to give large container ships access to new all-day loading berths.  214 

The Port 2000 project involved ecological compensation in the form of the creation of a nature 215 

reserve in 1997, as well as the digging and dredging of an artificial channel in the north upstream mudflat 216 

and the creation of a small island to serve as a resting place for migratory birds in the southern mudflat 217 

(Aulert et al., 2009). Several historically known areas in the Seine estuary that differ in either their habitat 218 

or community have been studied, mainly intertidal mudflats and subtidal areas (Morelle et al., 2020; 219 

Tecchio et al., 2016) (Figure 1).  220 

 221 

Figure 1 Maps showing the habitats defined in the dataset of the study area. Dots represent the 222 
location of the biological samples. 223 
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2.2 Biological model 224 

The cockle Cerastoderma edule (Linnaeus, 1758) is a bivalve belonging to the family of Cardiidae 225 

that is widely distributed and exploited in waters off northern Europe to north Iceland and off the coast 226 

of West Africa down to southern Senegal (Hayward and Ryland, 1995). The oval ribbed shells of the 227 

cockle can reach 6 cm in diameter and are white, yellowish or brown in colour, and its lifespan is 2-3 228 

years (Malham et al., 2012). Cockles are suspension-feeders, inhabiting the few uppermost centimetres 229 

of the sediment with its two siphons emerging from the surface. Its growth depends mainly on 230 

microphytobenthos in the juvenile stage and on phytoplankton in the adult stage (Sauriau and Kang, 231 

2000). It provides numerous ecosystem services (Carss et al., 2020), and is a bioturbator species 232 

actively studied for its effects on sediment morphology (Eriksson et al., 2017). Cockle habitats are 233 

located in the central areas of the foreshore subject to medium currents (between 0.3 and 0.7 m.s-1 of 234 

maximum tidal current speed) (Herman et al., 1999; Ysebaert et al., 2002), typical marine salinity (> 30) 235 

and they prefer fine sands (slightly silty, grain size between 100 and 200 μm) (Cozzoli et al., 2014; 236 

Ubertini et al., 2012). This species can be found at particularly high densities in the English Channel, 237 

the most densely inhabited area being the Bay of Veys, (density in the order of 200 to 500 ind.m-²), and 238 

may exceptionally exceed 5000 ind.m-2 (Gosling, 2003; Mahony et al., 2022). Winter conditions, current 239 

intensity and stress (erosion) appear to explain the high mortality rates observed in some years (Herman 240 

et al., 1999; Van Colen et al., 2010). Assessment of habitat suitability and SDM in previous studies 241 

mainly report the relevance of submersion (Cozzoli et al., 2014; Matos et al., 2023; Singer et al., 2017), 242 

salinity (Matos et al., 2023), temperature (Singer et al., 2017) and current velocity (Cozzoli et al., 2014). 243 

2.3 Datasets 244 

2.3.1 Biological data 245 

Data concerning the benthic macrofauna of the Seine Bay are grouped in a database named 246 

MAcrobenthos Baie et Estuaire de Seine (MABES) (Dauvin et al., 2006; L’Ebrellec et al., 2019). This 247 

dataset provides information on sampling (geolocation, sampling method) and fauna (density [ind.m-2], 248 

biomass [gAFDW.m-2] – Ash Free Dry Weight) collected in several projects for the past 40 years. This 249 

database was completed with data from the Cellule de Suivi du Littoral Normand (CSLN) surveys 250 

conducted for the Maison de l'Estuaire.  251 

The raw data were harmonised and grouped in a single database which contains a total of 543 252 

observations of Cerastoderma edule, and 86 sampling stations (with some variation in coordinates from 253 

year to year), with an average of 24 stations sampled in each campaign (depending of the project), 254 

mainly in September, October, and November. A series of 5-year periods was defined within the duration 255 

covered by the dataset, from 2000 to 2019 (the years before 2000 were discarded as they contained 256 

too few observations, n = 17): 2000-2005, including the construction of ‘Port 2000’ which caused major 257 

disruptions in the estuary; 2006-2010; 2011-2015; 2016-2019. These periods correspond to identified 258 

hydro-morphological sequences in the estuary. 259 
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2.3.2 Hydro-Morpho-Sedimentary data 260 

The HMS model Mars3D can be used in the context of estuarine hydrodynamics and application to 261 

fine sediment and sand transport. This three-dimensional (3D) process-based model was set up and 262 

run under realistic forcings (including tide, waves, wind, and river discharge). The Mars3D model is 263 

composed of the hydrodynamic core forced by the WAVEWATCHIII® wave model (Roland and Ardhuin, 264 

2014) coupled with the MUSTANG sediment module (erosion, deposition, consolidation). This 265 

MUSTANG module takes into account spatial and temporal variations in sand and mud content in the 266 

multi-layered sediment bed, as well as consolidation processes, and also solves advection/diffusion 267 

equations for different classes of particles in the water column (Grasso et al., 2018; Le Hir et al., 2011; 268 

Mengual et al., 2020).  269 

The HMS dataset was generated during the ARES project using the Mars3D model (Grasso et al., 270 

2021, 2019). The ARES dataset covers the simulation periods 1990-2000 and 2005-2018. The period 271 

2001-2004 was not modelled because it corresponds to the period of construction of the Port 2000 272 

project. The dataset outputs are available at intervals of 30 minutes for the entire Seine Bay area each 273 

hydrological year, starting on October 1st and finishing on September 30th. The hydrological sub-data 274 

contain 58 variables, some of which depend on water depth, with 10 levels in the water column, of which 275 

only the median of the 3 lower layers were retained to reflect benthic conditions: current speed, 276 

temperature, salinity and SPM for 5 particles sizes. Inundation rates were indirectly calculated from 277 

bathymetry and water height of the model. The sedimentary sub-data contain 19 variables, some of 278 

which depend on the depth in the sediment, with 6 levels corresponding to 1 m, of which only the median 279 

of the 4 upper layers is retained, i.e. 10 cm to reflect benthic conditions: temperature, salinity and 280 

sediment concentration for 5 particles sizes. The other retained variables retained were the total 281 

thickness of the sediment and the bed shear stress. (Grasso et al., 2018) validated the Seine Estuary 282 

model in terms of hydrodynamics, salinity, and SSC from tidal to annual time scales at different stations 283 

within the estuary, the sediment fluxes were considered more qualitative (Grasso et al., 2021). 284 

In addition to these variables, processing was carried out to extract supplementary information. The 285 

daily maximum was calculated for current speed and bed shear stress. The daily range was calculated 286 

for salinity and temperature and the yearly sediment budget was calculated from the variation in 287 

sediment thickness at the beginning and end of the year. The sediment total concentration is the sum 288 

of all sediment concentrations, and the mud content was deduced from the different particle size 289 

concentrations. All the variables selected and created, 14 in all, were reduced to a median calculated 290 

over the hydrological year. Biological data were associated with HMS variables corresponding to the 291 

model cell and the relevant hydrological year according to the sampling date. 292 

These 14 abiotic factors were studied to select the most relevant factors and limit their number in 293 

order to avoid autocorrelations. A PCA (FactoMineR::PCA (Husson et al., 2024) and factoextra 294 

(Kassambara and Mundt, 2020) package for visualisation) was carried out on all the factors, allowing 295 

complementary parameters to be identified on the two main axes. In addition, a correlation matrix with 296 
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the biomass and density of C. edule ensure that there was no direct correlation between abiotic and 297 

biotic factors.  298 

2.4 Model adjustments 299 

2.4.1 Quantile regression 300 

The mathematical theory of the quantile regression (QR) has been extensively expanded and 301 

described by Koenker over the past decades (Koenker, 2019; Koenker et al., 2019; Koenker and 302 

Bassett, 1978; Koenker and Hallock, 2000, 2001; Koenker and Machado, 1999). Its use in ecological 303 

studies has increased since the first pioneering studies (Cade et al., 2005, 1999; Cade and Noon, 2003). 304 

In practice, correlative ENM with QR can use any type of equation that links abiotic factors to a 305 

biological response, with any number of predictors to be used. Yet it was observed that the biological 306 

response to physical factors is often non-linear, and can be modelled by a gaussian distribution 307 

(Huisman et al., 1993; Van Der Wal et al., 2008). With this in mind, we have defined three different types 308 

of models in this study (Table 1) to describe the interplay of three abiotic factors to the biological 309 

response, by testing different functions (linear, B-spline and Gaussian). Mathematical notation is based 310 

on (1) the  subscript for variables that are quantile-dependent, (2) β for model coefficients, that are 311 

vectors of length , (3) µ and  for mean and standard deviation. QR were performed with the quantreg 312 

package in R developed by (Koenker et al., 2024). The three model types were computed with different 313 

quantiles  = [0.5, 0.9, 0.95, 0.975]. 314 

The model was adjusted on the biological data with the associated HMS data to create ENMs, which 315 

were then applied to the HMS data set, focused on the estuary. The maximum of each quantile of the 316 

ENM was used to standardise the model response, in order to create a suitability index, ranging from 0 317 

to 1. The results are displayed in maps with the mean of the model over each period, for each cell. A 318 

mean of the suitability index by area and period is calculated to visualise the global suitability over the 319 

whole estuary and the contribution of each factor. 320 

Table 1 List of types of models tested 321 

Type Equation Rationale 

RQ linear with 
interaction 

𝑦𝜏 =  𝛽0𝜏 + 𝛽1𝜏. 𝑥1 + 𝛽2𝜏. 𝑥2 + 𝛽3𝜏 . 𝑥3

+ 𝛽4𝜏 . 𝑥1. 𝑥2 + 𝛽5𝜏. 𝑥2. 𝑥3

+ 𝛽6𝜏 . 𝑥1. 𝑥3 + 𝛽7𝜏 . 𝑥1. 𝑥2. 𝑥3 

quantreg::rq(x1*x2*x3) 

Comparison with the results of a 
previous study (Cozzoli et al., 
2014) 

RQ gaussian 
(non-linear) 𝑦τ = A. 𝑒

−[
(𝑥1−μ1τ)2

2.σ1τ
2 +

(𝑥2−μ2τ)2

2.σ2τ
2 +

(𝑥3−μ3τ)2

2.σ3τ
2 ]

 

quantreg::nlrq(f(x1,x2,x3, 

initial.conditions)) 

Providing µ and  initiated by the 
mean and the standard deviation 
for each predictor (Huisman et al., 
1993; Schröder et al., 2005).  

RQ linear with 
B-Spline 

quantreg::rq(splines:: 

bs(x1,degree=3,knots= median(x1))+ 

bs(x2,degree=3,knots= median(x2))+ 

bs(x3,degree=3,knots= median(x3))) 

Avoid pre-determined shape of the 
equation and the use of a flexible 
non-linear function (Cozzoli et al., 
2013) 
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2.4.2 Model selection 322 

QR model validation was based on the Akaike Information Criterion (AIC). This index evaluates the 323 

performance of the model using the fewest possible predictors (Akaike, 1974), and was adapted to the 324 

QR (Cade et al., 2005), named AICc. Following Koenker’s recommendation, the R1, equivalent to OLS 325 

R² developed by Koenker and Machado (Koenker and Machado, 1999), was not used (Koenker, 2006). 326 

In addition to the AIC, the relationship between predicted and observed values was plotted to 327 

establish a validation plot (Cozzoli et al., 2014). The whole dataset was sampled with random 328 

replacement. The predicted (model output) data were discretized in 10 homogeneous classes based on 329 

the predicted values and for each class, the correspondent sample quantile of the observed data was 330 

calculated. To assess the validity of the modelled quantiles, a linear correlation was drawn for each 331 

quantile between random-predicted and observed values. 332 

3 Results 333 

3.1 Description of the biological data set 334 

The biological dataset for C. edule was split into four periods: 2000-2005 (n = 108), 2006-2010 (n = 335 

155), 2011-2015 (n = 174), 2015-2019 (n = 106). The following treatment focussed on the mudflats 336 

inhabited by C. edule (south mudflat (n = 218), north median mudflat (n = 198), north downstream 337 

mudflat (n = 82), north upstream mudflat (n = 2). The differences in biomass and density are detailed 338 

according to the period and the surface area concerned in Supp. Data 3.1. 339 

3.2 Selection of the Hydro-Morpho-Sedimentary factors and their association 340 

The selected predictors were observed during the same period and in the same area as the biological 341 

data (Supp. Data 3.2). Spatio-temporal variations were specific to each factor: 342 

• Daily maximum current speed [m.s-1]: the most dynamic area was the channel, with an average 343 

of 1.05 +/- 0.21 m.s-1. The northern upstream and median mudflats were subject to temporal 344 

changes in the distribution of the current during the last period, which had an impact on their 345 

overall average (upstream 0.43 +/- 0.34 m.s-1; median 0.63 +/- 0.3 m.s-1). The southern 346 

mudflat presented the same hydrological conditions as offshore, at values between those of 347 

the northern upstream and median mudflats.  348 

• Inundation time [Proportion of the tidal cycle between 0 and 1 without unit]: The northern 349 

upstream mudflat (0.4 +/- 0.36) corresponded to the upper intertidal zones and showed 350 

higher tidal locations than the median (0.7 +/- 0.35) and downstream mudflats (0.93 +/- 0.17). 351 

There was a decrease in inundation time during the latest period in the northern upstream 352 

mudflat. The southern mudflat (0.85 +/- 0.27) showed a shorter inundation duration than the 353 

northern downstream mudflat. 354 
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• Daily salinity range: This factor varied considerably over space and over time. On the offshore 355 

and southern mudflats, the salinity varied little during the day. Strongly influenced by the 356 

river, the channel salinity varied from 15 to 20 during the day, but with dampening over time. 357 

The very dynamic variations in salinity in the three northern mudflats decreased after 2005. 358 

• Mud content [%]: The northern upstream mudflat and channel areas were composed of sandy 359 

mud sediment (north upstream mudflat 42 +/- 30 %; channel 43 +/- 25 %) with increasing 360 

mud content in the channel over time. The others are muddy sands (21 +/- 1%), with 361 

decreasing mud content over time. Mud distribution was heterogeneous in all areas, 362 

particularly in the northern upstream mudflat. 363 

The PCA analysis on physical descriptors (Figure 2, Supp Data 3.2, detailed scores Table 2) gives 364 

3 main dimensions for a total variance of 65.4 % (PC1 = 28.8 %, PC2 = 20.7 %, PC3 = 15.9 %): 365 

• PC1 corresponded to the hydrodynamic forcing of the area with the contributions of the 366 

following variables: daily maximum current speed (19.6 %), average current speed (17.8 %), 367 

daily salinity range (17.8 %), daily maximum bottom shear stress (10.9 %), SPM (9.2 %), 368 

average bed shear stress (8.7 %). 369 

• PC2 was related to the morphology of the estuary with the contributions of the following 370 

variables: average inundation time (23.1 %), daily temperature range (20.4 %), average 371 

bathymetry (19.9 %), average salinity (14 %), average temperature (8.3 %). 372 

• PC3 was related to the sedimentary characteristics of the bed with the contributions of the 373 

following variables: average sediment total concentration (30.2 %), average mud content 374 

[<63 µm] (29 %), average bed shear stress (18 %), daily maximum bed shear stress (7.2 %). 375 

The PCA results were used to select predictors to capture the most relevant and transferable 376 

variables. Considering those axes, two models were built with three abiotic factors: 377 

A. Daily maximum current speed [m.s-1] & daily salinity range & inundation time [%] – PC1-PC1-378 

PC2: variables were the main contributors of the two first axes, but the third axis is not 379 

represented at all. We have made this selection because these 3 predictors can be easily 380 

retrieved at high frequency in other ecosystems or contexts. Those parameters are also 381 

interesting because they contain information on the localisation of the tidal area that could 382 

evolve with sea level rise and information on the hydrological conditions including river 383 

floods, both processes in relation to climate change. The daily salinity range is a good 384 

indicator of the estuarine condition, and have shown a high impact on C. edule patterns 385 

(Matos et al. 2023). Moreover, this selection makes possible the direct comparison with a 386 

previous study (Cozzoli et al., 2014). 387 

B. Daily maximum current speed [m.s-1] & inundation time [%] & mud content [%] – PC1-PC2-388 

PC3: These factors represented the main contributors of the three first axes of the PCA. 389 

Moreover, current speed and inundation time are easily measurable at high frequency 390 

(Goberville et al., 2010). They illustrate three aspects of climate change potentially able to 391 

alter spatial patterns of cockles: increase in storm-induced currents, global sea level rise and 392 
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general changes in sediment beds induced by erosion events that could be more frequent 393 

as a consequence of the global warming. Furthermore, the mud content could affect 394 

negatively C. edule habitability (Folmer et al., 2017). 395 

There was no significant linear correlation between biological data and any of the environmental 396 

factors. Despite the high level of correlation and significance between biomass and density (R = 397 

0.866****), these two variables were analysed in parallel. 398 

 399 

Figure 2: Principal Components Analysis (PCA) variable correlation plot with the abiotic factors’ 400 
contributions in bar plots for each axis. The red dotted line represents the mean contribution for all 401 
factors. 402 

Table 2 Principal Components Analysis (PCA) scores for abiotic factors. Cos2, cosine squared of the 403 
variables, represents the quality of the representation of the variables on the PCA graph; Contribution 404 
represents the contributions (in percentage) of the variables to the principal components. The 405 
contribution of a variable to a given principal component: (Variable.cos2 * 100) / (total cos2 of the 406 
component). 407 

Variable Cos2 Contribution 

PC1 PC2 PC3 PC1 PC2 PC3 

inundation time 0.07 0.67 0.00 1.67 23.10 0.13 
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current speed 0.72 0.05 0.01 17.82 1.86 0.46 

daily maximum current speed 0.79 0.00 0.01 19.65 0.02 0.42 

salinity 0.27 0.41 0.03 6.71 14.04 1.23 

daily salinity range 0.72 0.09 0.00 17.78 3.02 0.13 

temperature 0.07 0.24 0.02 1.83 8.31 1.00 

daily temperature range 0.00 0.59 0.01 0.01 20.44 0.52 

SPM 0.37 0.01 0.13 9.18 0.24 5.68 

bathymetry 0.01 0.58 0.13 0.28 19.88 5.66 

yearly sediment budget 0.00 0.16 0.01 0.00 5.47 0.38 

bed shear stress 0.35 0.04 0.40 8.68 1.35 17.99 

daily maximum bed shear stress 0.44 0.04 0.16 10.88 1.36 7.25 

sediment total concentration 0.10 0.02 0.67 2.51 0.60 30.19 

mud content 0.12 0.01 0.64 3.00 0.31 28.96 

3.3 Model selection and validation 408 

ENMs were computed using the three equations (linear, Gaussian and B-spline) for each 409 

combination of abiotic factors at four selected quantiles (=0.5, 0.9, 0.95 and 0.975). The best scores 410 

were obtained for the biomass models compared to the density models, regardless of quantile. On 411 

average, the AICc of the quantile regression with the Gaussian equation model were systematically 412 

lower than the others for biomass (Table 3).  413 

The validation plots comparing observed and predicted values (Figure 3), completed the 414 

observations of AICc, i.e. Gaussian > B-Spline > linear (the regression lines of each quantile were closer 415 

to the 1:1 line). The Gaussian equation performs best at the 97.5th percentile, since this is the highest 416 

quantile calculated with the slope of the regression line between the predicted value and the observed 417 

value closest to the 1:1 diagonal. We have therefore chosen to retain the 97.5th percentile as the optimal 418 

quantile for subsequent analyses. 419 

Table 3 AICc comparison for all models computed, according to the quantile, the type of equation 420 
and the response. In bold, the lower value of each model by response and quantile. 421 

 

Biomass (gAFDW/m²) Density (ind/m²) 

0.5 0.9 0.95 0.975 0.5 0.9 0.95 0.975 

daily maximum current speed (m.s-1) & daily salinity range & inundation time (%) 

Quantile regression bSpline 3858.7 4933.4 5297.1 5668.9 6977.6 8065.7 8403.0 8634.6 

Quantile regression Gaussian 3835.0 4871.2 5240.9 5655.3 6969.1 8102.2 8476.1 8783.3 

Quantile regression linear 3869.9 4918.5 5292.3 5702.6 6985.0 8067.4 8404.4 8706.1 

daily maximum current speed (m.s-1) & inundation time (%) & mud content (%) 

Quantile regression bSpline 3745.4 4790.6 5148.1 5496.5 6758.8 7794.7 8126.5 8283.2 

Quantile regression Gaussian 3733.7 4746.8 5071.5 5418.7 6745.2 7819.8 8186.1 8533.3 

Quantile regression linear 3757.0 4794.8 5162.0 5527.7 6767.1 7815.0 8142.6 8361.2 
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 422 

Figure 3: Example of modelled vs observed biomass data plotted for each model functions. The 423 
selected predictors were the daily maximum current speed [m.s-1], daily salinity range and inundation 424 
time [% in this example]. The black line represents the 1:1 ratio, quantiles 0.5 in blue, 0.9 in green, 0.95 425 
in orange and 0.975 in red. 426 

3.4 Optimal ecological niche 427 

3.4.1 Quantile Regression with Gaussian equation 428 

The modelled responses for each ENM quantile are represented by a projection on one axis per 429 

predictor with the observed data to observe the univariate effects of each variable (Figure 4 A1 & B1). 430 

The observed distribution of cockle biomass was left skewed, with a majority of records at low biomass 431 

values, and rare high biomass values, reflecting the validity of the choice of QR models. In addition, 432 

records were observed all along the environmental gradients of the selected predictors. The maximum 433 

observed responses located above the upper envelope of the model at =0.975 are close to the model 434 

optimum. Furthermore, the two models can clearly be applied without any preference in terms of 435 

robustness, given the performance shown by the predicted/observed graph (Figure 4 A2 & B2), where 436 

we can see that the 97.5th percentile has a slope of 1 and a high R² in both models. The models using 437 

density showed the same results (Supp. Data 3.4.1). The coefficients of the models are displayed in 438 

Table 4, and optimum for each model is described in the range of predictors encompassing the realised 439 

biomass: 440 

A. Daily maximum current speed [m.s-1] & daily salinity range & inundation time [%] (Figure 4 A1 441 

& A2): The optimum was of 167 gAFDW.m-² at 0.48 m.s-1, with a range of 3.16 unity of salinity 442 

and 100 % inundation time. The optimum niche is a low intertidal zone with calm waters, 443 

where salinity is quite stable. 444 

B. Daily maximum current speed [m.s-1] & inundation time [%] & mud content [%] (Figure 4 B1 & 445 

B2): The optimum was of 239 gAFDW.m-² at 0.43 m.s-1, 100% inundation time and 31% of 446 

mud content. The optimal niche corresponds to low intertidal zones, with calm waters and 447 

muddy sands sediment. 448 
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A1

 

A2

 

B1

 

B2

 

Figure 4: First row – (%) Projection on the three abiotic factor axes with observation compared to the 449 
modelled quantiles for the daily maximum current speed (m.s-1), the daily salinity range and the 450 
inundation time (A1). The second column displays the predicted/observed validation plot associated to 451 
this model (A2). Second row – Same figure with the 2nd model with projection on the three abiotic factor 452 
axes: daily maximum current speed (m.s-1), inundation time (%) and mud content (%) (B1); The second 453 
column displays the predicted/observed validation plot associated (B2). Black dots in A1 and B1 454 
represents the observed data; lines the modelled quantiles; Coloured dots in A2 and B2 correspond to 455 
each decile of the modelled distribution and its corresponding observed, black line represents the 1:1 456 
ratio. Quantiles are colour coded as 0.5 in blue, 0.9 in green, 0.95 in orange and 0.975 in red. 457 

 (1) 458 

Table 4: Coefficient of the models computed with gaussian equation (Equation 1), by quantile and 459 
response. 460 

 Biomass (gAFDW/m²) Density (ind/m²) 

tau A μ 1 μ 2 μ 3 σ 1 σ 2 σ 3 A μ 1 μ 2 μ 3 σ 1 σ 2 σ 3 

daily maximum current speed (m.s-1) * daily salinity range (u.s.i) * inundation time (%) 

0.50 41.55 -2.89 4.26 0.85 1.84 3.51 0.13 9,509.94 -2.24 5.94 0.81 0.93 3.57 0.18 
0.90 716.49 -1.87 1.87 0.97 1.04 5.18 0.22 2,686.24 0.17 4.37 0.95 0.31 4.41 0.21 
0.95 392.63 -0.26 -4.40 1.22 0.58 8.40 0.34 113,728.75 0.39 5.24 3.30 0.24 3.62 0.86 
0.975 3,464.31 0.49 3.27 2.69 0.19 3.79 0.69 421,906.57 0.48 -21.93 2.95 0.19 14.63 0.80 

daily maximum current speed (m.s-1) * inundation time (%) * mud content (%) 

0.50 80.54 -3.06 0.86 -0.28 1.56 0.15 0.71 292.75 0.33 0.79 0.27 0.19 0.17 0.35 
0.90 1,321.22 -1.76 1.03 0.25 0.90 0.26 0.23 7,495.16 0.42 2.26 0.43 0.20 0.86 0.27 
0.95 491.99 -0.17 1.22 0.30 0.50 0.34 0.18 85,227.47 0.46 4.01 0.62 0.20 1.20 0.48 
0.975 272.78 0.43 1.15 0.30 0.25 0.30 0.20 151,774.30 0.50 4.77 0.41 0.21 1.40 0.32 

= 𝐴. 𝑒
−[

(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟1−𝜇1𝜏)
2

2.𝜎1𝜏
2

+
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟2−𝜇2𝜏)

2

2.𝜎2𝜏
2

+
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟3−𝜇3𝜏)

2

2.𝜎3𝜏
2

]
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3.4.2 Spatio-temporal variations of habitat suitability  461 

The Optimal Ecological Niches, QR ENM with the Gaussian equation, were standardised on the 462 

basis of the model optimum at the 97.5th percentile, to obtain a value ranging from 0, an unfriendly 463 

environment for cockles, to 1, a very suitable environment, which makes it possible to simply assess the 464 

habitability potential of a geographical area. The OEN was applied geographically to define the habitat 465 

suitability of the different areas of the estuary on all periods defined. The suitability index, summary of 466 

the habitat suitability of each period and area is plotted to visualise differences in time and space (density 467 

in Supp. Data 3.4.2).  468 

Daily maximum current speed [m.s-1] & daily salinity range & inundation time [%]: The maps (Figure 469 

5 A) showed that the channel and northern mudflats were the least favourable areas, the southern 470 

mudflats and offshore were more appropriate, but few locations were really optimum. The suitability 471 

index (Figure 5 B) ranged from 0 to 0.6 and was generally stable, confirming that the most suitable area 472 

was the southern mudflat followed by the offshore zone. The suitability of the northern mudflats 473 

increased after 2005, in particular the northern downstream mudflat. The salinity part of the model had 474 

a noticeable effect on the result of the model, and the increase of habitat suitability for cockles on the 3 475 

northern mudflats can clearly be related to the decrease in the daily salinity range in these sectors. 476 

A 

 

B 

 

Figure 5: A: Daily maximum current speed [m.s-1] & daily salinity range & inundation time [%] model 477 
suitability index applied on the Seine estuary over the five periods. B: Abiotic factors and resulting model 478 
at 97.5th centile suitability index per period and per area for all SDM models with a 95% confidence 479 
interval. 480 
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Daily maximum current speed [m.s-1] & inundation time [%] & mud content [%]: The closer to the 481 

mouth of the estuary, the higher the suitability; the offshore area had an advantage, which has 482 

deteriorated since 2011 (Figure 6 A). The apparent patchiness in the habitat suitability in the model 483 

results is linked to the spatial distribution of mud content (Supp data 3.2). The suitability index (Figure 6 484 

B) varies from 0 to 0.5, with the highest value in the offshore area and the lowest in the channel. The 485 

offshore and the southern mudflat were similar in terms of suitability and are the most suitable areas, 486 

joined by the downstream northern mudflat over the last three periods. The northern upstream and 487 

median mudflats showed an increase in habitat suitability over the first three periods from 1996 to 2010. 488 

It is difficult to identify the contribution of one predictor over the others in explaining this trend.  489 

A 

 

B

 

Figure 6: A: Daily maximum current speed [m.s-1] & inundation time [%] & mud content [%] model 490 
suitability index applied on the Seine estuary over the five periods. B: Abiotic factors and resulting model 491 
at 97.5th centile suitability index per period and per area for all SDM models with a 95% confidence 492 
interval. 493 

3.4.3 Comparison and application to Scheldt basins data 494 

The data from the Scheldt estuary was projected onto the Optimal Ecological Niche for the cockle 495 

defined in the Seine estuary using the daily maximum current speed [m.s-1], daily salinity range and 496 

inundation time [%] model (Figure 7 A). The modelled response in the Scheldt was calculated by 497 

applying this OEN and the performance of the model is shown in Figure 7 B. The model fitted to the 498 

Seine data applied to the Scheldt is not appropriate at the 0.5 quantile, but is better simulated at the 499 

higher quantiles, with positive slopes reaching 0.71 at =0.95 and 0.67 at =0.975, (Figure 7 B). These 500 
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regression lines are relatively far from the diagonal, revealing that the model fitted to the Seine data is 501 

not very reliable when applied to the Scheldt basins. 502 

When considering the scatterplots of observed biomass as function of the 3 descriptors (Figure 7 A), 503 

we can notice that the response to daily salinity range and the inundation time was different between 504 

the Seine and the Scheldt basins. The distribution of the recorded biomass as a function of the daily 505 

salinity range is difficult to compare, because the present day Oosterschelde basin only receives minor 506 

freshwater inputs, unlike the Westerschelde and thus lacks a full salinity gradient. With regard to 507 

inundation time, there are also discrepancies between the fitted model and the data recorded in the 508 

Scheldt basins, where the best optimal habitat was located on the foreshores with ~50% of the 509 

inundation time, whereas this modelled ENM was predicted at values of 100% of the inundation time. 510 

As for the maximal current speed, the model appeared to be a better fit, but the highest realized cockle’s 511 

biomass was observed at a slightly lower current speed (~0.4 m.s-1) even though the difference is within 512 

the error of the numerical model (pers. com. Smolders).  513 

A

 

B

 

Figure 7: Seine model daily maximum current speed (m.s-1) & daily salinity range & inundation time 514 
(%) projection on the three abiotic factor axes with data from Scheldt basins in blue dots for 515 
Oosterschelde and red dots for Westerschelde (A) and the predicted/observed validation plot computed 516 
on Scheldt application of the model parametrized in the Seine estuary (B). Black dots in A represents 517 
the observed data that were used for parameterisation (in the Seine estuary) while green dots are the 518 
data from the Scheldt basins; lines represent the model quartiles. Coloured dots in B correspond to each 519 
decile of the modelled distribution and its corresponding observed, black line represents the 1:1 ratio. 520 
Quantiles are colour coded as 0.5 in blue, 0.9 in green, 0.95 in orange and 0.975 in red. 521 

4 Discussion 522 

4.1 Optimal ecological niches for cockles 523 

In line with previous knowledge, our study identified current velocity, salinity fluctuations and 524 

inundation time as main environmental drivers of cockle distribution. We can emphasize that the 525 

proposed model which combines the effect of those three factors can be considered valid and robust, 526 

both for biomass and density of cockles, at least in the Seine estuary. This model especially focusses 527 

on the influence of hydrodynamic forcings generated by the tides and the fluvial regime and the 528 

morphology of the estuary, which generates shallow and intertidal areas. Under these conditions, salinity 529 



 20/40  

 

increases with water depth, as it represents the upstream-downstream gradient of the estuary, and the 530 

lower the inundation time, the greater the mixing between fresh and marine waters. The optimum given 531 

by this model corresponds to low shores (typically the offshore zone with 100% of inundation time), 532 

without intense variation in salinity (daily range of ~3), in sectors subjected to relatively strong currents 533 

(~ 0.5 m.s-1). The position on the shore, related to inundation time, must affect the suspension-feeding 534 

periods on phytoplankton and also probably the periods when cockles are accessible to predators 535 

(Cozzoli et al., 2014). Low inundation time must therefore encourage both survival and growth, mainly 536 

related to prey-predator interactions. Regarding the effect of salinity, cockles are often reported to be 537 

negatively affected by fresh water supply and salinity rapid shifts are often described as responsible for 538 

mass mortality events in cockles, mainly linked to flash floods (Matos et al., 2023). The selection of 539 

these predictors agrees well with conclusions of other studies proposing SDM for Cerastoderma edule 540 

as this was the case in the Scheldt basins, Netherlands (maximal current speed and inundation time – 541 

Cozzoli et al., 2014), or the Aveiro lagoon in Portugal (where the predictors contributing the most in the 542 

definition of the ENM was salinity, submersion time and current velocity – Matos et al., 2023). 543 

Observations in cockle habitats of the British Isles were also in the same direction since the authors 544 

mention that cockles were unable to settle in calm waters (Boyden and Russell, 1972) and that the 545 

influence of tidal flow was found to be greater than that of salinity, the latter being an indirect indicator 546 

of the first and partially redundant. 547 

A second alternative model combining the same predictors but with mud content instead of salinity 548 

range provide the same level of confidence in terms of robustness of the predictions. We proposed two 549 

versions of model to guarantee the best level of transferability and inter-comparison potential with future 550 

studies. We must mention, that, to our knowledge, this the first ENM proposed for cockles including mud 551 

content. The presence of mud has often been reported to play an important role in cockle performances 552 

and spatial distribution. Muddy-sand to sandy-mud sediments are often described as the best optimal 553 

habitat for cockles’ recruitment and survival, as they provide a perfect balance between oxygenation 554 

and microphytobenthos as food supply (Bouma et al., 2001). For instance, in Portuguese lagoons, depth 555 

and average sediment grain size were the factors that better explained the probability of species 556 

occurrence (Santos et al., 2022). In fact, there must be a relative trade-off between two threatening 557 

constraints. On one hand, the absence of mud can clearly be related to strong currents provoking regular 558 

mud resuspension in the water column as well as the absence of microphytobenthos as food sources, 559 

while, on the other hand, a too intense presence of mud in sediment beds must make increase the 560 

vulnerability risks of cockles to eutrophication phenomena (anoxic conditions, contaminant presence). 561 

Cockles seem to be able to live in a broad range of habitats with a preference for mixed sediments, and 562 

more especially fine sands with a little proportion of mud. The distribution of biomass records across the 563 

diversity of sedimentary habitats in the Seine estuary display long distribution tails reaching 0% or 100% 564 

of mud content. This result is in agreement with previous observations in other ecosystems. For 565 

instance, this bivalve can show a preference for muddy bottoms in Netherland’s estuaries, but can also 566 

inhabit sediments with a median grain size ranging from 50 μm (fully cohesive) to 250 μm (fully non-567 

cohesive) (Cozzoli et al., 2013). Furthermore, the increase in mud content must also be related to the 568 

proximity of river discharge in many ecosystems (with correlation with salinity decrease). This is one 569 
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reason that we made the choice of one factor or the other in the 2 alternative models. The results are 570 

not exactly the same in terms of habitat suitability maps, but both versions generally converge. 571 

In a previous study using QR, a SDM for cockles was proposed with only two predictors, the maximal 572 

current speed and the inundation time in the Scheldt basins (Cozzoli et al., 2014). They observed that 573 

the optimum was found in a medium intertidal zone (~50 % of inundation time) with a maximum current 574 

of ~0.5 m.s-1. So, there is discrepancy between their conclusions and the one of the present study, 575 

especially when describing the role played by the inundation time. However, we must mention that, for 576 

the dataset of the Scheldt basins, the samples in the subtidal area were discarded because of 577 

methodological differences. This choice could explain a part of the contrasting conclusions, since we 578 

can have doubts if subtidal zones are really not occupied by cockle populations in the Scheldt basins. It 579 

is also possible that because of contrasting conditions (slope of the cross-shore, hydrodynamic 580 

conditions or morphological landscapes…), the settlement preference can occur either at the minimum 581 

limit of the intertidal shore as observed in the Seine or in the middle position of intertidal shores, as 582 

observed in the Scheldt basins. This is unlikely that these contrasting preferences derive from genetic 583 

differences between populations, since studies investigating the genetic patterns of cockles in Europe 584 

suggest a common genetic sub-population with a northern group globally consisting of the northern 585 

North Sea (Vera et al., 2023). These contrasting findings must rather be related to historical processes 586 

and local adaptation of cockle populations, despite the high level of larval connectivity across northern 587 

North Sea.  588 

In another study located at the Ria of Aveiro in Portugal, the optimal habitat was observed for calmer 589 

conditions (~0.2 m.s-1) compared to our results, but the most suitable habitat was found in similar 590 

conditions to our results regarding inundation time and salinity, since they found increasingly suitable 591 

conditions with the increase of salinity and submersion time (optimum for subtidal and marine waters). 592 

So, there could be a shift in current velocity and submersion time in the definition of the most suitable 593 

habitat, depending on the ecosystem. Even if, this time, genetic diversity can partly explain some 594 

biological differences (Vera et al., 2023), since the genetic structure of cockles is clearly different 595 

between South Portugal and North Sea areas, we can suppose that the biological response to tidal 596 

currents can be relatively broad for cockles, generally, and could shift depending on the local 597 

environment. Apparently, cockles do not like still water at all in any ecosystem, and they clearly prefer 598 

locations with dynamic waters everywhere. Globally, there is a general consensus that cockles 599 

appreciate habitats located between the lower limit of the intertidal-subtidal shores and mid-shore 600 

positions, but cockles can prefer either the lower limit between intertidal and subtidal zones (as in the 601 

Seine estuary), while they can prefer the central intertidal shores in other places as in the Scheldt basins. 602 

A more detailed analysis of the contrasting conditions between the Westerschelde, Oosterschelde 603 

and Seine basins reveals obvious divergences that preclude the definition of a generic optimum for 604 

cockles, reliable everywhere. In particular, the Oosterschelde is a virtually closed basin with little 605 

freshwater input, whereas the Seine and the Oosterschelde are open estuaries. These discrepancies 606 

clearly indicate that the optimal conditions for cockles are indeed different in the three basins, and 607 

especially in the Oosterschelde. These conditions lead to different covariance structures for the physical 608 
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factors, but do not call the model into question, although not all conditions present in the Oosterschelde 609 

are represented in the Seine data. The upper boundary models cannot really extrapolate to new 610 

conditions, but they can be successfully applied to new scenarios under the boundary conditions of the 611 

training data set.  In general, the Oosterschelde, which is not influenced by freshwater input and has 612 

calmer waters, represents the best optimal habitat in this system, unlike the Seine or the Oosterschelde. 613 

Questions can also be raised about the number of predictors to be retained in the ENM for cockles 614 

and the level of complexity to be retained. First, it is possible that among the three predictors of the two 615 

models we propose, there is one that contributes less and could be removed, or that does not shed light 616 

because of its redundancy with another more structuring factor. By testing the fit of the QR models with 617 

different combinations of predictors, the results were clearly less well predicted with only two descriptors. 618 

Of all the physical factors, we are relatively confident in the selection of the predictors we decided to 619 

retain, namely maximum current velocity, inundation time and a third predictor (either salinity or silt 620 

content). 621 

It seems unlikely that the addition of descriptors extractable from hydrodynamic 3D model could bring 622 

improvements, in terms of validation or model quality. However, the role of food availability and 623 

especially the chlorophyll concentration in the seawater must be relevant for these suspension-feeders. 624 

For instance, the study in the Ria of Aveiro (Matos et al., 2023) retained chl a concentration as well as 625 

nitrate concentration as secondary predictors. In the Wadden sea (Netherlands), the residual of a SDM 626 

show some correlation level with chl a concentration, suggesting a potential improvement by adding this 627 

predictor (Folmer et al., 2017). In Baie des Veys, in Normandy (France), a study focused on the coupling 628 

between benthic and pelagic components had also identified that the best correlated variable to cockle 629 

biomass was the pelagic chl a concentration even if this chl a was more related to resuspended 630 

microphytobenthos to phytoplankton in this case (Ubertini et al., 2012). The abundance of 631 

microphytobenthic biofilms, especially high in sand-mud mixtures (Morelle et al., 2020) and their 632 

resuspension rates must be very relevant as a food supply for cockles (Rakotomalala et al., 2015; 633 

Sauriau and Kang, 2000; Ubertini et al., 2012). This addition of chl a concentration and trophic predictor 634 

could be modelled by incorporating a biogeochemical model coupled to a 3D hydro-sedimentary model. 635 

Unfortunately, this kind of biogeochemical models are not so easily available everywhere. In an attempt 636 

of exploring a ENM that could be transferred to other systems, it seems essential to consider food 637 

limitation and carrying capacities of the ecosystems in terms of phytoplankton or microphytobenthos. 638 

Herman et al. (1999) clearly showed a dependence of system-averaged benthic biomass on the 639 

magnitude of the spring phytoplankton bloom and there is a clear dependence of macrozoobenthic 640 

biomass and especially that of suspension-feeders on primary production rate when comparing different 641 

ecosystems. For instance, the fact that cockles biomass is very low in the Westerschelde compared to 642 

the Oosterschelde, can be clearly explained by the primary production level that can exceed ~ 300 gC.m-643 

2.y-1 in the Oosterschelde, with a factor of 3 higher than in the Westerschelde (Herman et al., 1999). In 644 

the Seine estuary, the recent estimate of primary production provides the value of 65 gC.m-2.y-1 (Morelle 645 

et al., 2018). There is also a possibility to improve predictions of ENM of benthic bivalves by including 646 

other biotic variables, as observed in New Zealand where the inclusion of co-occurring species improves 647 

the prediction quality by integrating ecological theory about species interaction (Stephenson et al., 648 
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2022). However, increasing the level of complexity too much is not necessarily a model improvement, 649 

since there a lot of redundancy and correlation among variables, when adding several predictors that 650 

could interplay. 651 

4.2 Assessment of the methodology  652 

The construction of an ENM using QR makes it possible to define an OEN, i.e. the optimal biological 653 

development in a given ecosystem. This involves defining the environmental conditions for which the 654 

highest biomass is possible according to a defined set of factors. This approach differs from an AM 655 

approach, where the maximum number of available factors is used to define a species distribution 656 

model. Simplifying the environment to a limited number of factors makes it easier to apply and transfer 657 

the niche to other environments, allowing comparisons between different locations. QR models could 658 

not only be used to detect heterogeneous effects of descriptors at different quantiles of the biological 659 

response, but also offer more robust and comprehensive estimates compared to mean regression, when 660 

the normality assumption is violated or if there are outliers or long tails of the distribution. These 661 

advantages make QR attractive, particularly if they are extended to apply independent datasets (Huang 662 

et al., 2017). 663 

By comparing the recorded data with the niche modelling, it is possible to assess its biological and 664 

physiological relevance. We chose to use a Gaussian equation to rigorously link the biological response 665 

to abiotic factors, based on current knowledge and classical distribution law reliable for biological 666 

populations in response to any environmental factor. This type of equation has the advantage of 667 

obtaining a unimodal response, unlike what can be obtained with a B-spline at the third degree, for 668 

example. This choice avoids retaining a model that seems quite good in terms of adjustments, but which 669 

simulates unfounded distributions. In addition, the niche model thus obtained is a continuous response, 670 

i.e. with no tipping point towards an unfavourable state, the biological reality of which is debatable when 671 

the selected factors are considered, in an estuarine environment defined by gradients and strong 672 

variations in abiotic conditions. 673 

On the other hand, the QR approach makes it possible to respond to the very local effects and natural 674 

patchiness that can affect biological populations and lead to very high densities of a species in a local 675 

'patch', a phenomenon often observed in estuarine environments. Community self-organisation takes 676 

place at several overlapping spatial scales, strongly expressed by tidal constraints, where micro-scale 677 

organisations are able to create micro-climates that can accommodate very high densities of fauna 678 

(Ettema and Wardle, 2002; Le Hir and Hily, 2005; Thrush et al., 2005; Underwood and Chapman, 1996). 679 

The aim of this study was to define the HMS conditions most favourable to the development of a species, 680 

and not necessarily the niche representing the most exceptional circumstances, hence the choice of a 681 

high but not necessarily maximum quantile. The very high quantiles correspond to the niche that reflects 682 

the biological observations resulting from the patchy distribution of species. Species distributions and 683 

the inherent patchiness can be studied in details on the basis of the maximum density of intertidal 684 

species, for instance (Thrush et al., 2003).  685 
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Whatever the model used, the quality of a SDM depends first and foremost on the reliability of the 686 

input data. The Seine biological data used in this study comes from community monitoring programmes 687 

with a continuity of practices, and even of operators, which makes it possible to process data together 688 

over such a long period of time. The succession of generations in a population in an evolving ecosystem 689 

is key information for understanding the dynamics of a population in its environment. With regard to 690 

environmental data, the abiotic field data, synchronous with the biological data, are susceptible to 691 

highlight very small atypical habitats rather than macro-spatial trends. The use of a hydro-morpho-692 

sedimentary model therefore makes it possible to better describe the overall “smoothed” environment, 693 

with a large scale. 694 

However, the synthesis of abiotic data, which is generally available at much higher frequencies than 695 

biological data, is subject to choices that have an impact on the way in which the niche is interpreted. In 696 

this study, the abiotic data are summarised at their annual median (over a hydrological year, from 697 

October to September) and aligned with the biological samples, so that they represent the recent history 698 

of the individual sampled. The long time series (at least 2 decades) then makes it possible to represent 699 

an ecosystem in which we find a fauna that is subject to this local climate, which may or may not evolve 700 

over generations. 701 

In intertidal environments, the interactions between an environment and its biotope are part of a 702 

feedback loop: organisms are adapted to certain abiotic conditions, but they are able to significantly 703 

modify certain key abiotic parameters that define their environment, in particular sediment erosion 704 

parameters via bioturbation (Kristensen et al., 2012). Cockles, for example, are known eco-engineers 705 

that can modify their environment, in particular sediment content (Donadi et al., 2014, 2013). They 706 

modify their habitat to obtain better conditions (Li et al., 2017) and interact strongly with the 707 

microphytobenthos, creating biofilms that modify the erodibility of the sediments (Eriksson et al., 2017; 708 

Ubertini et al., 2012). These bioturbation processes are not yet included in HMS models, even though 709 

they can have a significant impact on estuary morphology (Orvain et al., 2012). Including these biota-710 

mediated erodibility factors in HMS models may therefore have mitigating effects on the long-term 711 

evolution of habitats (Lehuen et al., 2024), and this should significantly improve the prediction of abiotic 712 

factors and their use for defining ENM/SDM. The aim is to better integrate the local effects exerted by 713 

benthic fauna (in particular bioturbation) into complex large-scale interactions in order to consolidate 714 

long-term projections. 715 

Moreover, the ENM obtained applied in SDM is not capable of predicting a drastic change in 716 

population that would be subject to short episodes of stressful events. In particular, constraining 717 

episodes occurring in the context of climate change could become a threat to the future of a population, 718 

leading to drastic changes in community succession initiated by a long-term change in physical 719 

conditions (Baltar et al., 2019). Examples include heat waves or highly erosive storms, the duration, 720 

intensity and frequency of which can affect the recruitment and development of populations. This is 721 

where the long-term climate approach comes up against its real limit: the representativeness of climate 722 

variability and the question of event frequency, which is the key to understanding the effects of climate 723 

change that could lead to a shock to biodiversity or productivity. Extreme events are insufficiently defined 724 
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by a simple maximum of environmental values, as this has been demonstrated experimentally for the 725 

case of heat waves (Zhou et al., 2022). 726 

Abiotic data from HMS models can be used to describe complex patterns between the main physical 727 

factors, but the evolution of ecosystems in response to climate change may lead to previously 728 

unconsidered parameters becoming critical parameters for biological development, such as pH. Indeed, 729 

the acidification of marine waters is an identified consequence of their warming, and its impact on 730 

bivalves’ organisms has been demonstrated (Thomas and Bacher, 2018). There are experimental 731 

studies on the biological response to ranges of variation in temperature, salinity or pH, which can provide 732 

a better understanding of the mechanistic basis of metabolisms on organism performance (Hale et al., 733 

2011; Łapucki and Normant, 2008; Lemasson et al., 2017; Madeira et al., 2021; Medeiros et al., 2020; 734 

Ong et al., 2017; Peteiro et al., 2018). However, in environments such as the Seine estuary, pH is not 735 

traditionally considered to be an environmental factor that plays an important role in the distribution of 736 

species at least during the past survey planning. 737 

Taken together, all these limitations justify recommending a cautious interpretation of the use of niche 738 

models in extrapolative and long-term projections. Indeed, by defining an average trend in the evolution 739 

of HMS factors in the estuary in order to assess the future of a species, this exercise could completely 740 

miss the dangers encountered by the population studied and provide erroneous information, whether 741 

reassuring or alarming.  742 

4.3 A tool for ecosystem management 743 

ENMs and their SDM application are tools that can effectively be used for the management of natural 744 

areas, highlighting the spatio-temporal differences in a given territory according to selected factors. In 745 

this case, the model can be used to monitor the potential productivity of target species, to ensure that 746 

the presence of a population that provides the ecosystem services required by the estuary is facilitated. 747 

ENM/SDM can also be used to monitor the progress of an invasive species in a territory (Srivastava et 748 

al., 2019), measure the impact of anthropogenic structures (Cozzoli et al., 2017), or define a 749 

conservation strategy for an endangered species (Frans et al., 2022). 750 

The use of an ENM in a given space depends on the technique used. Existing SDMs using the AM 751 

approach provide high-performance SDMs, but it is not possible to apply them to the data set available 752 

to us. This led us to choose the QR ENM method, which provides a set of equations based on a 753 

reasonable number of factors that are generally accessible in the context of managing an ecosystem 754 

such as an estuary. 755 

As seen in the previous paragraphs, the ENM obtained and its application in SDM makes it possible 756 

to control a geographical area such as an estuary in the medium term (~10 years). However, in this 757 

study we would rather not project the niche into a future environment to avoid any speculation, as it 758 

would probably not be able to respond to distant horizons for which the environment would be more 759 

significantly modified. The tool nevertheless remains operational in a context of management of a natural 760 

area subject to anthropogenic pressure, simply illustrating the zones favourable to the cockles. The 761 
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habitat suitability model also makes it possible to identify any drift in the areas of interest, and to begin 762 

a diagnosis of the causes of this drift, by adapting the temporal and spatial resolution as required. In 763 

fact, as the SDMs are linked to the HMS variables, the habitat suitability is a good indicator of the 764 

potential levers for dealing with changes in ecosystems, in particular due to human activities, as well as 765 

the effects of global climate change. 766 

The results of this study showed, for example, an improvement in the habitability of cockles on the 767 

intertidal mudflats of the Seine, due to the saline intrusion already obvious. This trend should continue 768 

in the future for cockle, but at the expense of the more euryhaline species that typically colonise intertidal 769 

mudflats further upstream, such as Hediste diversicolor or Scrobicularia plana. However, increasing 770 

salinity can be accompanied by a reduction in freshwater input, which can lead to a limitation in nutritive 771 

salts and therefore in primary and secondary productivity, resulting in a risk of population declines and 772 

a global rarefaction of benthic communities, whatever the niche. 773 

The ENM/SDM are generally developed for an isolated species, but the management of a natural 774 

area requires an approach not only on a broad spatio-temporal scale, but also on the scale of species 775 

communities and the ecosystem services that we wish to maintain. The biodiversity approach using the 776 

Shannon index has been used in an SDM (Cozzoli et al., 2017). In another way, the introduction of inter-777 

species interactions has been explored in the form of an explanatory biological factor in an SDM 778 

(Stephenson et al., 2022), which improves the model but reveals complex interaction patterns as soon 779 

as two species are studied. In addition, we can envisage modelling the biological response of a species 780 

community according to a set of environmental variables, in order to represent the complete biotic 781 

environment, as initiated in the Wadden Sea (Folmer et al., 2017). However, defining a community of 782 

species is very closely linked to the analysis prism chosen. Depending on the question raised, it will be 783 

relevant to construct a community according to life traits, functional traits - trophic, bioengineering -, the 784 

food web or the ecosystem services that the macrofauna can provide. 785 

5 Conclusion 786 

Because of their complex structure and strong gradients, understanding estuarine ecosystems can 787 

benefit from modelling the ecological niches of its fauna using ENM and SDM tools. The extraction of 788 

physical descriptors from 3D HMS models of water and sediment transport and the method of describing 789 

ecological niches using quantile regression enabled a detailed analysis of the environmental needs of 790 

the cockle. The two models built in this study, QR ENM at the 97.5th percentile with a Gaussian equation, 791 

combining maximum daily current speed, inundation time and daily salinity range or mud content as a 792 

third predictive factor, provide a robust description of the cockle’s optimal ecological niche. This niche, 793 

standardised in the form of habitat suitability, allowed a geographical visualisation of the habitability of 794 

the estuary for the cockle, as well as its temporal evolution by areas of interest. The application of one 795 

of the ENMs obtained to another estuary showed the potential for transferability, while revealing the 796 

need to define a niche with additional elements. In particular, it seems necessary to integrate trophic 797 

components and in particular the availability of microalgal resources (phytoplankton and 798 

microphytobenthos). Based on general theories concerning the relationship between primary and 799 
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secondary productivity, it seems relevant to incorporate a model simulating chl a into 3D models before 800 

being able to propose a truly generic and transferable ENM model. This could be debated, since the 801 

representation of the correlation between drivers (including food) could make the difference. 802 

Acknowledgements 803 

The authors thank Tjeerd Bouma for his guidance and insight on the MELTING POTES project; Brian 804 

Cade for his precious help on quantile regression; The GIP Seine Aval, the Maison de l’Estuaire, the 805 

Cellule du Suivi du Littoral Normand and the Grand Port Maritime du Havre for the biological datasets; 806 

IFREMER for the Mars3D model dataset. The authors acknowledge anonymous reviewers for their 807 

valuable comments and suggestions. 808 

Funding 809 

This research was supported by the Region Normandie (A. Lehuen’s PhD) and by the Office Français 810 

pour la Biodiversité (the MELTING POTES project). 811 

CRediT author statement 812 

A. Lehuen: Conceptualization, Methodology, Formal analysis, Writing - Original Draft, Funding 813 

acquisition ; C. Dancie: Resources, Data Curation, Writing - Review & Editing ; F. Grasso: Resources, 814 

Data Curation, Writing - Review & Editing; F. Orvain: Conceptualization, Methodology, Validation, 815 

Resources, Writing - Review & Editing, Supervision, Project administration, Funding acquisition 816 

References 817 

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–818 

723. https://doi.org/10.1109/TAC.1974.1100705 819 

Anderson, M.J., 2008. Animal-sediment relationships re-visited: Characterising species’ distributions 820 

along an environmental gradient using canonical analysis and quantile regression splines. J. 821 

Exp. Mar. Biol. Ecol. 366, 16–27. https://doi.org/10.1016/j.jembe.2008.07.006 822 

Arlinghaus, P., Zhang, W., Wrede, A., Schrum, C., Neumann, A., 2021. Impact of benthos on 823 

morphodynamics from a modeling perspective. Earth-Sci. Rev. 221, 103803. 824 

https://doi.org/10.1016/j.earscirev.2021.103803 825 

Aulert, C., Provost, P., Bessineton, C., Dutilleul, C., 2009. Les mesures compensatoires et 826 

d’accompagnement Port 2000 : retour d’expériences. Ingénieries 55–72. 827 



 28/40  

 

Austin, M., 2007. Species distribution models and ecological theory: A critical assessment and some 828 

possible new approaches. Ecol. Model. 200, 1–19. 829 

https://doi.org/10.1016/j.ecolmodel.2006.07.005 830 

Austin, M.P., 2002. Spatial prediction of species distribution: an interface between ecological theory and 831 

statistical modelling. Ecol. Model. 157, 101–118. https://doi.org/10.1016/S0304-832 

3800(02)00205-3 833 

Bacouillard, L., Baux, N., Dauvin, J.-C., Desroy, N., Geiger, K.J., Gentil, F., Thiébaut, É., 2020. Long-834 

term spatio-temporal changes of the muddy fine sand benthic community of the Bay of Seine 835 

(eastern English Channel). Mar. Environ. Res. 161, 105062. 836 

https://doi.org/10.1016/j.marenvres.2020.105062 837 

Baffreau, A., Pezy, J.-P., Dancie, C., Chouquet, B., Hacquebart, P., Poisson, E., Foveau, A., Joncourt, 838 

Y., Duhamel, S., Navon, M., Marmin, S., Dauvin, J.-C., 2017. Mapping benthic communities: An 839 

indispensable tool for the preservation and management of the eco-socio-system in the Bay of 840 

Seine. Reg. Stud. Mar. Sci. 9, 162–173. https://doi.org/10.1016/j.rsma.2016.12.005 841 

Baltar, F., Bayer, B., Bednarsek, N., Deppeler, S., Escribano, R., Gonzalez, C.E., Hansman, R.L., 842 

Mishra, R.K., Moran, M.A., Repeta, D.J., Robinson, C., Sintes, E., Tamburini, C., Valentin, L.E., 843 

Herndl, G.J., 2019. Towards Integrating Evolution, Metabolism, and Climate Change Studies of 844 

Marine Ecosystems. Trends Ecol. Evol. 34, 1022–1033. 845 

https://doi.org/10.1016/j.tree.2019.07.003 846 

Beck, M.W., Heck, K.L., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., Halpern, B., Hays, 847 

C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F., Weinstein, M.P., 2001. The 848 

Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and 849 

Invertebrates. BioScience 51, 633. https://doi.org/10.1641/0006-850 

3568(2001)051[0633:TICAMO]2.0.CO;2 851 

Boesch, D.F., Turner, R.E., 1984. Dependence of fishery species on salt marshes: The role of food and 852 

refuge. Estuaries 7, 460–468. https://doi.org/10.2307/1351627 853 

Bouma, H., Duiker, J.M.C., de Vries, P.P., Herman, P.M.J., Wolff, W.J., 2001. Spatial pattern of early 854 

recruitment of Macoma balthica (L.) and Cerastoderma edule (L.) in relation to sediment 855 

dynamics on a highly dynamic intertidal sand¯at. J. Sea Res. 15. 856 

Boyden, C.R., Russell, P.J.C., 1972. The Distribution and Habitat Range of the Brackish Water Cockle 857 

(Cardium (Cerastoderma) glaucum) in the British Isles. J. Anim. Ecol. 41, 719. 858 

https://doi.org/10.2307/3205 859 

Brown, J.H., Stevens, G.C., Kaufman, D.M., 1996. The Geographic Range: Size, Shape, Boundaries, 860 

and Internal Structure. Annu. Rev. Ecol. Syst. 27, 597–623. https://doi.org/10.2307/2097247 861 

Cade, B.S., Noon, B.R., 2003. A gentle introduction to quantile regression for ecologists. Front. Ecol. 862 

Environ. 1, 412–420. https://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2 863 



 29/40  

 

Cade, B.S., Noon, B.R., Flather, C.H., 2005. Quantile regression reveals hidden bias and uncertainty in 864 

habitat models. Ecology 86, 786–800. https://doi.org/10.1890/04-0785 865 

Cade, B.S., Terrell, J.W., Schroeder, R.L., 1999. Estimating effects of limiting factors with regression 866 

quantiles 80, 13. 867 

Carss, D.N., Brito, A.C., Chainho, P., Ciutat, A., de Montaudouin, X., Fernández Otero, R.M., Filgueira, 868 

M.I., Garbutt, A., Goedknegt, M.A., Lynch, S.A., Mahony, K.E., Maire, O., Malham, S.K., Orvain, 869 

F., van der Schatte Olivier, A., Jones, L., 2020. Ecosystem services provided by a non-cultured 870 

shellfish species: The common cockle Cerastoderma edule. Mar. Environ. Res. 158, 104931. 871 

https://doi.org/10.1016/j.marenvres.2020.104931 872 

Chapman, M., Tolhurst, T., Murphy, R., Underwood, A., 2010. Complex and inconsistent patterns of 873 

variation in benthos, micro-algae and sediment over multiple spatial scales. Mar. Ecol. Prog. 874 

Ser. 398, 33–47. https://doi.org/10.3354/meps08328 875 

Cozzoli, F., Bouma, T., Ysebaert, T., Herman,  aPMJ, 2013. Application of non-linear quantile regression 876 

to macrozoobenthic species distribution modelling: comparing two contrasting basins. Mar. 877 

Ecol. Prog. Ser. 475, 119–133. https://doi.org/10.3354/meps10112 878 

Cozzoli, F., Eelkema, M., Bouma, T.J., Ysebaert, T., Escaravage, V., Herman, P.M.J., 2014. A Mixed 879 

Modeling Approach to Predict the Effect of Environmental Modification on Species Distributions. 880 

PLoS ONE 9, e89131. https://doi.org/10.1371/journal.pone.0089131 881 

Cozzoli, F., Smolders, S., Eelkema, M., Ysebaert, T., Escaravage, V., Temmerman, S., Meire, P., 882 

Herman, P.M.J., Bouma, T.J., 2017. A modeling approach to assess coastal management 883 

effects on benthic habitat quality: A case study on coastal defense and navigability. Estuar. 884 

Coast. Shelf Sci. 184, 67–82. https://doi.org/10.1016/j.ecss.2016.10.043 885 

Crossland, C.J., Baird, D., Ducrotoy, J.-P., Lindeboom, H., Buddemeier, R.W., Dennison, W.C., 886 

Maxwell, B.A., Smith, S.V., Swaney, D.P., 2005. The Coastal Zone — a Domain of Global 887 

Interactions, in: Crossland, C.J., Kremer, H.H., Lindeboom, H.J., Marshall Crossland, J.I., Le 888 

Tissier, M.D.A. (Eds.), Coastal Fluxes in the Anthropocene, Global Change — The IGBP Series. 889 

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–37. https://doi.org/10.1007/3-540-27851-890 

6_1 891 

Dauvin, J.-C., 2015. History of benthic research in the English Channel: From general patterns of 892 

communities to habitat mosaic description. J. Sea Res., MeshAtlantic: Mapping Atlantic Area 893 

Seabed Habitats for Better Marine Management 100, 32–45. 894 

https://doi.org/10.1016/j.seares.2014.11.005 895 

Dauvin, J.C., Ruellet, T., Desroy, N., Janson, A.-L., 2006. Indicateurs benthiques de l’état des 896 

peuplements benthiques de l’estuaire marin et moyen et de la partie orientale de la Baie de 897 

Seine. Rapport scientifique Seine-Aval 3. Theme 3 : Tableau de bord et indicateurs 898 

opérationnels. GIP Seine Aval. 899 



 30/40  

 

Degraer, S., Verfaillie, E., Willems, W., Adriaens, E., Vincx, M., Van Lancker, V., 2008. Habitat suitability 900 

modelling as a mapping tool for macrobenthic communities: An example from the Belgian part 901 

of the North Sea. Cont. Shelf Res. 28, 369–379. https://doi.org/10.1016/j.csr.2007.09.001 902 

Donadi, S., van der Zee, E.M., van der Heide, T., Weerman, E.J., Piersma, T., van de Koppel, J., Olff, 903 

H., Bartelds, M., van Gerwen, I., Eriksson, B.K., 2014. The bivalve loop: Intra-specific facilitation 904 

in burrowing cockles through habitat modification. J. Exp. Mar. Biol. Ecol. 461, 44–52. 905 

https://doi.org/10.1016/j.jembe.2014.07.019 906 

Donadi, S., Westra, J., Weerman, E.J., van der Heide, T., van der Zee, E.M., van de Koppel, J., Olff, H., 907 

Piersma, T., van der Veer, H.W., Eriksson, B.K., 2013. Non-trophic Interactions Control Benthic 908 

Producers on Intertidal Flats. Ecosystems 16, 1325–1335. https://doi.org/10.1007/s10021-013-909 

9686-8 910 

Elith, J., Leathwick, J.R., 2009. Species Distribution Models: Ecological Explanation and Prediction 911 

Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. 912 

https://doi.org/10.1146/annurev.ecolsys.110308.120159 913 

Eriksson, B.K., Westra, J., van Gerwen, I., Weerman, E., van der Zee, E., van der Heide, T., van de 914 

Koppel, J., Olff, H., Piersma, T., Donadi, S., 2017. Facilitation by ecosystem engineers 915 

enhances nutrient effects in an intertidal system. Ecosphere 8, e02051. 916 

https://doi.org/10.1002/ecs2.2051 917 

Ettema, C.H., Wardle, D.A., 2002. Spatial soil ecology. Trends Ecol. Evol. 17, 177–183. 918 

https://doi.org/10.1016/S0169-5347(02)02496-5 919 

Folmer, E., Dekinga, A., Holthuijsen, S., 2017. Species Distribution Models of Intertidal Benthos - Tools 920 

for Assessing the Impact of Physical and Morphological Drivers on Benthos and Birds in the 921 

Wadden Sea. NIOZ Royal Netherlands Institute for Sea Research, Texel. 922 

Franklin, J., 2010. Mapping Species Distributions: Spatial Inference and Prediction, Ecology, 923 

Biodiversity and Conservation. Cambridge University Press, Cambridge. 924 

https://doi.org/10.1017/CBO9780511810602 925 

Frans, V.F., Augé, A.A., Fyfe, J., Zhang, Y., McNally, N., Edelhoff, H., Balkenhol, N., Engler, J.O., 2022. 926 

Integrated SDM database: Enhancing the relevance and utility of species distribution models in 927 

conservation management. Methods Ecol. Evol. 13, 243–261. https://doi.org/10.1111/2041-928 

210X.13736 929 

Goberville, E., Beaugrand, G., Sautour, B., Tréguer, P., Somlit, T., 2010. Climate-driven changes in 930 

coastal marine systems of western Europe. Mar. Ecol. Prog. Ser. 408, 129–147. 931 

https://doi.org/10.3354/meps08564 932 

Gosling, E.M., 2003. Bivalve molluscs: biology, ecology, and culture, Fishing News Books. ed. Blackwell 933 

Publishing, Oxford ; Malden, MA. 934 

Grassle, F.J., 2013. Marine Ecosystems, in: Encyclopedia of Biodiversity. Elsevier, pp. 45–55. 935 

https://doi.org/10.1016/B978-0-12-384719-5.00290-2 936 



 31/40  

 

Grasso, F., Bismuth, E., Verney, R., 2021. Unraveling the impacts of meteorological and anthropogenic 937 

changes on sediment fluxes along an estuary-sea continuum. Sci. Rep. 11, 20230. 938 

https://doi.org/10.1038/s41598-021-99502-7 939 

Grasso, F., Bismuth, E., Verney, R., 2019. ARES hindcast [WWW Document]. Sextant. URL 940 

https://sextant.ifremer.fr/geonetwork/srv/api/records/8f5ec053-52c8-4120-b031-4e4b6168ff29 941 

(accessed 5.13.23). 942 

Grasso, F., Le Hir, P., 2019. Influence of morphological changes on suspended sediment dynamics in 943 

a macrotidal estuary: diachronic analysis in the Seine Estuary (France) from 1960 to 2010. 944 

Ocean Dyn. 69, 83–100. https://doi.org/10.1007/s10236-018-1233-x 945 

Grasso, F., Verney, R., Le Hir, P., Thouvenin, B., Schulz, E., Kervella, Y., Khojasteh Pour Fard, I., 946 

Lemoine, J.-P., Dumas, F., Garnier, V., 2018. Suspended Sediment Dynamics in the Macrotidal 947 

Seine Estuary (France): 1. Numerical Modeling of Turbidity Maximum Dynamics. J. Geophys. 948 

Res. Oceans 123, 558–577. https://doi.org/10.1002/2017JC013185 949 

Guarini, J., Blanchard, G., Bacher, C., Gros, P., Riera, P., Richard, P., Gouleau, D., Galois, R., Prou, J., 950 

Sauriau, P., 1998. Dynamics of spatial patterns of microphytobenthic biomass:inferences from 951 

a geostatistical analysis of two comprehensive surveys in Marennes-Oléron Bay (France). Mar. 952 

Ecol. Prog. Ser. 166, 131–141. https://doi.org/10.3354/meps166131 953 

Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. 954 

Ecol. Lett. 8, 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x 955 

Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Model. 956 

135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 957 

Hale, R., Calosi, P., McNeill, L., Mieszkowska, N., Widdicombe, S., 2011. Predicted levels of future 958 

ocean acidification and temperature rise could alter community structure and biodiversity in 959 

marine benthic communities. Oikos 120, 661–674. https://doi.org/10.1111/j.1600-960 

0706.2010.19469.x 961 

Hayward, P.J., Ryland, J.S., 1995. Handbook of the marine fauna of north-west Europe. Oxford 962 

University Press. 963 

He, K.S., Bradley, B.A., Cord, A.F., Rocchini, D., Tuanmu, M.-N., Schmidtlein, S., Turner, W., Wegmann, 964 

M., Pettorelli, N., 2015. Will remote sensing shape the next generation of species distribution 965 

models? Remote Sens. Ecol. Conserv. 1, 4–18. https://doi.org/10.1002/rse2.7 966 

Healy, T., Wang, Y., Healy, J.-A., 2002. Muddy Coasts of the World: Processes, Deposits and Function. 967 

Elsevier. 968 

Herman, P.M.J., Middelburg, J.J., Heip, C.H.R., 2001. Benthic community structure and sediment 969 

processes on an intertidal flat: results from the ECOFLAT project. Cont. Shelf Res., European 970 

Land-Ocean Interaction 21, 2055–2071. https://doi.org/10.1016/S0278-4343(01)00042-5 971 



 32/40  

 

Herman, P.M.J., Middelburg, J.J., Van De Koppel, J., Heip, C.H.R., 1999. Ecology of Estuarine 972 

Macrobenthos, in: Nedwell, D.B., Raffaelli, D.G. (Eds.), Advances in Ecological Research, 973 

Estuaries. Academic Press, pp. 195–240. https://doi.org/10.1016/S0065-2504(08)60194-4 974 

Huang, Q., Zhang, H., Chen, J., He, M., 2017. Quantile Regression Models and Their Applications: A 975 

Review. J. Biom. Biostat. 08. https://doi.org/10.4172/2155-6180.1000354 976 

Hughes, B., Levey, M., Brown, J.A., Fountain, M., Carlisle, A., Litvin, S., Greene, C., Heady, W.N., 977 

Gleason, M., 2014. Nursery functions of U.S. west coast estuaries: the state of knowledge for 978 

juveniles of focal fish and invertebrate species. 979 

Huisman, J., Olff, H., Fresco, L. f. m., 1993. A hierarchical set of models for species response analysis. 980 

J. Veg. Sci. 4, 37–46. https://doi.org/10.2307/3235732 981 

Husson, F., Josse, J., Le, S., Mazet, J., 2024. FactoMineR: Multivariate Exploratory Data Analysis and 982 

Data Mining. 983 

Jiménez-Valverde, A., Aragón, P., Lobo, J.M., 2021. Deconstructing the abundance–suitability 984 

relationship in species distribution modelling. Glob. Ecol. Biogeogr. 30, 327–338. 985 

https://doi.org/10.1111/geb.13204 986 

Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as Ecosystem Engineers. Oikos 69, 373–987 

386. https://doi.org/10.2307/3545850 988 

Kassambara, A., Mundt, F., 2020. factoextra: Extract and Visualize the Results of Multivariate Data 989 

Analyses. 990 

Kearney, M., Porter, W., 2009. Mechanistic niche modelling: combining physiological and spatial data 991 

to predict species’ ranges. Ecol. Lett. 12, 334–350. https://doi.org/10.1111/j.1461-992 

0248.2008.01277.x 993 

Koenker, R., 2019. Quantile regression in r: a vignette. 994 

Koenker, R., 2006. Pseudo R for Quant Reg. 995 

Koenker, R., Bassett, G., 1978. Regression Quantiles. Econometrica 46, 33. 996 

https://doi.org/10.2307/1913643 997 

Koenker, R., code), S.P. (Contributions to C.Q., code), P.T.N. (Contributions to S.Q., code), A.Z. 998 

(Contributions to dynrq code essentially identical to his dynlm, code), P.G. (Contributions to nlrq, 999 

routines), C.M. (author of several linpack, advice), B.D.R. (Initial (2001) R. port from S. (to my 1000 

everlasting shame--how could I. have been so slow to adopt R. and for numerous other 1001 

suggestions and useful, 2019. quantreg: Quantile Regression. 1002 

Koenker, R., code), S.P. (Contributions to C.Q., code), P.T.N. (Contributions to S.Q., code), B.M. 1003 

(Contributions to preprocessing, code), A.Z. (Contributions to dynrq code essentially identical 1004 

to his dynlm, code), P.G. (Contributions to nlrq, routines), C.M. (author of several linpack, 1005 

sparskit2), Y.S. (author of, code), V.C. (contributions to extreme value inference, code), I.F.-V. 1006 

(contributions to extreme value inference, advice), B.D.R. (Initial (2001) R. port from S. (to my 1007 



 33/40  

 

everlasting shame--how could I. have been so slow to adopt R. and for numerous other 1008 

suggestions and useful, 2024. quantreg: Quantile Regression. 1009 

Koenker, R., Hallock, K., 2000. Quantile regression an introduction. J. Econ. Perspect. 15. 1010 

Koenker, R., Hallock, K.F., 2001. Quantile Regression 14. 1011 

Koenker, R., Machado, J.A.F., 1999. Goodness of Fit and Related Inference Processes for Quantile 1012 

Regression. J. Am. Stat. Assoc. 94, 1296–1310. 1013 

https://doi.org/10.1080/01621459.1999.10473882 1014 

Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C.O., Banta, G.T., 2012. 1015 

What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. 1016 

Prog. Ser. 446, 285–302. https://doi.org/10.3354/meps09506 1017 

Łapucki, T., Normant, M., 2008. Physiological responses to salinity changes of the isopod Idotea 1018 

chelipes from the Baltic brackish waters. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 149, 1019 

299–305. https://doi.org/10.1016/j.cbpa.2008.01.009 1020 

Le Guen, C., Tecchio, S., Dauvin, J.-C., De Roton, G., Lobry, J., Lepage, M., Morin, J., Lassalle, G., 1021 

Raoux, A., Niquil, N., 2019. Assessing the ecological status of an estuarine ecosystem: linking 1022 

biodiversity and food-web indicators. Estuar. Coast. Shelf Sci. 228, 106339. 1023 

https://doi.org/10.1016/j.ecss.2019.106339 1024 

Le Hir, M., Hily, C., 2005. Macrofaunal diversity and habitat structure in intertidal boulder fields. 1025 

Biodivers. Conserv. 14, 233–250. https://doi.org/10.1007/s10531-005-5046-0 1026 

Le Hir, P., Cayocca, F., Waeles, B., 2011. Dynamics of sand and mud mixtures: A multiprocess-based 1027 

modelling strategy. Cont. Shelf Res., Proceedings of the 9th International Conference on 1028 

Nearshore and Estuarine Cohesive Sediment Transport Processes 31, S135–S149. 1029 

https://doi.org/10.1016/j.csr.2010.12.009 1030 

L’Ebrellec, E., Dauvin, J.-C., Bacq, N., 2019. Macrobenthos en estuaire et baie de Seine : mise à jour 1031 

de la base de données MABES. Rapport d’étude réalisé par le GIP Seine-Aval. GIP Seine Aval. 1032 

Lehuen, A., Oulhen, R.-M., Zhou, Z., de Smit, J., van Ijzerloo, L., Cozzoli, F., Bouma, T., Orvain, F., 1033 

2024. Multispecies macrozoobenthic seasonal bioturbation effect on sediment erodibility. J. Sea 1034 

Res. 201, 102525. https://doi.org/10.1016/j.seares.2024.102525 1035 

Lemasson, A.J., Fletcher, S., Hall-Spencer, J.M., Knights, A.M., 2017. Linking the biological impacts of 1036 

ocean acidification on oysters to changes in ecosystem services: A review. J. Exp. Mar. Biol. 1037 

Ecol. 492, 49–62. https://doi.org/10.1016/j.jembe.2017.01.019 1038 

Lesourd, S., Lesueur, P., Brun-Cottan, J.C., Garnaud, S., Poupinet, N., 2003. Seasonal variations in the 1039 

characteristics of superficial sediments in a macrotidal estuary (the Seine inlet, France). Estuar. 1040 

Coast. Shelf Sci. 58, 3–16. https://doi.org/10.1016/S0272-7714(02)00340-2 1041 



 34/40  

 

Lesourd, S., Lesueur, P., Fisson, C., Dauvin, J.-C., 2016. Sediment evolution in the mouth of the Seine 1042 

estuary (France): A long-term monitoring during the last 150years. Comptes Rendus Geosci. 1043 

348, 442–450. https://doi.org/10.1016/j.crte.2015.08.001 1044 

Li, B., Cozzoli, F., Soissons, L.M., Bouma, T.J., Chen, L., 2017. Effects of bioturbation on the erodibility 1045 

of cohesive versus non-cohesive sediments along a current-velocity gradient: A case study on 1046 

cockles. J. Exp. Mar. Biol. Ecol. 496, 84–90. https://doi.org/10.1016/j.jembe.2017.08.002 1047 

Madeira, D., Fernandes, J.F., Jerónimo, D., Martins, P., Ricardo, F., Santos, A., Domingues, M.R., Diniz, 1048 

M.S., Calado, R., 2021. Salinity shapes the stress responses and energy reserves of marine 1049 

polychaetes exposed to warming: From molecular to functional phenotypes. Sci. Total Environ. 1050 

795, 148634. https://doi.org/10.1016/j.scitotenv.2021.148634 1051 

Mahony, K.E., Egerton, S., Lynch, S.A., Blanchet, H., Goedknegt, M.A., Groves, E., Savoye, N., de 1052 

Montaudouin, X., Malham, S.K., Culloty, S.C., 2022. Drivers of growth in a keystone fished 1053 

species along the European Atlantic coast: The common cockle Cerastoderma edule. J. Sea 1054 

Res. 179, 102148. https://doi.org/10.1016/j.seares.2021.102148 1055 

Malham, S.K., Hutchinson, T.H., Longshaw, M., 2012. A review of the biology of European cockles ( 1056 

Cerastoderma spp.). J. Mar. Biol. Assoc. U. K. 92, 1563–1577. 1057 

https://doi.org/10.1017/S0025315412000355 1058 

Matos, F.L., Vaz, N., Picado, A., Dias, J.M., Maia, F., Gaspar, M.B., Magalhães, L., 2023. Assessment 1059 

of Habitat Suitability for Common Cockles in the Ria the Aveiro Lagoon Under Average and 1060 

Projected Environmental Conditions. Estuaries Coasts 46, 512–525. 1061 

https://doi.org/10.1007/s12237-022-01136-z 1062 

Medeiros, I.P.M., Faria, S.C., Souza, M.M., 2020. Osmoionic homeostasis in bivalve mollusks from 1063 

different osmotic niches: Physiological patterns and evolutionary perspectives. Comp. Biochem. 1064 

Physiol. A. Mol. Integr. Physiol. 240, 110582. https://doi.org/10.1016/j.cbpa.2019.110582 1065 

Melo-Merino, S.M., Reyes-Bonilla, H., Lira-Noriega, A., 2020. Ecological niche models and species 1066 

distribution models in marine environments: A literature review and spatial analysis of evidence. 1067 

Ecol. Model. 415, 108837. https://doi.org/10.1016/j.ecolmodel.2019.108837 1068 

Mengual, B., Le Hir, P., Rivier, A., Caillaud, M., Grasso, F., 2020. Numerical modeling of bedload and 1069 

suspended load contributions to morphological evolution of the Seine Estuary (France). Int. J. 1070 

Sediment Res. 36, 723–735. https://doi.org/10.1016/j.ijsrc.2020.07.003 1071 

Morelle, J., Claquin, P., Orvain, F., 2020. Evidence for better microphytobenthos dynamics in mixed 1072 

sand/mud zones than in pure sand or mud intertidal flats (Seine estuary, Normandy, France). 1073 

PLOS ONE 15, e0237211. https://doi.org/10.1371/journal.pone.0237211 1074 

Morelle, J., Schapira, M., Orvain, F., Riou, P., Lopez, P.J., Duplessix, O., Rabiller, E., Maheux, F., 1075 

Simon, B., Claquin, P., 2018. Annual Phytoplankton Primary Production Estimation in a 1076 

Temperate Estuary by Coupling PAM and Carbon Incorporation Methods. Estuaries Coasts 41, 1077 

1337–1355. https://doi.org/10.1007/s12237-018-0369-8 1078 



 35/40  

 

Murray, N.J., Phinn, S.R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M.B., Clinton, N., Thau, D., Fuller, 1079 

R.A., 2019. The global distribution and trajectory of tidal flats. Nature 565, 222–225. 1080 

https://doi.org/10.1038/s41586-018-0805-8 1081 

Ong, E.Z., Briffa, M., Moens, T., Van Colen, C., 2017. Physiological responses to ocean acidification 1082 

and warming synergistically reduce condition of the common cockle Cerastoderma edule. Mar. 1083 

Environ. Res. 130, 38–47. https://doi.org/10.1016/j.marenvres.2017.07.001 1084 

Orvain, F., Lefebvre, S., Montepini, J., Sébire, M., Gangnery, A., Sylvand, B., 2012. Spatial and temporal 1085 

interaction between sediment and microphytobenthos in a temperate estuarine macro-intertidal 1086 

bay. Mar. Ecol. Prog. Ser. 458, 53–68. https://doi.org/10.3354/meps09698 1087 

Peteiro, L.G., Woodin, S.A., Wethey, D.S., Costas-Costas, D., Martínez-Casal, A., Olabarria, C., 1088 

Vázquez, E., 2018. Responses to salinity stress in bivalves: Evidence of ontogenetic changes 1089 

in energetic physiology on Cerastoderma edule. Sci. Rep. 8, 8329. 1090 

https://doi.org/10.1038/s41598-018-26706-9 1091 

Rakotomalala, C., Grangeré, K., Ubertini, M., Forêt, M., Orvain, F., 2015. Modelling the effect of 1092 

Cerastoderma edule bioturbation on microphytobenthos resuspension towards the planktonic 1093 

food web of estuarine ecosystem. Ecol. Model. 316, 155–167. 1094 

https://doi.org/10.1016/j.ecolmodel.2015.08.010 1095 

Richards, D., Lavorel, S., 2023. Niche theory improves understanding of associations between 1096 

ecosystem services. One Earth 6, 811–823. https://doi.org/10.1016/j.oneear.2023.05.025 1097 

Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, B.E., Possingham, H.P., Richardson, 1098 

A.J., 2011. Pushing the limits in marine species distribution modelling: lessons from the land 1099 

present challenges and opportunities. Glob. Ecol. Biogeogr. 20, 789–802. 1100 

https://doi.org/10.1111/j.1466-8238.2010.00636.x 1101 

Robinson, N.M., Nelson, W.A., Costello, M.J., Sutherland, J.E., Lundquist, C.J., 2017. A Systematic 1102 

Review of Marine-Based Species Distribution Models (SDMs) with Recommendations for Best 1103 

Practice. Front. Mar. Sci. 4. https://doi.org/10.3389/fmars.2017.00421 1104 

Roland, A., Ardhuin, F., 2014. On the developments of spectral wave models: numerics and 1105 

parameterizations for the coastal ocean. Ocean Dyn. 64, 833–846. 1106 

https://doi.org/10.1007/s10236-014-0711-z 1107 

Saint-Béat, B., Dupuy, C., Bocher, P., Chalumeau, J., De Crignis, M., Fontaine, C., Guizien, K., Lavaud, 1108 

J., Lefebvre, S., Montanié, H., Mouget, J.-L., Orvain, F., Pascal, P.-Y., Quaintenne, G., 1109 

Radenac, G., Richard, P., Robin, F., Vézina, A.F., Niquil, N., 2013. Key Features of Intertidal 1110 

Food Webs That Support Migratory Shorebirds. PLoS ONE 8, e76739. 1111 

https://doi.org/10.1371/journal.pone.0076739 1112 

Santos, C., Cabral, S., Carvalho, F., Sousa, A., Goulding, T., Ramajal, J., Medeiros, J.P., Silva, G., 1113 

Angélico, M.M., Gaspar, M.B., Brito, A.C., Costa, J.L., Chainho, P., 2022. Spatial and Temporal 1114 

Variations of Cockle (Cerastoderma spp.) Populations in Two Portuguese Estuarine Systems 1115 



 36/40  

 

With Low Directed Fishing Pressure. Front. Mar. Sci. 9. 1116 

https://doi.org/10.3389/fmars.2022.699622 1117 

Sauriau, P.-G., Kang, C.-K., 2000. Stable isotope evidence of benthic microalgae-based growth and 1118 

secondary production in the suspension feeder Cerastoderma edule (Mollusca, Bivalvia) in the 1119 

Marennes-Oléron Bay, in: Jones, M.B., Azevedo, J.M.N., Neto, A.I., Costa, A.C., Martins, A.M.F. 1120 

(Eds.), Island, Ocean and Deep-Sea Biology, Developments in Hydrobiology. Springer 1121 

Netherlands, Dordrecht, pp. 317–329. https://doi.org/10.1007/978-94-017-1982-7_29 1122 

Schickele, A., Leroy, B., Beaugrand, G., Goberville, E., Hattab, T., Francour, P., Raybaud, V., 2020. 1123 

Modelling European small pelagic fish distribution: Methodological insights. Ecol. Model. 416, 1124 

108902. https://doi.org/10.1016/j.ecolmodel.2019.108902 1125 

Schröder, H.K., Andersen, H.E., Kiehl, K., 2005. Rejecting the mean: Estimating the response of fen 1126 

plant species to environmental factors by non-linear quantile regression. J. Veg. Sci. 16, 373–1127 

382. https://doi.org/10.1111/j.1654-1103.2005.tb02376.x 1128 

Schulz, E., Grasso, F., Le Hir, P., Verney, R., Thouvenin, B., 2018. Suspended Sediment Dynamics in 1129 

the Macrotidal Seine Estuary (France): 2. Numerical Modeling of Sediment Fluxes and Budgets 1130 

Under Typical Hydrological and Meteorological Conditions. J. Geophys. Res. Oceans 123, 578–1131 

600. https://doi.org/10.1002/2016JC012638 1132 

Shi, B., Pratolongo, P.D., Du, Y., Li, J., Yang, S.L., Wu, J., Xu, K., Wang, Y.P., 2020. Influence of 1133 

Macrobenthos (Meretrix meretrix Linnaeus) on Erosion-Accretion Processes in Intertidal Flats: 1134 

A Case Study From a Cultivation Zone. J. Geophys. Res. Biogeosciences 125, 1135 

e2019JG005345. https://doi.org/10.1029/2019JG005345 1136 

Singer, A., Millat, G., Staneva, J., Kröncke, I., 2017. Modelling benthic macrofauna and seagrass 1137 

distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental 1138 

scenarios. Estuar. Coast. Shelf Sci. 188, 99–108. https://doi.org/10.1016/j.ecss.2017.02.003 1139 

Srivastava, V., Lafond, V., Griess, V.C., 2019. Species distribution models (SDM): applications, benefits 1140 

and challenges in invasive species management. CABI Rev. 2019, 1–13. 1141 

https://doi.org/10.1079/PAVSNNR201914020 1142 

Stephenson, F., Gladstone-Gallagher, R.V., Bulmer, R.H., Thrush, S.F., Hewitt, J.E., 2022. Inclusion of 1143 

biotic variables improves predictions of environmental niche models. Divers. Distrib. 28, 1373–1144 

1390. https://doi.org/10.1111/ddi.13546 1145 

Tecchio, S., Chaalali, A., Raoux, A., Tous Rius, A., Lequesne, J., Girardin, V., Lassalle, G., Cachera, 1146 

M., Riou, P., Lobry, J., Dauvin, J.-C., Niquil, N., 2016. Evaluating ecosystem-level 1147 

anthropogenic impacts in a stressed transitional environment: The case of the Seine estuary. 1148 

Ecol. Indic. 61, 833–845. https://doi.org/10.1016/j.ecolind.2015.10.036 1149 

Thomas, Y., Bacher, C., 2018. Assessing the sensitivity of bivalve populations to global warming using 1150 

an individual-based modelling approach. Glob. Change Biol. 24, 4581–4597. 1151 

https://doi.org/10.1111/gcb.14402 1152 



 37/40  

 

Thrush, S., Hewitt, J., Herman, P., Ysebaert, T., 2005. Multi-scale analysis of species-environment 1153 

relationships. Mar. Ecol.-Prog. Ser. 302, 13–26. https://doi.org/10.3354/Meps302013 1154 

Thrush, S., Hewitt, J., Norkko, A., Nicholls, P., Funnell, G., Ellis, J., 2003. Habitat change in estuaries: 1155 

predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar. Ecol. 1156 

Prog. Ser. 263, 101–112. https://doi.org/10.3354/meps263101 1157 

Ubertini, M., Lefebvre, S., Gangnery, A., Grangeré, K., Le Gendre, R., Orvain, F., 2012. Spatial 1158 

Variability of Benthic-Pelagic Coupling in an Estuary Ecosystem: Consequences for 1159 

Microphytobenthos Resuspension Phenomenon. PLoS ONE 7, e44155. 1160 

https://doi.org/10.1371/journal.pone.0044155 1161 

Underwood, A.J., Chapman, M.G., 1996. Scales of spatial patterns of distribution of intertidal 1162 

invertebrates. Oecologia 107, 212–224. https://doi.org/10.1007/BF00327905 1163 

Van Colen, C., Montserrat, F., Vincx, M., Herman, P.M.J., Ysebaert, T., Degraer, S., 2010. 1164 

Macrobenthos recruitment success in a tidal flat: Feeding trait dependent effects of disturbance 1165 

history. J. Exp. Mar. Biol. Ecol. 385, 79–84. https://doi.org/10.1016/j.jembe.2010.01.009 1166 

Van Der Wal, D., Herman, P., Forster, R., Ysebaert, T., Rossi, F., Knaeps, E., Plancke, Y., Ides, S., 1167 

2008. Distribution and dynamics of intertidal macrobenthos predicted from remote sensing: 1168 

response to microphytobenthos and environment. Mar. Ecol. Prog. Ser. 367, 57–72. 1169 

https://doi.org/10.3354/meps07535 1170 

Van Der Wal, D., Wielemaker-van Den Dool, A., Herman, P.M.J., 2010. Spatial Synchrony in Intertidal 1171 

Benthic Algal Biomass in Temperate Coastal and Estuarine Ecosystems. Ecosystems 13, 338–1172 

351. https://doi.org/10.1007/s10021-010-9322-9 1173 

Van Der Wal, D., Ysebaert, T., Herman, P.M.J., 2017. Response of intertidal benthic macrofauna to 1174 

migrating megaripples and hydrodynamics. Mar. Ecol. Prog. Ser. 585, 17–30. 1175 

https://doi.org/10.3354/meps12374 1176 

Vera, M., Wilmes, S.B., Maroso, F., Hermida, M., Blanco, A., Casanova, A., Iglesias, D., Cao, A., Culloty, 1177 

S.C., Mahony, K., Orvain, F., Bouza, C., Robins, P.E., Malham, S.K., Lynch, S., Villalba, A., 1178 

Martínez, P., 2023. Heterogeneous microgeographic genetic structure of the common cockle 1179 

(Cerastoderma edule) in the Northeast Atlantic Ocean: biogeographic barriers and 1180 

environmental factors. Heredity 131, 292–305. https://doi.org/10.1038/s41437-023-00646-1 1181 

Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent: the importance of model 1182 

complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. 1183 

https://doi.org/10.1890/10-1171.1 1184 

Ysebaert, T., Herman, P.M.J., 2002. Spatial and temporal variation in benthic macrofauna and 1185 

relationships with environmental variables in an estuarine, intertidal soft-sediment environment. 1186 

Mar. Ecol. Prog. Ser. 244, 105–124. https://doi.org/10.3354/meps244105 1187 



 38/40  

 

Ysebaert, T., Meire, P., Herman, P.M.J., Verbeek, H., 2002. Macrobenthic species response surfaces 1188 

along estuarine gradients: prediction by logistic regression. Mar. Ecol. Prog. Ser. 225, 79–95. 1189 

https://doi.org/10.3354/meps225079 1190 

Zhou, Z., Bouma, T.J., Fivash, G.S., Ysebaert, T., van IJzerloo, L., van Dalen, J., van Dam, B., Walles, 1191 

B., 2022. Thermal stress affects bioturbators’ burrowing behavior: A mesocosm experiment on 1192 

common cockles (Cerastoderma edule). Sci. Total Environ. 824, 153621. 1193 

https://doi.org/10.1016/j.scitotenv.2022.153621 1194 

 1195 

  1196 



 39/40  

 

Reference list 1197 

Figure 1 Maps showing the habitats defined in the dataset of the study area. Dots represent the 1198 

location of the biological samples. 1199 

Figure 2: Principal Components Analysis (PCA) variable correlation plot with the abiotic factors’ 1200 

contributions in bar plots for each axis. The red dotted line represents the mean contribution for all 1201 

factors. 1202 

Figure 3: Example of modelled vs observed biomass data plotted for each model functions. The 1203 

selected predictors were the daily maximum current speed [m.s-1], daily salinity range and inundation 1204 

time [% in this example]. The black line represents the 1:1 ratio, quantiles 0.5 in blue, 0.9 in green, 0.95 1205 

in orange and 0.975 in red. 1206 

Figure 4: First row – (%) Projection on the three abiotic factor axes with observation compared to the 1207 

modelled quantiles for the daily maximum current speed (m.s-1), the daily salinity range and the 1208 

inundation time (A1). The second column displays the predicted/observed validation plot associated to 1209 

this model (A2). Second row – Same figure with the 2nd model with projection on the three abiotic factor 1210 

axes: daily maximum current speed (m.s-1), inundation time (%) and mud content (%) (B1); The second 1211 

column displays the predicted/observed validation plot associated (B2). Black dots in A1 and B1 1212 

represents the observed data; lines the modelled quantiles; Coloured dots in A2 and B2 correspond to 1213 

each decile of the modelled distribution and its corresponding observed, black line represents the 1:1 1214 

ratio. Quantiles are colour coded as 0.5 in blue, 0.9 in green, 0.95 in orange and 0.975 in red. 1215 

Figure 5: A: Daily maximum current speed [m.s-1] & daily salinity range & inundation time [%] model 1216 

suitability index applied on the Seine estuary over the five periods. B: Abiotic factors and resulting model 1217 

at 97.5th centile suitability index per period and per area for all SDM models with a 95% confidence 1218 

interval. 1219 

Figure 6: A: Daily maximum current speed [m.s-1] & inundation time [%] & mud content [%] model 1220 

suitability index applied on the Seine estuary over the five periods. B: Abiotic factors and resulting model 1221 

at 97.5th centile suitability index per period and per area for all SDM models with a 95% confidence 1222 

interval. 1223 

Figure 7: Seine model daily maximum current speed (m.s-1) & daily salinity range & inundation time 1224 

(%) projection on the three abiotic factor axes with data from Scheldt basins in blue dots for 1225 

Oosterschelde and red dots for Westerschelde (A) and the predicted/observed validation plot computed 1226 

on Scheldt application of the model parametrized in the Seine estuary (B). Black dots in A represents 1227 

the observed data that were used for parameterisation (in the Seine estuary) while green dots are the 1228 

data from the Scheldt basins; lines represent the model quartiles. Coloured dots in B correspond to each 1229 

decile of the modelled distribution and its corresponding observed, black line represents the 1:1 ratio. 1230 

Quantiles are colour coded as 0.5 in blue, 0.9 in green, 0.95 in orange and 0.975 in red. 1231 
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Table list 1233 

Table 1 List of types of models tested 1234 

Table 2 Principal Components Analysis (PCA) scores for abiotic factors. Cos2, cosine squared of the 1235 

variables, represents the quality of the representation of the variables on the PCA graph; Contribution 1236 

represents the contributions (in percentage) of the variables to the principal components. The 1237 

contribution of a variable to a given principal component: (Variable.cos2 * 100) / (total cos2 of the 1238 

component). 1239 

Table 3 AICc comparison for all models computed, according to the quantile, the type of equation 1240 

and the response. In bold, the lower value of each model by response and quantile. 1241 

Table 4: Coefficient of the models computed with gaussian equation (Equation 1), by quantile and 1242 

response. 1243 
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