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Abstract 12 

For several decades now, species distribution models (SDMs) have been a promising area of 13 

ecological research. The aim of the present study is to define optimal ecological niches and habitat 14 

suitability for the population of the bivalve Cerastoderma edule in the Seine estuary. The method 15 

involved applying quantile regression to a 20-year biological dataset at the scale of the estuary, coupled 16 

with a hydro-morpho-sedimentary model data set validated over a longer period (25 years) also at the 17 

scale of the estuary, using 100-m mesh cells. This study was carried out to describe biological responses 18 

to environmental factors involved in defining an optimal ecological niche, using the bifactorial Gaussian 19 

equation using physical forcings (tidal currents, bed shear stress, etc.) as explanatory factors. On the 20 

basis of a preliminary multivariate analysis of the physical descriptors, a comparison was made between 21 

three different types of equation (linear, B-spline and Gaussian) in four sets of paired environmental 22 

factors: daily maximum current speed & inundation time, daily salinity range & temperature, daily salinity 23 

range & bathymetry, daily maximum bed shear stress & mud content. The non-linear quantile regression 24 

with a bifactorial Gaussian equation produced the best description of habitat suitability and optimal 25 

niches, at the 95th centile and using the biomass (gAFDW/m² - Ash Free Dry weight). Daily maximum 26 

current speed & inundation time and daily salinity range & temperature were the most pertinent SDMs. 27 

The optimal ecological niche for C. edule appeared to be lower intertidal marine areas, with temperate 28 

and low dynamic waters, settled in muddy sand sediment of the tidal flats of Seine estuary. Using this 29 

technique, the calculation of optimal niches in this ecosystem was explored over a period of 25 years 30 

and analysed in isolated sectors and can now be applied in different scenarios related to the global 31 
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warming. We propose several reliable models, so that different kinds of prediction can now be applied 32 

according to the context of future scenarios. 33 

Highlights 34 

• Bifactorial gaussian quantile regression, with a high quantile, e.g. the 95th centile, is performant 35 

to express the optimal ecological niche of C. edule at the scale of the estuary. 36 

• Daily maximum current speed and inundation time are the most adequate factors to describe 37 

the estuary, thus to build an SDM. 38 

• Suitability index was built based on optimal ecological niches to assess habitability of areas in 39 

the Seine estuary. 40 

• Optimal Cerastoderma edule conditions correspond to low intertidal marine shores, temperate 41 

and moderate currents in muddy sand sediment. 42 

Graphical abstract 43 
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1 Introduction 49 

Understanding the links and interactions between abiotic and biotic components is necessary to 50 

preserve and restore areas affected by environmental fluctuations caused by human activity, and to 51 
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conserve the benefits of their ecosystem services (Richards and Lavorel, 2023). The concept of 52 

ecological niches was defined to better understand and predict the population dynamics (Hutchinson, 53 

1957). Hutchinson conceptualised an ecological niche as "the n-dimensional set of environmental 54 

conditions that allow a species to live and reproduce".  55 

A species distribution model (SDM) is an approach providing practical information on the spatial 56 

distribution of species based on ecological niche modelling. The construction of an SDM requires the 57 

definition and selection of three main components: 1) an ecological model that brings context to the way 58 

the SDM will be produced and analysed; 2) a data model defining how the data are collected and 59 

prepared; 3) a statistical model involving the choice of statistical method, error function and significance 60 

tests (Austin, 2007, 2002). 61 

A wide choice of statistical models for constructing SDM is available, with two main categories: the 62 

correlative ones (Austin, 2002; Guisan and Zimmermann, 2000) and the mechanistic ones (Kearney 63 

and Porter, 2009). Each approach has advantages and disadvantages (Kearney and Porter, 2009; Melo-64 

Merino et al., 2020), but the vast majority of studies carried out to date are correlative (Robinson et al., 65 

2011). Correlative SDMs link the presence or abundance of a species with spatial habitat data, thereby 66 

quantifying the relation between environmental factors and species distributions. The model define an 67 

environmental profile on an empirical basis, making it possible to define the abiotic factors determining 68 

the maintenance of a species and to infer its presence or absence in areas where no biological data are 69 

available, or the impact of changing abiotic conditions (Elith and Leathwick, 2009; Franklin, 2010; Guisan 70 

and Thuiller, 2005). These methods generally use geolocalised biological data of a species and abiotic 71 

parameters measured by techniques such as field or remote measurements or modelling (Brown et al., 72 

1996; Guisan and Zimmermann, 2000; Melo-Merino et al., 2020; Van Der Wal et al., 2008). 73 

Various and increasing statistical tools can be used with correlative SDMs, among them the 74 

regressions are often based on either Ordinary Least Square (OLS) or Generalized Linear Models 75 

(GLMs,  fitted by Maximum Likelihood Estimation), which describe the distribution of biological response 76 

with the chosen abiotic predictors (Bolker et al., 2009; Robinson et al., 2017). These approaches provide 77 

access to a level of information that is rather complex to interpret, given the patchy spatial distribution 78 

of many species, variations in recruitment from one year to the next, and the complex life cycles of some 79 

species (Ysebaert and Herman, 2002). In particular, the construction of a SDM based on several abiotic 80 

measurements cannot account for other factors, either because they are not available or are not known. 81 

Those factors may have a limiting effect on the biological response which will then reflect the response 82 

to these unknown limiting factors. This is the statement of Liebig's law of minima: if other resources are 83 

not optimal for certain observations, the measured response of the species will be less than the 84 

maximum possible response to the observed resource. As a result, OLS or GLM models incorporate the 85 

effects of unmeasured limiting factors on the SDM (Austin, 2007; Cade et al., 1999).  86 

Quantile regression (QR) is defined as a sequence of ascending envelopes that cover an increasing 87 

proportion of occurrence according to quantiles (Koenker and Hallock, 2000; Koenker and Machado, 88 

1999). Studies have been conducted for more than 40 years to carry out QR, and recent advances in 89 

computer tools have improved its use, refined the performance indicators, and facilitated its 90 



 4/35  

 

interpretation especially for ecological applications, such as SDM (Austin, 2007; Cade et al., 2005, 1999; 91 

Cade and Noon, 2003). When the time scale is long, we can admit that there is one real probability that 92 

the population express its maximum response at a moment (“when all planets are aligned”). By targeting 93 

the upper quantiles of the distribution in long-term surveys, it is possible to define the best maximum 94 

biological response to abiotic predictors, with any other factors, whether biological, environmental or 95 

mobility, that are not accounted for, being considered as non-limiting (Schröder et al., 2005). The use 96 

of QR in a correlative SDM with a sufficiently rich database and over a sufficiently long period of time, 97 

makes it possible to define the optimal conditions for a species with respect to selected abiotic factors, 98 

freeing it from particular recorded conditions (meteorological conditions, sanitary events, lifespans). In 99 

addition, the effects of interaction between species, with their environment and the biogeochemical 100 

processes they generate can make environments more dynamic and welcoming on a very local scale, 101 

through a system of self-organisation. This can lead to very high densities of a species in a local 'patch', 102 

a phenomenon often observed in estuarine environments. Thrush modelled species distributions based 103 

on the maximum density of intertidal species (Thrush et al., 2003). Quantile regression follows the same 104 

principle, but is less 'optimistic', because it is unlikely that the extreme densities measured at a very 105 

local level can be extended to larger scales with the same amplitude. In other words, the variability 106 

observed below the upper quantiles is related to factors that are not observed and above the upper 107 

quantiles reflects the auto-organisation processes of biological populations (Weerman et al., 2011, 108 

2010).  In this way, a correlative SDM with QR get close to the main impacts of abiotic factors on the 109 

biological response, thus defining the optimal ecological niche. What is more, using abundance or 110 

biomass as the biological response, one obtains more than a specific geographical range based on 111 

presence/absence. Biomass is rather related to the growth and aging ability of individuals, whereas 112 

density rather indicates the patchiness of distribution and the effect of recruitment. Both are 113 

consequently meaningful to study how long a population live. 114 

Considerable work has been invested in SDM for many years, but only recently included marine 115 

environments, and the focus was more on pelagic areas (Melo-Merino et al., 2020; Robinson et al., 116 

2011, 2017), whereas intertidal and estuarine areas were less studied. Brown et al. mentioned the 117 

importance of ecological gradients (Brown et al., 1996), estuarine and intertidal environments are 118 

undeniably subject to massive, repeated and frequent gradients, due to the action of the tide and the 119 

influence of the river, both of which have major impacts on abiotic factors. However, the challenges of 120 

managing estuaries and coasts in the context of climate change and anthropogenic pressure are key 121 

issues (Crossland et al., 2005; Grassle, 2013). With respect to ecosystem services, among other things, 122 

an estuary is a shipping lane, a fishing ground and an area comprising diverse natural habitats. All these 123 

activities compete for space and have different needs and yet are linked to each other, so there is a 124 

need for decision support tools that improve their management and foresee their future development 125 

(Degraer et al., 2008; He et al., 2015; Schickele et al., 2020). The vulnerability of estuarine sediments 126 

to the sea level increase is studied for a long time (Healy et al., 2002) and it is very relevant to focus on 127 

the response of the benthic macrozoobenthos not only to temperature or salinity changes, but also to 128 

physical dynamics (current velocity, bed shear stress, sediment composition). 129 
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In estuarine ecosystems, benthic macrofauna (or macrozoobenthos) is found at different levels 130 

depending on the trophic guild to which it belongs (Dubois et al., 2007; Saint-Béat et al., 2013). The 131 

capacity of benthic macrofauna to resist external stressors is yet not fully understood, but abiotic factors 132 

are habitat-defining parameters on which a cohort of species depends (Ysebaert and Herman, 2002). 133 

In particular, sediment and hydrological parameters have a direct impact on the activity and spatial 134 

distribution of macrozoobenthos, with sediment acting as a food source, habitat, shelter and breeding 135 

ground but which can also cause discomfort. Sediment indicators, including grain size median and fine 136 

silt content, have been shown to strongly contribute to explaining variations in macrozoobenthic 137 

communities (Anderson, 2008; Thrush et al., 2005, 2003). The benthic macrofauna of the Seine Bay 138 

(Normandy, France) has been extensively studied in recent decades (Bacouillard et al., 2020; Baffreau 139 

et al., 2017; Dauvin, 2015; Le Guen et al., 2019) and estuarine management included in subsequent 140 

regional program frameworks (https://www.seine-aval.fr/). Accessing abiotic factors, and especially 141 

physical forcings, in an estuary is a challenge that can be solved by developing hydro-morpho-142 

sedimentary (HMS) models, which use principles of fluid and particle physics to define the parameters 143 

of interest in the estuary at an intermediate scale. The Seine estuary (Normandy, France) was the 144 

subject of the Mars3D model adjustment, which describes the dynamics of the physical parameters in 145 

an estuary, such as bottom elevation, salinity, temperature, current velocity, water surface elevation, 146 

with a particular effort invested in describing the erosion, deposition and consolidation properties of 147 

sand-mud mixtures (Grasso et al., 2021, 2018; Grasso and Le Hir, 2019; Mengual et al., 2020; Schulz 148 

et al., 2018). Such tools allow a temporal projection at a regional spatial scale and hence to make 149 

projections based on different sets.  150 

In a similar intertidal environment, examples of correlative SDMs using QR were developed by 151 

(Cozzoli et al., 2017, 2014, 2013). Indeed, using a long series of benthic macrofauna sampling 152 

campaigns in the Oosterschelde estuary (The Netherlands), and an HMS model in the same area, the 153 

SDM with QR above the 90th percentile enabled identification of the optimal conditions for biological 154 

response, in this case biomass, according to annual averages of the chosen factors. The authors 155 

characterize this model as habitat suitability or potential niche. By modelling a type of habitat rather than 156 

a biological response, this type of model reduces inter-annual variations caused by many unmeasured 157 

factors, is more informative about the environment under study, and provides a more functional 158 

management guide. Habitat suitability, i.e., relationships that describe physical-biological coupling, can 159 

then be used to understand the long-term and large-scale evolution of benthic species in response to 160 

changes in abiotic conditions, whether natural, anthropogenic, or due to climate change. 161 

In practice, correlative SDM with QR does not presuppose the type of equation that links abiotic 162 

factors to a biological response, or even the number of predictors to be used. This method can be used 163 

together with an expected response curve for each factor. It was observed that the biological response 164 

to physical factor is often non-linear, and can be modelled by a Gaussian distribution (Huisman et al., 165 

1993; Van Der Wal et al., 2008). In the present study, we built a SDM for an optimal ecological niche, 166 

to analyse the links between the spatial distribution of species and the physical characteristics of their 167 

habitat. The model consists in a correlative SDM based on QR (the statistical model) that provides a 168 

spatial description of the gradient of the best biological response (maximal occurrence) in regard of 169 
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selected abiotic factors generated by a hydro-morpho-sedimentary model. Using the Cerastoderma 170 

edule, the common cockle, as an example, the study compares the performances and results of linear, 171 

Gaussian and B-spline QR models as ecological models. Several combinations of abiotic factors were 172 

chosen because as mentioned in (Guisan and Zimmermann, 2000) “Nature is too complex and 173 

heterogeneous to be predicted accurately in every aspect of time and space from a single, although 174 

complex, model”. After applying a multivariate analysis (PCA) on physical descriptors, four sets based 175 

on combinations of two abiotic factors were processed because they can answer different ecological 176 

questions: daily maximum current speed & inundation time, daily salinity range & water temperature, 177 

daily salinity range & bathymetry, daily maximum bed shear stress & mud content. These models were 178 

geographically applied and analysed. A suitability index is also proposed as a tool for the management 179 

of estuarine ecological areas. 180 

 181 

2 Materials and Methods 182 

All data processing was conducted in R version 4.2.2 (2022-10-31 ucrt) except for Mars3D pre-183 

treatment in Matlab 2019a. Significance levels are p < .0001 with “****”, p < .001 with “***”, p < .01 with 184 

“**”, p < .05 with “*”. 185 

2.1 Study area 186 

The Seine estuary in Normandy, north-western France, is defined as the last 170 km of the river 187 

leading to the marine ecosystem close to Le Havre, it starts at Poses weir upstream and ends in the 188 

Seine Bay downstream. The Seine estuary is macrotidal (tidal range up to 8 m), and is subject to fresh 189 

water inflows ranging from 100 to more than 1000 m3.s-1, with a mean of 450 m3.s-1 in the two last 190 

decades. Tidal dynamics and the wave regime have a significant impact on the hydro-sedimentary 191 

dynamics of the mouth of the estuary (Grasso et al., 2021; Schulz et al., 2018). 192 

The mouth of the estuary hosts a variety of habitats that provide many ecosystem services (Beck et 193 

al., 2001; Boesch and Turner, 1984). In particular, intertidal mudflats play a crucial role in the Seine 194 

estuary and are areas of major interest including for nutrient recycling, coastline protection and as 195 

feeding / nesting sites for migratory birds. The Seine estuary is marked by structures that have 196 

profoundly modified this ecosystem, which is still undergoing changes that began at the beginning of 197 

the 20th century (Lesourd et al., 2016). Numerous dykes have been built and dredging has been carried 198 

out to increase the capacity of the navigation channel, which contributed to the disconnection of the two 199 

banks of the estuary and reduced the extent of wetlands. Among these works, some were huge projects 200 

construction of Normandy Bridge (1989-1995), which crosses the Seine estuary and the “Port 2000” 201 

project (2000-2005) to enlarge the port of Le Havre, mainly to allow large container ships to access new 202 

all-day loading platforms.  203 

The Port 2000 project involved ecological compensation in the form of the creation of a nature 204 

reserve in 1997, as well as the digging and dredging of an artificial channel in the north upstream mudflat 205 
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and the creation of a small island (Ilot Oiseaux) for migratory birds in the southern mudflat (Aulert et al., 206 

2009). Several historically known areas in the Seine estuary that differ in either their habitat or 207 

community have been studied, mainly mudflats and subtidal areas (Morelle et al., 2020; Tecchio et al., 208 

2016) (Figure 1).  209 

 210 

Figure 1 Maps showing the habitats defined in the dataset of the study area. Dots represent the 211 
location of the biological samples. 212 

2.2 Biological model 213 

The cockle Cerastoderma edule (Linnaeus, 1758) is a bivalve belonging to the family of Cardiidae 214 

which is widely distributed and exploited in waters off northern Europe up to north Iceland and off the 215 

coast of West Africa down to southern Senegal (Hayward and Ryland, 1995). The oval ribbed shells of 216 

the cockle can reach 6 cm in diameter and are white, yellowish or brown in colour, and its lifespan is 2-217 

3 years (Malham et al., 2012). Cockles are suspension-feeders, inhabiting the few uppermost 218 

centimetres of the sediment with its two siphons emerging from the surface. Its growth depends mainly 219 

on microphytobenthos in the juvenile stage and on trophic phytoplankton in the adult stage (Sauriau and 220 

Kang, 2000). 221 

Cockle habitats are located in the central areas of the foreshore subject to medium currents (between 222 

0.3 and 0.7 m.s-1 of maximum tidal current speed) (Herman et al., 1999; Ysebaert et al., 2002), typical 223 

marine salinity (> 30) and they prefer fine sands (slightly silty, grain size between 100 and 200 μm) 224 

(Cozzoli et al., 2014; Ubertini et al., 2012). This species can be found at particularly high densities in the 225 

English Channel, the most densely inhabited area being the Bay of Veys, (density in the order of 200 to 226 
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500 ind.m-²), and may exceptionally exceed 5000 ind.m-2 (Gosling, 2003; Mahony et al., 2022). Winter 227 

conditions, current intensity and stress (erosion) appear to explain the high mortality rates observed in 228 

some years (Herman et al., 1999; Van Colen et al., 2010). 229 

2.3 Datasets 230 

2.3.1 Biological data 231 

Data concerning the benthic macrofauna of the Seine Bay are grouped in a database named 232 

MAcrobenthos Baie et Estuaire de Seine (MABES) (Dauvin et al., 2006; L’Ebrellec et al., 2019). This 233 

dataset provides information on sampling (geolocation, sampling method) and fauna (density [ind.m-2], 234 

biomass [gAFDW.m-2] – Ash Free Dry Weight) collected in several projects for the past 40 years. This 235 

database was completed with data from the Cellule de Suivi du Littoral Normand (CSLN) surveys 236 

conducted for the Maison de l'Estuaire.  237 

The raw data (n = 50,948) were harmonised and grouped in a single database which contain a total 238 

of 31,079 observations, and 187 sampling stations (with some variation in coordinates from year to 239 

year), with an average of 87 stations sampled in each campaign (depending of the project), mainly in 240 

September, October, and November. A series of 5-year periods was chosen among the periods covered 241 

by the dataset, from 2000 to 2019 (the years before 2000 were discarded as they contained too few 242 

observations, n = 216), with only one or two sampling campaigns per year: 2000-2005, including the 243 

construction of ‘Port 2000’ which caused major disruptions in the estuary; 2006-2010; 2011-2015; 2016-244 

2019. A total of 627 different species are contained in the records.  245 

2.3.2 Hydro-Morpho-Sedimentary data 246 

The HMS dataset was generated during the ARES project using the Mars3D model (Grasso et al., 247 

2021, 2019). Mars3D can be used in the context of estuarine hydrodynamics and application to fine 248 

sediment and sand transport. This three-dimensional (3D) process-based model was set up and run 249 

under realistic forcings (including tide, waves, wind, and river discharge). The Mars3D model is 250 

composed of the hydrodynamic core forced by the WAVEWATCHIII® wave model (Roland and Ardhuin, 251 

2014) coupled with the MUSTANG sediment module (erosion, deposition, consolidation…). MUSTANG 252 

accounts for spatial and temporal variations in sand and mud content in the multi-layer sediment bed, 253 

as well as for consolidation processes, and also resolves advection/diffusion equations for different 254 

classes of particles in the water column (Grasso et al., 2018; Le Hir et al., 2011; Mengual et al., 2020).  255 

The ARES dataset covers the simulation periods 1990-2000 and 2005-2018. The period 2001-2004 256 

was not modelled because it corresponds to the period of construction of the Port 2000 project. The 257 

dataset outputs are available at intervals of 30 minutes for the entire Seine Bay area each hydrological 258 

year, starting on October 1st and finishing on September 30th. The hydrological sub-data contain 58 259 

variables, some of which depend on water depth, with 10 levels in the water column, of which only the 260 

median of the 3 lower layers were retained to reflect benthic conditions: current speed, temperature, 261 

salinity and SPM for 5 particles sizes. The other variables retained are bathymetry and the inundation 262 
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rate calculated from bathymetry and water height. The sedimentary sub-data contain 19 variables, some 263 

of which depend on the depth in the sediment, with 6 levels corresponding to 1 m, of which only the 264 

median of the 4 upper layers is retained, i.e. 10 cm to reflect benthic conditions: temperature, salinity 265 

and sediment concentration for 5 particles sizes. The other variables retained are the total thickness of 266 

the sediment and the bed shear stress. 267 

In addition to these variables, processing was carried out to extract other information. The daily 268 

maximum was calculated for current speed and bed shear stress, the daily range was calculated for 269 

salinity and temperature, and the yearly sediment budget was calculated from the variation in sediment 270 

thickness at the beginning and end of the year. The sediment total concentration is the sum of all 271 

sediment concentrations, and the mud content was deduced from the different particle size 272 

concentrations. All the variables selected and created, 14 in all, were brought down to a median 273 

calculated over the hydrological year. 274 

The 14 abiotic factors were studied to select the most relevant factors and limit their number to avoid 275 

autocorrelations. A PCA (FactoMineR::PCA and factoextra package for visualisation) based on a 276 

correlation matrix was carried out on all the factors, allowing complementary parameters to be identified 277 

on the two main axes. In addition, a correlation matrix provides a complementary view of the dataset, 278 

including the biomass and density of C. edule to ensure that there is no direct correlation between abiotic 279 

and biotic factors. Based on those analyses, 4 couples of abiotic factors were chosen. 280 

2.4 Model adjustments 281 

2.4.1 Quantile regression 282 

The quantile regression (QR) mathematical theory has been extensively expanded and described by 283 

Koenker in recent decades (Koenker, 2019; Koenker et al., 2019; Koenker and Bassett, 1978; Koenker 284 

and Hallock, 2000, 2001; Koenker and Machado, 1999). Its use in ecological studies has increased 285 

significantly since the work of Cade and Noon (Cade et al., 2005, 1999; Cade and Noon, 2003). 286 

Three different types of models were defined in this study (Table 1), all using two abiotic factors, but 287 

with different functions to link them to the biological response. Mathematical notation is based on (1) the 288 

 subscript for variables that are quantile-dependent, (2) β for model coefficients, that are vectors of 289 

length , (3) µ and  for mean and standard deviation. QR were performed with the quantreg package in 290 

R developed by Koenker. The three model types were computed with different quantiles  = [0.5, 0.9, 291 

0.95, 0.975], 0.5 being the equivalent of an OLS regression, and kept as a reference, the other values 292 

higher than 0.9 to seek for the optimum response. 293 

The model was adjusted on the biological data with an associated HMS cell to create SDMs, which 294 

were then applied to the HMS data set, focused on the estuary. The maximum of the SDM niche 295 

response was used to normalize the model response, to create a suitability index, ranging from 0 to 1. 296 

Table 1 List of types of models tested 297 
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Name Type Equation Rationale 

RQ2int RQ linear with 
interaction 

𝑦𝜏 =  𝛽0𝜏 + 𝛽1𝜏 . 𝑥1 + 𝛽2𝜏. 𝑥2

+ 𝛽3𝜏. 𝑥1. 𝑥2 

quantreg::rq(x1*x2) 

Comparison with the results in 
(Cozzoli et al., 2014) 

RQ2nli RQ bifactorial 
gaussian (non-
linear) 

𝑦τ = A. 𝑒
−[

(𝑥1−μ1τ)2

2.σ2τ
2 +

(𝑥2−μ2τ)2

2.σ1τ
2 ]

 

quantreg::nlrq(f(x1,x2, 

initial.conditions)) 

With µ and  initiated by the 
mean and the standard 
deviation for each predictor 
(Huisman et al., 1993; 
Schröder et al., 2005).  

RQ2bsp RQ linear with 
B-Spline 

quantreg::rq(splines:: 

bs(x1,degree=3,knots= 

median(x1))* 

bs(x2,degree=3,knots= 

median(x2))) 

Avoid pre-determined shape 
of the equation and the use of 
a non-linear function (Cozzoli 
et al., 2013) 

2.4.2 Model selection 298 

QR model validation was based on the Akaike Information Criterion (AIC). This index evaluates the 299 

performance of the model using the fewest possible predictors (Akaike, 1974), and was adapted to the 300 

QR (Cade et al., 2005), named AICc, and the delta with the minimum of the model series was processed 301 

(∆AICc). Following Koenker’s recommendation, the R1, equivalent to OLS R² developed by Koenker and 302 

Machado (Koenker and Machado, 1999), was not used (Koenker, 2006). 303 

In addition to AICc, the relationship between predicted and observed values was plotted. The 304 

predicted (model output) data were discretized in 10 homogeneous classes and for each class, the 305 

corresponding sample quantile of the observed data was calculated, with a bootstrap (R=1000) to cope 306 

with the limited number of records. To assess the validity of the model, a linear correlation was drawn 307 

for each quantile. 308 

3 Results 309 

High resolution and interactive figures are in the supplementary data in https://am-310 

lh.github.io/Melting_pot/SDM/SDM_Suppl_Data.html. 311 

3.1 Description of the biological data set  312 

Biological data for C. edule comprised a total of n = 543 observations. The observations were split 313 

into periods: 2000-2005 (n = 108), 2006-2010 (n = 155), 2011-2015 (n = 174), 2015-2019 (n = 106). The 314 

following treatment focussed on the mudflats used by C. edule (south mudflat (n = 218), north median 315 

mudflat (n = 198), north downstream mudflat (n = 82), north upstream mudflat (n = 2)). Differences in 316 

biomass and density are detailed as a function of the period and the different areas concerned (Supp. 317 

Data 3.1). The only noticeable spatial and temporal differences concerned biomass in the south mudflat 318 

and the north (median and downstream) mudflats in the period 2000-2005. 319 

https://am-lh.github.io/Melting_pot/SDM/SDM_Suppl_Data.html
https://am-lh.github.io/Melting_pot/SDM/SDM_Suppl_Data.html
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3.2 Selection of the Hydro-Morpho-Sedimentary factors and their association 320 

The PCA analysis on physical descriptors (Figure 2, Supp Data 3.2, detailed scores Table 2) gives 321 

3 main dimensions for a total variance of 65.4 % (PC1 = 28.8 %, PC2 = 20.7 %, PC3 = 15.9 %): 322 

• PC1 corresponds to the hydrodynamics of the area with the contributions of: daily maximum 323 

current speed (19.6 %), current speed (17.8 %), daily salinity range (17.8 %), daily maximum 324 

bed shear stress (10.9 %), MES mud (9.2 %), bed shear stress (8.7 %). 325 

• PC2 is related to the morphology of the estuary: inundation time (23.1 %), daily temperature 326 

range (20.4 %), bathymetry (19.9 %), salinity (14 %), temperature (8.3 %). 327 

• PC3 describes the sediments characteristics of the bed: sediment total concentration (30.2 328 

%), mud content (29 %), bed shear stress (18 %), daily maximum bed shear stress (7.2 %). 329 

Considering those axes, sets were built with two abiotic factors from different axis to more accurately 330 

describe the environment. The sets tested were: 331 

A. Daily maximum current speed [m.s-1] & inundation time [%] – PC1-PC2: These variables are 332 

the main contributors of the two firsts axes, are easily retrieved at high frequency and enable 333 

comparison with the study by Cozzoli et al. (Cozzoli et al., 2014). They are also interesting 334 

because they contain information on the localisation of the tidal area that could evolve with 335 

sea level rise and information on the hydrological conditions including fluctuations in the flow 336 

rate of the river linked to climate change. A significant correlation was observed between 337 

these two variables in the HMS dataset (R² = 0.56****). 338 

B. Daily salinity range & temperature [°C] – PC1-PC2: These factors are easily measurable at 339 

high frequency (Goberville et al., 2010) and are not correlated (R² = 0.02 ns). They illustrate 340 

two aspects of climate change: changes in the river regime which have an impact on the 341 

salinity profile of the estuary (Lheureux et al., 2022), and variations in water temperature 342 

(globally increase), to which species must gradually adapt. Daily temperature range, which 343 

made a better contribution to the PCA than temperature, provides information on the tidal 344 

thermal stress suffered by fauna. However, it is strongly defined by bathymetry, thus would 345 

reflect the sea level rise rather than long-term changes of temperature, it was therefore not 346 

selected. 347 

C. Daily salinity range & bathymetry [m] – PC1-PC2: Both factors are accessible at high 348 

frequency, at large scale, and can be measured remotely. They provide a good geographical 349 

description of the estuary, and are strongly affected by climate change, especially by the 350 

global sea level rise, marine intrusion, and changes in the river regime. They are not 351 

significantly correlated (R² = -0.08 ns). 352 

D. Daily maximum bed shear stress [Pa] & mud content [%] – PC1-PC3: These variables play a 353 

determining role in building an erosion model in the HMS model (R² = -0.29****). In addition, 354 

the choice relies on close links between the features of the sediment and the responses of 355 

the benthic communities (Andersen et al., 2005). 356 
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There was no correlation between biological data and any of the environmental factors. Despite the 357 

high level of correlation and significance between biomass and density (R² = 0.75****), neither of the 358 

factors were fully redundant, and the two were consequently analysed in parallel. 359 

 360 

Figure 2: PCA variable correlation plot with the abiotic factors’ contributions in bar plots for each axis. 361 
The red dotted line represents the mean contribution for all factors. 362 

 363 

Table 2 PCA scores for abiotic factors 364 

Variable Cos2 Contrib 

PC1 PC2 PC3 PC1 PC2 PC3 

inundation time 0.07 0.67 0.00 1.67 23.10 0.13 

current speed 0.72 0.05 0.01 17.82 1.86 0.46 

daily maximum current speed 0.79 0.00 0.01 19.65 0.02 0.42 

salinity 0.27 0.41 0.03 6.71 14.04 1.23 

daily salinity range 0.72 0.09 0.00 17.78 3.02 0.13 

temperature 0.07 0.24 0.02 1.83 8.31 1.00 

daily temperature range 0.00 0.59 0.01 0.01 20.44 0.52 

MES mud 0.37 0.01 0.13 9.18 0.24 5.68 

bathymetry 0.01 0.58 0.13 0.28 19.88 5.66 
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yearly sediment budget 0.00 0.16 0.01 0.00 5.47 0.38 

bed shear stress 0.35 0.04 0.40 8.68 1.35 17.99 

daily maximum bed shear stress 0.44 0.04 0.16 10.88 1.36 7.25 

sediment total concentration 0.10 0.02 0.67 2.51 0.60 30.19 

mud content 0.12 0.01 0.64 3.00 0.31 28.96 

 365 

 366 

3.3 Description of the Hydro-Morpho-Sedimentary data 367 

The selected predictors were observed during the same period and in the same area as the biological 368 

data (Supp. Data 3.3). Generally speaking, all the factors differed significantly in area and period: 369 

• Daily maximum current speed [m.s-1]: the most dynamic area was the channel, with a mean of 370 

1.05 +/- 0.21. The northern upstream and median mudflats were subject to temporal changes 371 

in the distribution of the current in the last period, which had an impact on their global mean 372 

(upstream 0.43 +/- 0.34; median 0.63 +/- 0.3). The south mudflat had same hydrological 373 

conditions than offshore, in between north upstream and median mudflat.  374 

• Inundation time [%]: The upstream mudflat, corresponding to upper intertidal areas, had higher 375 

tidal locations than the median mudflat, and shows a decrease in the last period. The south 376 

mudflat had higher inundation time than the north downstream mudflat, the latter being as 377 

subtidal than offshore and channel. 378 

• Daily salinity range: This factor varied considerably in space and over time. Offshore and south 379 

mudflat, salinity varied little during the day. Strongly influenced by the river, salinity in the 380 

channel vary of 15-20 during the day, but with a reduction as time went by. The highly 381 

dynamic variations in salinity in the three north mudflats decreased after 2005. 382 

• Temperature [°C]: A significant global increase in temperature was observed in all areas over 383 

time. The north median mudflat had the highest range, due to its intertidal location. 384 

• Mud content [%]: The north upstream mudflat and channel areas were composed with sandy 385 

mud sediment (north upstream mudflat 42 +/- 30; channel 43 +/- 25) with an increase of mud 386 

content for the channel over time. The others are more muddy sands (21 +/- 1), with a 387 

decrease of mud content over time. Mud distribution was heterogeneous in all the areas, 388 

especially the north upstream mudflat. 389 

• Daily maximum bed shear stress [N.m-2]: as reflected in the current speed, the channel had the 390 

highest BSS (3.02 +/- 1.35), while the BSS in the other areas was similar (1.53 +/- 0.65) and 391 

progressively increasing. In the north upstream mudflat, the BSS drop down in the last period 392 

under 1. 393 

• Bathymetry [m]: The depth of the channel and offshore were similar, with a mean range of 6.94-394 

7.95. The north downstream mudflat and the south mudflat were the next deepest areas 395 

(4.16 +/- 0.95), the median mudflat was 1.77 +/- 3.3, and north upstream mudflat was the 396 



 14/35  

 

shallowest, -1.59 +/- 2.63 (negative bathymetry being above the mean height of sea water) 397 

with again a drop at the last period.  398 

3.4 Methodology assessment 399 

All three calculation response models were used to build SDMs for each abiotic factor set at the 400 

different quantiles chosen. A general comparison of ∆AICc scores was undertaken for all the SDMs 401 

computed (Figure 3). The ∆AICc scores based on density were significantly higher than those based on 402 

biomass, and the choice of the quantile had a strong impact on the score. For instance, the best scores 403 

were obtained for the biomass SDMs with the 0.5 quantile, which would not help describe the optimum 404 

ecological niche. On average, the BSpline model ∆AICc were lower than the others (RQ2bsp = 2621 +/- 405 

1643, RQ2nli = 2717 +/- 1713, RQ2int = 2739 +/- 1697). With the same biological response and quantile 406 

(biomass and tau=0.95), the variations between SDM ∆AICcs were quite low with respect to total 407 

variability (RQ2bsp = 1480 +/- 58, RQ2nli = 1529 +/- 49, RQ2int = 1575 +/- 39). 408 

The predicted/observed plots (Figure 4 shows an example from set A), completed the observations 409 

of ∆AICc, i.e. RQ2bsp > RQ2nli > RQ2int (the regression lines of each quantile were closer to the 1:1 410 

line). However, RQ2nli performed better than RQ2bsp at the 95th centile, which was defined as the 411 

optimum quantile, i.e. the highest quantile that did not affect model quality, and was hence used for all 412 

subsequent analyses. 413 

Based on the range of both predictors under each set, the quantile responses of SDMs were 414 

calculated and illustrated by a surface plot (Figure 5 shows an example from set A, and interactive 3D 415 

plots are provided in Supp. Data 3.4). Although the performance indicators were good, graphically, the 416 

RQ2bsp model showed overfitting which prevented both modelling and prediction. This model was thus 417 

not used for any more analysis. 418 

 419 

Figure 3: ∆AICc comparison for all SDMs computed, according to the quantile, the type of model and 420 
the response. 421 
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 422 

Figure 4: Example of modelled vs observed data plotted for each model based on biomass versus 423 
Daily maximum current speed [m.s-1] and inundation time [%]. The black line represents the 1:1 ratio, 424 
quantiles 0,5 in red, 0.9 in orange, 0.95 in green and 0.975 in blue. 425 

 426 

Figure 5: Examples of SDM surface plots under set A: linear with interaction (A), Gaussian non-linear 427 
(B) and Cubic B-Spline linear (C). The upper panels show for each of the four quantiles: the biological 428 
data observed represented by a contour plot, the model response in colour gradient surface and the 429 
observed data over the model are represented by red stars; the lower panel shows the 3D plots with all 430 
processed quantiles superposed.  431 
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3.5 Optimal ecological niche 432 

3.5.1 Comparison of linear and nonlinear Quantile Regression 433 

The four sets of models with 2 crossed abiotic factors (A, B, C and D, see 3.2 for details) were treated 434 

with one of the two selected models: either linear with interaction, or non-linear with a bifactorial 435 

Gaussian equation, with biomass as biological response (Figure 6, and SDM based on density, 436 

predicted/observed plot and RQ2nli SDMs in 3D graph are available in Supp. Data 3.5.1). 437 

A. Daily maximum current speed [m.s-1] & inundation time [%]: RQ2int optimum was 94.82 438 

gAFDW/m² at 0 m.s-1 and 100 %; RQ2nli optimum was 233 gAFDW/m² at 0 m.s-1 and 100 439 

%. The predicted/observed plot shows that RQ2nli performed better than RQ2int. The niche 440 

that was described was a lower intertidal zone with low dynamics, a combination that is rarely 441 

found in the HMS model.  442 

B. Daily salinity range & temperature [°C]: RQ2int optimum was 68.96 gAFDW/m² at 0.2 and 443 

13.01°C; RQ2nli optimum was 91.35 gAFDW/m² at 0.2 and 12.35°C. The observations fitted 444 

well with the optimum, and the performances of the two models were similar. The ecological 445 

niche corresponding to these models was the mouth of the estuary under temperate 446 

conditions. 447 

C. Daily salinity range & bathymetry [m]: RQ2int optimum was 172.64 gAFDW/m² at 0.2 and 448 

13.95 m; RQ2nli optimum was 147.6 gAFDW/m² at 0.7 and 5.14 m. The observed data were 449 

close to the Gaussian optimum, but not to the linear one, the plot predicted/observed by the 450 

non-linear model was better. With the HMS model, only a few parts of the estuary were less 451 

than 5 m deep, thereby excluding the linear model optimum. With the Gaussian model, the 452 

optimum niche was the end of the mouth of the moderately low intertidal estuary. 453 

D. Daily maximum bed shear stress [Pa] & mud content [%]: RQ2int optimum was 104.58 454 

gAFDW/m² at 100 % and 0 Pa; RQ2nli optimum was 106.94 gAFDW/m² at 35 % and 1.33 455 

Pa. The non-linear model optimum was well represented by the observations, in contrast to 456 

the linear, even though the plots predicted/observed by both were good. The linear model 457 

was not in agreement with the knowledge provided by the biological model. The Gaussian 458 

model described a niche of muddy sand in a moderately active hydrodynamic area, likely 459 

undergoing erosion. 460 
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 461 

Figure 6: Sets of quantile regression models with 2 crossed abiotic factors (A,B,C and D see 3.2) 462 
computed with linear model (top row, numbered 1) and non-linear with the Gaussian equation (bottom 463 
row, numbered 2), the observed biological data under the model surface are represented by an isometric 464 
curve, the data over the model are represented by red stars. Each pair has its own range of biomass to 465 
ensure visibility. 466 

3.5.2 Non-linear quantile regression with bifactorial Gaussian equation models 467 

Overall, the non-linear model performed better than the linear model, and the density-based models 468 

were generally less relevant than models based on biomass (Figure 3). Thus, the quantile regression 469 

with bifactorial gaussian (RQ2nli) for biomass was the only model geographically applied and analysed, 470 

as the normalized suitability index. Each SDM for the RQ2nli model was applied on the HMS model web 471 

over the estuary, for each period (Figure 7, density in Supp. Data 3.5.2.1). The suitability index is given 472 

per period and area (Figure 8, density in Supp. Data 3.5.2.2, and suitability index compared to the two 473 

abiotic factor plot in Supp. Data 3.5.2.3), in detail: 474 

A. Daily maximum current speed [m.s-1] & inundation time [%]: The maps (Figure 7) showed that 475 

the channel and north mudflats were the least favourable areas, the south mudflats and 476 

offshore were more appropriate, but few locations were really optimum. The suitability index 477 

(Figure 8), which ranged from 0.1 to 0.3 and was generally stable, confirmed that the most 478 

suitable area was offshore, followed by south mudflat. The suitability of the north median 479 

and upstream mudflats improved after 2005, when they became better than the channel.  480 

B. Daily salinity range & temperature [°C]: The salinity part of the model had a noticeable effect 481 

on the result of the model (Figure 7), with a clear reduction in biomass in the river and its 482 

ETM area. The closer the estuary entrance to the sea, the higher the model, the offshore 483 

area having a clear advantage that increased from 2005 on. The suitability index (Figure 8) 484 

ranged from 0 to 0.7. The three north mudflats underwent a significant increase during the 485 

first three periods. Offshore and south mudflats were similar and the most suitable, joined by 486 

north downstream mudflat at the last 3 periods, the channel being the least suitable area. 487 
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C. Daily salinity range & bathymetry [m]: The optima for this model were clearly located on the 488 

south mudflat (Figure 7), results linked to the bathymetry. Offshore, a spot was high in the 489 

period 1996-1999 caused by dumping material dredged from the channel that was 490 

subsequently progressively smoothed. Suitability index was less than 0.5, the south mudflat 491 

being the best (Figure 8). Apart from the north median and downstream mudflats which 492 

increased over the first three periods, the indexes for each area remained steady. 493 

D. Daily maximum bed shear stress [Pa] & mud content [%]: This model result was very patchy 494 

at the scale of the estuary due to the equally patchy distribution of mud (Figure 7). This 495 

identified a channel with high biomass potential, which did not agree with expert knowledge. 496 

There was also an area with high biomass around the borders of the ETM area offshore 497 

which decreased over time, also due to the reduced mud content. Suitability ranged from 498 

0.25 to 0.75 (Figure 8), with a complex pattern. The suitability of the channel, offshore, south 499 

mudflat and north downstream mudflat decreased after 2005, while the suitability of north 500 

u!pstream and median mudflats improved. 501 
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 502 

Figure 7: SDM models suitability index applied on the Seine estuary over the five periods. 503 



 20/35  

 

 504 

Figure 8: Abiotic factors and resulting SDM suitability index per period and per area for all SDM 505 
models with a 95% confidence interval. 506 

4 Discussion 507 

4.1 Assessment of the methodology  508 

The quality of a SDM depends first and foremost on the reliability of the input data. The biological 509 

data used in this study comes from community monitoring programmes with a continuity of practices, 510 

and even of operators, which makes it possible to process data together over such a long period of time. 511 

Physical gradients condition complex interactions with fauna in estuaries (Chapman et al., 2010; 512 

Herman et al., 2001). However, community self-organisation also takes place at several overlapping 513 

spatial scales, strongly expressed by tidal constraints, where micro-scale organisations are able to 514 

create micro-climates (“shelters”) that can accommodate very high densities of fauna (Ettema and 515 

Wardle, 2002; Le Hir and Hily, 2005; Thrush et al., 2005; Underwood and Chapman, 1996). The abiotic 516 

field data, synchronous with the biological data, are more susceptible to highlight very small atypical 517 

habitats than macro-spatial trends. The use of a hydro-morpho-sedimentary model therefore makes it 518 

possible to better describe the overall “smoothed” environment. However, even if hydrological 519 

measurements and models are becoming increasingly reliable, modelling of the seabed and sediment 520 

transport still needs to be improved (Grasso et al., 2018). The complexity of an intertidal environment 521 

with its locally very different micro-habitats is difficult to portray on the scale of a model with a cell size 522 

of, at best, 100 m.  523 
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In order to align the biological data with the abiotic data, the latter were summarised at their annual 524 

median. With the exception of temperature, and to a lesser extent the daily maximum bed shear stress, 525 

the seasonal medians (winter from October to March and summer from April to September) do not differ 526 

significantly from the annual average. Nevertheless, the history of extreme events such as heat waves 527 

or storms is smoothed out, which is an obvious limitation of the study, as a punctual extreme event can 528 

lead to drastic changes in community succession initiated by a long-term change in physical conditions 529 

(Baltar et al., 2019).  530 

SDMs can be constructed using an unlimited set of abiotic variables to define an ecological niche. 531 

However, an n-dimensional space is difficult to analyse from an ecological point of view as would be 532 

recommended (Austin, 2002). On the contrary, a single SDM predictor is possible, but it represents a 533 

risk of oversimplification that would result in an unreliable model. The choice of using two predictors, 534 

selected via a PCA analysis, makes it possible to further refine the description of an environment, and 535 

visualize the niche to confront it to ecological knowledge and intrinsic ecophysiological processes. In 536 

addition, we chose to present four SDMs, because it seemed reasonable to show different combinations 537 

of selected factors, rather than describing only one « supposed » best solution. Our sets have been 538 

designed to assess the impacts of different climate change effects on an estuary, while ensuring that 539 

the models can also be applied to other estuarine environments. 540 

The quantile regression used in this study is interesting in that the biological response can be better 541 

modelled by two abiotic factors, even if there are other limiting factors. The abiotic data from HMS 542 

models can be used to describe complex patterns between the main physical factors, but at the very 543 

least they do not reflect the chemical variations (possible contamination) or biological interactions 544 

(competitive pressure, for example) involved in determining the dynamics of a population. Quantile 545 

regression at a high quantile level therefore makes it possible to limit the attenuating effects of factors 546 

not taken into account on the biological response.  547 

There are experimental studies on the biological response to ranges of variation in temperature, 548 

salinity or even pH, which can provide a better understanding of the mechanistic basis of metabolisms 549 

on organism performance (Hale et al., 2011; Łapucki and Normant, 2008; Lemasson et al., 2017; 550 

Madeira et al., 2021; Medeiros et al., 2020; Ong et al., 2017; Peteiro et al., 2018). However, this type of 551 

approach cannot be applied to incorporate the effects of other physical factors. Exploratory methods 552 

based on long series of observations, such as those proposed here, remain one good method for 553 

integrating all the processes responsible for changes in habitability for populations such as cockles, 554 

without any preconceived ideas. It is known that physical stresses play a very significant role in the 555 

population dynamics of this species. Our study may enable us to make better progress in understanding 556 

the possible evolution of species on a multifactorial basis, before going further and validating new 557 

hypotheses through comparisons with other ecosystems or new experimental work in macrocosms, for 558 

example, enabling us to better identify the effects of all the factors. 559 

This study compared a linear quantile regression to a non-linear quantile regression based on a bell-560 

shaped curve and a B-Spline model. Considering only the AIC and the predicted/observed graphs, the 561 

linear model with B-Spline of the 3rd degree can appear efficient. However, even if the three calculation 562 
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modes did provide a solution, the Gaussian model was the only adequate on an ecological point of view, 563 

that could truly rely upon specific traits. The choice of the observation quantile is a subject of discussion, 564 

as the SDMs produced very different results from one quantile to another. In this study, we chose to 565 

limit the number of quantiles to enable clear visualization of the models, but it is also possible to push 566 

the analysis to the point of looking for the highest quantile that still performs well. Yet, the aim of this 567 

study was to define the most favourable HMS conditions for the development of a species, not 568 

necessarily the niche representing the most exceptional circumstances. In fact, the very high quantiles 569 

will correspond to the niche that accounts for the biological observations resulting from the patchiness 570 

distribution of species. 571 

4.2 Optimal ecological niches for cockles 572 

When we compared the four sets of crossed factors (A: daily maximum current speed & inundation 573 

time, B:  daily salinity range & temperature, C: daily salinity range & bathymetry, D: daily maximum bed 574 

shear stress & mud content), the quantile regression adjusted models revealed differences between 575 

them linked to the choice of predictors that led to different levels of expected biomass. Therefore, as the 576 

modelled biomass represent a carrying capacity that are difficult to observe, it was decided to compare 577 

the standardised results for each SDM.  578 

The combination daily maximum current speed & inundation time (A) was based on the 579 

hydrodynamics generated by the meeting of the two masses of fresh and marine water under the effect 580 

of the tides and the fluvial regime (PCA1) and the morphology of the estuary, which generates shallow 581 

and intertidal areas (PCA2). Under these conditions, salinity increases with water depth, as it represents 582 

the upstream-downstream gradient of the estuary, and the greater the hydrodynamic conditions, the 583 

greater the mixing between fresh and marine waters. On the other hand, shallow waters follow day-to-584 

day temperature variations more dynamically. The optimum of this model therefore represents a low 585 

intertidal marine niche, without intense variation in salinity and temperature. For the daily maximum 586 

current speed, this model shows an interesting variation in the niche between the 95th and 97.5th 587 

quantiles (Figure 5): the optimum of the 97.5th percentile (0.5 m.s-1) is better represented by the 588 

observed data than the 95th, while the quantile plot shows a better performance of the 95th. 97.5th 589 

percentile shows that the cockle would have interest of having some hydrodynamics in their habitat. 590 

Using inundation time rather than bathymetry as an abiotic descriptor was a better way to reflect the 591 

type of tidal of the estuary, in this case macro-tidal. The tide affects the feeding periods of the benthic 592 

fauna and the periods when they are accessible to predators, but also the daily hydrological conditions, 593 

as shown in set A. For their SDM, Cozzoli et al. used the same set of parameters with a higher centile, 594 

97.5th, applied to a data set located in the Oosterschelde estuary, and obtained different results (Cozzoli 595 

et al., 2014). They observed that the optimum was found in a medium intertidal zone with a maximum 596 

current of 0.5 m.s-1. It should be noted that the current range was wider than the range we obtained for 597 

the SDMs in this study. 598 

The model using daily salinity range & temperature (B) is based on the same aspects of the estuary, 599 

only using the physico-chemical aspects of the water. The optimum niche for this model is low variations 600 
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of salinity, hence the mouth of the estuary since the model is not calculated in its fluvial part. The 601 

optimum temperature is temperate (12.35°C) meaning that at upper temperature, the suitability 602 

decreases. This optimum corresponds to a little warmer than the global temperature found in the 603 

estuary, without the seasonal variability (12.15 ± 4.75°C), meaning that the cockle population is 604 

acclimated to the normal conditions found in their habitat. The optimum niche based on daily salinity 605 

range & bathymetry (C) is the same as the previous model regarding the salinity parameter, and the 606 

optimum bathymetry (5.14 m) corresponds to the low intertidal areas, almost subtidal, as shown in SDM 607 

A. This model is therefore aligned with SDM A describing the low intertidal mouth of estuary. 608 

The model based on daily maximum bed shear stress & mud content (D) represents the 609 

hydrodynamics of the estuary (PC1) like the other 3 models, but adding another piece of information 610 

with the sediment composition of the estuary bed (PC3). The optimal daily maximum bed shear stress, 611 

corresponding to daily maximum current lower to 1 m.s-1, is likely to generate erosion (1.33 Pa), but on 612 

the contrary to the model A, the absence of hydrodynamics is not the optimum, as would suggest the 613 

97.5th quantile for model A. From a sedimentary point of view, the niche describes a muddy sand, which 614 

corresponds to what we know about the species. 615 

Overall, when considering all bifactorial Gaussian quantile regression models, the best conditions for 616 

cockles appear to be in lower intertidal marine areas, with temperate and low dynamic waters, settled 617 

in muddy sand sediment. This description is in agreement with habitat EUNIS 2008 A2.242: 618 

Cerastoderma edule and polychaetes in littoral muddy sand (Tillin and Tyler-Walters, 2016; Tyler-619 

Walters, 2007). Observations by Boyden and Russell in cockle habitats were similar, although these 620 

authors concluded that tidal flow was more determinant than salinity, the latter being an indirect indicator 621 

of the former in brackish waters, and that cockles were unable to settle in still water (Boyden and Russell, 622 

1972). SDM A was more tolerant to still water at the 95th centile, but in agreement at the 97.5th centile.  623 

4.3 A tool for ecosystem management 624 

The SDM is a useful tool for environmental management, able to highlight any spatio-temporal 625 

differences in a given territory and makes it possible to monitor changes in physical parameters that are 626 

more accessible than data on species communities. In the present study, we chose to display the main 627 

results of SDM in the form of suitability index, based on simple normalization, to characterise the 628 

differences between two areas and between two periods. By making the SDM dimensionless, the index 629 

prevents interpretation of the result as the real amount of biomass. Still, as SDMs are linked to HMS 630 

variables, the suitability index is a good indicator of potential levers to cope with changes in suitability, 631 

particularly due to human activities, as well as with the effects of the global climate change. 632 

When considering spatial application of the niches, an area under high human influence like the 633 

Seine estuary has HMS conditions that can be considered anomalies in the functioning of an estuary. 634 

The Seine channel is a major shipping route for the French economy and is therefore regularly dredged, 635 

and the sediment that is removed is dumped offshore. This artificial sediment transport not only modifies 636 

the bathymetry, but also the hydrological dynamics. As a result, certain areas of the estuary were applied 637 

but not included in the analysis of the results of the niche application: the Côte Fleurie and Octeville, the 638 
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port and the beach of Le Havre are areas heavily disturbed by human activities. In addition, Cap Hève, 639 

south of the Octeville area, is an area with a bedrock substrate in which cockles cannot be present. The 640 

spatial application of the model must therefore be limited to areas where human impact remains 641 

reasonable. For this reason, the analysis of the suitability index focuses on the mudflats, with the channel 642 

and the offshore area as points of comparison. 643 

As expected, all the suitability indexes show low values for the channel. North upstream and median 644 

mudflats are generally of the same range of suitability, quite low but slightly improving with time. North 645 

upstream mudflat shows a high range of variability, due to different conditions in the area. North 646 

downstream mudflat has an improvement of suitability, after 2005, to end at the same level than the 647 

south mudflat, except for SDM A, where it remains lower. The more suitable area was the south mudflat 648 

for all SDM, often at the same level as the offshore (expect for SDM C). The gradient from upstream to 649 

downstream is quite visible on all SDMs.  650 

If we compare the temporal evolution of the index for the different zones with the evolution of the 651 

abiotic factors, we can see that the evolution of the daily salinity range is the parameter that has the 652 

greatest impact on the intertidal zones. For the northern upstream and median mudflats, the variation in 653 

salinity decreased after 2005, i.e. after the Port 2000 project, which increased the channelling of the 654 

estuary and therefore reduced the communication between the river and the tidal flats along its banks. 655 

In addition, the global temperature shows a significant increase over the years, especially in intertidal 656 

areas, which led to more suitability in SDM B. This model is the only taking into account the direct effect 657 

of temperature increases due to climate change, that is already visible in the period of data available. 658 

This model is the most sensitive to heat waves and presents a risk if extrapolated outside the model's 659 

definition range, as it does not take into account the acclimatisation of species in the niche, or at least 660 

the rate of acclimatisation in relation to the rate of warming of the waters of the estuary. 661 

Although SDMs define optimum environments, they do not account for bioturbation or food-web 662 

processes, for example. Cockles are known eco-engineers which can modify their environment, 663 

especially sediment content (Donadi et al., 2014, 2013). They alter their habitat to obtain better 664 

conditions (Li et al., 2017), and interact strongly with the microphytobenthos, creating biofilms that alter 665 

sediment erosion properties (Eriksson et al., 2017; Ubertini et al., 2012). Those effects were assumed 666 

to be included in the variability of the response in all SDMs, but the processes themselves are inevitably 667 

hidden. Many of the processes involving fauna, flora and habitats have feedback loop effects, especially 668 

bioturbation, which have not yet been incorporated in HMS models, and the models thus fail to truly 669 

represent the mechanisms behind the species distribution. Even if self-organisation processes related 670 

to ecosystem engineering are totally masked by the SDM approach as direct factors, they must interfere 671 

and the best optimal habitat is in fact the one where self-organisation and other positive feedbacks 672 

[biogeochemical regulation by bioturbation processes and positive feedbacks with microphytobenthos 673 

production (Cade et al., 2005)]. This hypothesis could by tested experimentally to better refine the 674 

definition of optimal habitats. 675 

A further limitation of this study is the use of a single species, Cerastoderma edule, but our method 676 

can be used for other abundant species present in the estuary, particularly species that are known to 677 
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share the same habitats, such as Macoma balthica, Scrobicularia plana, Hediste diversicolor, 678 

Corophium volutator and Peringia ulvae  (EUNIS habitat A2.24 : Polychaete/bivalve-dominated muddy 679 

sand shores (A2.241/MA5251, A2.242/MA5252, A2.243/MA5253) and A2.31 : Polychaete/bivalve-680 

dominated mid estuarine mud shores (A2.312/MA6224, A2.313/MA6225) (European Environment 681 

Agency, 2023)). To go still further, it would be advantageous to develop a community scale indicator, 682 

based on the life traits, functional traits or ecosystem services the macrofauna can provide, as one 683 

species could progressively be replaced by another species that is equivalent from some points of view. 684 

Such upscaling would be important before applying the SDM to projections on a future representing the 685 

local effects of global climate change.  686 

5 Conclusion 687 

The development of accessible mathematical and statistical tools has considerably broadened the 688 

methodologies to build SDMs, and have been applied to different environments in dissimilar ways. Due 689 

to their complex structure and strong gradients, estuarine environments can benefit from the extraction 690 

of physical descriptors from models of water and sediment transports and the quantile regression 691 

approach. This tool helps define the areas that are suitable for targeted species based on a long time 692 

series data. However, the choice of environmental factors plays a decisive role in the result, and several 693 

models should be combined to obtain an overview of how the target fauna interacts with its environment. 694 

In this study, a suitability index is proposed as an indicator of the habitability of areas, based on a 695 

representative species, the cockle, but the index could be developed, as a prospect, into a community-696 

based index, in order to take better account of the ecosystem services that the benthic macrofauna 697 

provides to the estuary. 698 
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ensure visibility. 1037 
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models with a 95% confidence interval. 1040 
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