

Sediment grain size and benthic community structure in the eastern English Channel: species-dependent responses and environmental influence

Nathan Chauvel, Aurore Raoux, Pierre Weill, Laurent Dezileau, Anne Murat, Emmanuel Poizot, Nicolas Desroy, Éric Thiébaut, Jean-Claude Dauvin,

Jean-Philippe Pezy, et al.

▶ To cite this version:

Nathan Chauvel, Aurore Raoux, Pierre Weill, Laurent Dezileau, Anne Murat, et al.. Sediment grain size and benthic community structure in the eastern English Channel: speciesdependent responses and environmental influence. Marine Pollution Bulletin, 2024, 200, pp.116042. 10.1016/j.marpolbul.2024.116042. hal-04405000

HAL Id: hal-04405000 https://normandie-univ.hal.science/hal-04405000v1

Submitted on 19 Jan2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

1 Marine Pollution Bulletin

2 Sediment grain size and benthic community structure in the eastern English

3 Channel: species-dependent responses and environmental influence

- 4 Nathan Chauvel^{1*}; Aurore Raoux¹; Pierre Weill¹; Laurent Dezilleau¹; Yann Méar²; Anne Murat²; Emmanuel Poizot²;
- 5 Aurélie Foveau³; Nicolas Desroy³; Éric Thiébaut⁴; Jean-Claude Dauvin¹; Jean-Philippe Pezy¹
- ¹Normandie Université, UNICAEN, UNIROUEN, Laboratoire Morphodynamique Continentale et Côtière, CNRS
 UMR 6143 M2C, 24 rue des Tilleuls, 14000 Caen, France
- ²LUSAC-Intechmer, Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de
 la Mer (CNAM/INTECHMER), B.P. 324, 50103 Cherbourg, France
- ³Ifremer, Unité Littoral, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, 35800,
 Dinard, France
- ⁴Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin,
 Place Georges Teissier, 29680 Roscoff, France

14 Abstract

15 This study addresses the scarcity of evidence on the relationship between benthic communities and 16 coarse-grained sediments in the eastern English Channel. The region's geological history contributes 17 to its predominantly coarse sediment composition. The study employs ternary plots to visualize 18 benthic species' preferences and tolerance for sediment types, revealing their effectiveness. 19 Redundancy Analyses (RDA) and species-level quantile regressions explore the influence of grain size 20 on benthic species distribution. The results indicate a moderate impact of grain size, influenced by 21 hydrodynamics. Estuaries, particularly the Seine Estuary, significantly shape benthic species 22 distribution. Quantile regressions underscore the varied responses of benthic communities along the 23 grain size gradient. The study underscores the importance of considering coarse sediments, offering 24 insights into the complex relationship between benthic communities and sediment characteristics.

Keywords: coarse sediments, species distribution, sediment type, grain size analysis, marine aggregate
 extraction, offshore wind farms

27 *Corresponding author: nathan.chauvel@unicaen.fr

28 1. Introduction

29 The English Channel (EC) is a shallow epicontinental sea located between the United Kingdom to the 30 north and France to the south. It serves as a crucial seaway connecting the North Sea and the Atlantic 31 Ocean. The geological history and hydrodynamic forces that have shaped the EC have resulted in a 32 predominant coarse seabed composition (Dingwall, 1975; Larsonneur et al., 1982; Hamblin et al., 33 1992). Approximately 80% of the Channel's seabed consist of coarse sediments, ranging from coarse 34 sands to pebbles, which have accumulated in an extensive network of paleo-valleys (Gupta et al., 35 2007). These sediment deposits, some several meters thick, represent a significant source of accessible 36 aggregates. These unique characteristics of the EC makes it an intriguing and important area for 37 scientific research and resource exploitation (Dauvin and Lozachmeur, 2006; Dauvin, 2019), leading to 38 its recognition as one of the most anthropogenically influenced seas in the world (Halpern et al., 2008).

39 Numerous studies have highlighted the significant role of sediment characteristics, controlled by 40 sources, geological heritage, hydrodynamic forcings and depth, in shaping benthic communities 41 (Petersen, 1913; Ford, 1923; Sanders, 1958; Buchanan, 1963; Cabioch, 1968; Young and Rhoads, 1971; 42 Gray, 1974; Buchanan et al., 1978; Fresi et al., 1983; Clabaut and Davoult, 1989; Seiderer and Newell, 1999; Newell et al., 2001; Anderson, 2008; Foveau, 2009; Cooper and Barry, 2017). Early investigations, 43 44 primarily the oldest and most historical ones, concluded that sediment played a prominent role in 45 benthic community structure (Petersen, 1913; Ford, 1923; Sanders, 1958; Buchanan, 1963; Gray, 1974; 46 Buchanan et al., 1978; Fresi et al., 1983; Anderson, 2008). Several sediment parameters have been 47 identified as potential drivers of benthic community structure, which can be grouped into five 48 categories: 1) grain size, 2) organic matter content, 3) microbial composition, 4) sediment stability or 49 erodibility and 5) amensalistic interactions (see Snelgrove and Butman, 1994, for review). Other studies 50 present more nuanced views and emphasize the moderate importance of sediment (Tyler and Banner, 51 1977; Warwick and Davies, 1977; Seiderer and Newell, 1999; Newell et al., 2001) whilst few studies 52 conclude that sediment only plays a minor role (Larsen, 1979; Flint and Holland, 1980; Snelgrove and 53 Butman, 1994).

Despite these differences, it is important to note that the majority of these works have primarily focused on fine-grained sediments, which are less common in the subtidal domain of the EC. The scarcity of quantitative data on coarse sediments in the eastern EC can be attributed primarily to technical limitations. In the past, sediment sampling in these areas was primarily conducted using dredges, such as the anchor-type and Rallier du Baty dredges, during explorative surveys led by Norman Holme and Louis Cabioch in the 1960s and 1970s to assess benthic community distribution (Dauvin, 2015). However, these dredges only allowed for qualitative or semi-quantitative collection of 61 benthic organisms at best in coarse sediments. Consequently, there have been limited quantitative 62 studies examining the natural spatial and temporal variability of communities associated with coarse 63 sediments in this region, as on a global scale (Lozach and Dauvin, 2012; Pezy and Dauvin, 2021). The 64 use of the Hamon grab, which became more widespread, facilitated the quantitative sampling of 65 coarse sediments. Nevertheless, the sampling of such sediments remains challenging due to their 66 hardness and because of the overdispersion of large dominant organisms (Dauvin and Ruellet, 2008). Thus, in this sea, most quantitative data regarding coarse seabed have been acquired recently, and 67 68 only within relatively limited surface areas, as these samplings were mostly conducted as part of 69 environmental monitoring of marine aggregate extraction on the 20 concessions located in the EC 70 (Seiderer and Newell, 1999; Boyd and Rees, 2003; Newell et al., 2004; Cooper et al., 2007; Foden et 71 al., 2009; Foveau, 2009; Desprez et al., 2010). However, it's worth noting that this information is 72 somewhat different for the English side of the Channel, as the OneBenthic initiative has recently 73 facilitated the association of data gathered at these extraction sites to further investigate the benthos-74 sediment relationship (Cooper and Barry, 2017). Thus, only few studies have investigated the 75 relationship between grain size and benthic organisms in the EC (Seiderer and Newell, 1999; Newell et 76 al., 2001), and only at relatively small spatial scales.

77 This lack of knowledge is all the more prejudicial insofar as many anthropic activities are carried out 78 on coarse substrate in the EC, as well as on a global scale. These activities are represented by aggregate 79 extraction, marine disposal, the establishment of wind farms or by bottom fishing activities (Dauvin, 80 2012, 2019). The determination of the benthos-relationship is of utmost importance, as it has the potential to predict how benthos could be affected by these activities. For instance, marine aggregate 81 82 extraction not only leads to a fining of grain size in the zone but also disturbs the vertical structure of 83 sediments (Desprez, 2000; Boyd and Rees, 2003; Newell et al., 2004; Cooper et al., 2007; Foden et al., 84 2009, 2010; Desprez et al., 2010; Le Bot et al., 2010). Similarly, the establishment of wind farms can 85 result in localized organic matter enrichment (Boehlert and Gill, 2010; Lindeboom et al., 2011; Wang 86 et al., 2019; Ivanov et al., 2021; Robert et al., 2021), while fishing activities may cause the upwelling of 87 initially deeper sediment layers, thereby altering the sediment envelope of the environment (Foden et 88 al., 2010; Bradshaw et al., 2021). Moreover, it is crucial to be aware of the autoecology of species that compose benthic communities, especially since this compartment is very regularly used to assess the 89 90 environmental quality of an area (Zettler et al., 2013).

The scopes of this study are therefore to determine the influence of grain size on the distribution of
benthic species in the eastern EC and to identify which species are associated with coarse sediments,
which are predominant in this marine environment.

94 2. Material and methods

95 2.1. Data collection and sampling strategy

96

Figure 1: Maps displaying the sampling station locations for the different monitoring programs. The Wentworth scale is used
for sediment nature classification. The top map exclusively shows the locations of stations from the MABEMONO monitoring
program and the spatial extent of the smaller sites. The four smaller maps indicate the locations of GMO (Granulats de la
Manche Orientale) stations in the top-left, DLT (Dieppe Le Tréport) stations in the top-right, EOC (Éoliennes Offshore du

Calvados) stations in the bottom-left, PEC (PECTOW, yellow) and GMH (Granulats Marins Havrais, pink) stations in the bottom right. Sources: dataSHOM.

103 The data used for this study are derived from various monitoring programs and studies conducted over 104 the past two decades in the eastern EC (Table S1 for more details). All samples were collected using 105 Hamon or Van Veen grabs, allowing for quantitative sampling of benthic organisms. Stations sampled 106 using the Rallier du Baty dredge during some campaigns such as MABEMONO were excluded from the 107 analyses.

108 2.2. Data preparation

109 As some of the data were collected more than ten years ago, all species names were checked and 110 updated using World Register of Marine Species (WoRMS Editorial Board, 2023) on March 24, 2023. 111 Similarly, to avoid excessive abundance resulting from recruitment of various species, only individuals 112 collected on 2 mm mesh sieves were considered in the analyses described below (Lozach and Dauvin, 113 2012). In addition, to avoid influence of rare species, only those present in at least 3% of the samples 114 (676 species on the 852 initial ones) were retained for the analyses. Furthermore, to enable 115 comparison of abundances collected at different sites, the abundances were standardized to a surface of one square meter (1 m²). Finally, while this study primarily focuses on the role of coarse sediments 116 in the distribution of benthic species in the EC (prevalent in this sea and subject to numerous 117 118 anthropogenic activities), the addition of data from finer sediment facies was necessary to account for 119 all habitats encountered in the eastern EC and avoid bias in the analyses.

120 2.3. Sedimentary analyses

121

2.3.1. Grain size distribution analyses

122 Several granulometric variables were derived from the grain size distribution (GSD) data, obtained 123 through dry sieving. The diversity of the data used implies a range of sieve sizes, with the number of 124 sieves varying between 6 (for the finest sediments) and 32 sieves. However, all employed sieve ranges 125 had at least one sieve size of 63 µm and 2000 µm as finest and coarsest sieves, respectively, allowing 126 for interpretation of the results using the Wentworth scale. The granulometric variables included 127 sediment classification variables (gravel, sand, and mud percentages, following the Wentworth scale), 128 arithmetic variables (mean and median), distribution parameters (sorting, skewness, kurtosis), and 129 modal variables (main mode, number of modes). All grain size parameters were computed using the 130 arithmetic methods of moments, as reviewed in Blott and Pye (2001).

131 2.3.2. End-members analyses

The number of modes in the GSD was determined using an End-Member Modeling Analysis (EMMA)approach. EMMA is a valuable and flexible statistical approach in sedimentology that helps to identify

and quantify the underlying processes involved in sediment generation and deposition (Weltje, 1997;
Dietze et al., 2012, 2022). This method can effectively unmix multimodal GSD, providing insights into
sediment provenance, transport mechanisms, and depositional environments (Dietze et al., 2012,
2022).

138 EMMA was performed following the procedure outlined by Dietze et al. (2012) and Dietze and Dietze (2019) with the 'EMMAgeo' package in R (Dietze and Dietze, 2019). Prior to the analyses, the data were 139 140 regularized using linear interpolations, considering the variations in sieve number and sizes used to 141 examine the GSD across the different study sites. To mitigate scale effects, a weighting coefficient (I = 142 0.01) was applied to obtain a weighted matrix (Klovan and Imbrie, 1971) with unbiased variables (size 143 classes), which is common for variables with high variability (Weltje, 1997). After computing the EMMA 144 for each station within a site, the percentage of membership to one or more end-members was 145 determined, and the number of end-members with a membership percentage greater than 5% was 146 retained to define the number of modes characterizing the station. Finally, EMMA was employed to 147 determine the membership percentage to a fine sand mode of a station (referred to as "End-Member 148 1" or "EM1" hereafter), by constraining the analysis to only two end-members. The aim of this 149 approach is to distinguish the fine sand fraction (grain size ranging from 82 µm to 820 µm) from the 150 coarser fraction of sediment (grain size exceeding 820 µm). Thus, for all sites (except for PECTOW, 151 which exhibited a high mud percentage), EM1 represented the finest end-member of the distribution. 152 The distribution curves of the EM1 from the different study sites were then used to model a "global" 153 EM1 distribution after fitting a Gaussian function using the least squares method. This approach has 154 allowed the determination of a Gaussian function that represents the percentage of fine sand for the 155 multivariate analyses (as described in section 2.6.).

156 2.4. Plotting the benthos sedimentary envelope using ternary plots

Glémarec (1969) introduced a method for classifying benthic organisms according to their observed distribution in relation to sediment grain size using Shepard's diagram (Shepard, 1954). This classification system, which is based on nine classes following the sediment preference of organisms (Glémarec and Monniot, 1966; Glémarec, 1969), presents numerous advantages, as it enables an objective and visual classification of species within one or multiple granulometric classes (Fig. 2). Additionally, it facilitates the examination of the sedimentary envelope size that can be occupied by these organisms.

164

Figure 2: Ternary plot illustrating the classification proposed by Glémarec. The different classes correspond to: 1) strictly sand-dwelling organisms, 2) tolerant sand-dwelling organisms, 3) muddy-sand-dwelling organisms, 4) clean-sand-dwelling organisms, 5) sandy-muddy-dwelling organisms, 6) sandy-gravelly-dwelling organisms, 7) muddy-dwelling organisms, 8)
 gravelly-dwelling organisms, and 9) well-mixed-sediment dwelling species (adapted from Glémarec, 1969). The term "nd" denotes "not defined", as this group was not defined by the original author.

170 Initially, the data presented in the ternary plot were only based on occurrence data, where each 171 observation of at least one individual in a gravel/sand/mud condition was represented by a point 172 within the triangle. In this study, we propose an enhanced version of the plot by incorporating abundance data through the implementation of an Inverse Weighted Distance (IDW) interpolation 173 174 calculation. This approach allows us to estimate abundances for unsampled gravel/sand/mud 175 conditions and provides a more gradual representation of the data. The graphical representations were 176 generated using R-4.2.2 software with the 'Ternary' package (Smith, 2017). As interpolations required 177 a certain number of observations, only taxa with more than 30 observations were selected, totaling 178 229 species.

179 2.5. Fauna rates of changes along a sedimentary gradient

Quantile Regression (QR, Koenker and Bassett, 1978) is a statistical approach increasingly recognized in ecological research (Dunham et al., 2002; Cade and Noon, 2003; Anderson, 2008; Zettler et al., 2013). QR explores ecological data by assessing quantiles, providing insights into complex relationships. This method is valuable for estimating slopes, especially near maximum responses, even with a limited factor subset.

Thus, Quantile Regression Spline Models (QRSM) were fitted using the bs() function from the R 'base' package (Hastie, 1992) in combination with the rq() function from the 'quantreg' package (Koenker, 2022). These models were applied to analyze the abundance of the 41 most prevalent species, with the percentage of gravel (% grain size > 2 mm) treated as a continuous variable (see section 3.4. for more details). The quantile levels employed ranged from the 85th to the 95th (τ = 0.85 - 0.95) with 5% increments. To construct the B-splines, the piecewise polynomial degree was set to 2, 3, 4, or 5. The selection of the appropriate degree was based on the small-sample-correction version of Akaike's
Information Criterion (AICc), ensuring the use of a parsimonious model (Hurvich and Tsai, 1989;
Burnham and Anderson, 2004; Cade et al., 2005). The maximum value derived from the selected model
was considered as the optimum for each species.

To determine the 95% confidence interval of this optimum value, a Monte-Carlo Marginal Bootstrapping (MCMB) procedure was performed with 10,000 replications. The 95% boundaries of the bootstrapped optimum were then calculated for each species, representing the confidence interval of the optimum value at the 95% level. These analyses help to identify how the coarse sediment fraction (represented here by the gravel percentage) influences the abundance of benthic species and, consequently, their affinity and tolerance to coarse sediments in the eastern EC. This information is highly complementary to the insights gained from the ternary plots (see section 2.4.).

202 2.6. Multivariate analyses

203 2.6.1. Assessing grain size characteristics contribution to species distribution

Several studies have investigated species distribution along sediment grain size gradient, each using a different grain size parameter to assess this relationship (*e.g.*, mud percentage, median). However, depending on the sediment composition of the studied sites, some granulometric parameters might be more or less relevant in correlating species distribution with a sedimentary gradient.

208 To determine which grain size parameter is the most relevant for describing the distribution of benthic 209 species in the eastern EC, a Redundancy Analysis (RDA) was conducted on the species-abundance data 210 transformed by Hellinger (Legendre and Gallagher, 2001). These data were compared with the 211 different granulometric parameters presented in section 2.3. Variable selection was performed using 212 the ordistep() function from the 'vegan' package (Oksanen et al., 2022). For each test, 999 213 permutations were conducted, with a p-value threshold of 0.06 for exclusion and 0.05 for inclusion. 214 Both forward and backward procedures were applied, resulting in a similar final model. Once selected, 215 the absence of collinearity was assessed by calculating the Variance Inflation Factor (VIF), and variables 216 with VIF exceeding 10 were removed from the analysis due to potential collinearity (Marquandt, 1980). 217 The analyses were conducted on the entire set of taxa (after the species selection detailed in section 218 2.2.), as well as on a subset of "grain size-sensitive" species identified using ternary plots and QRSM 219 (see sections 2.4. and 2.5.) and after calculating the Spearman rank correlation coefficient (ρ) between 220 abundances and various granulometric parameters. Species with an absolute ρ value greater than or 221 equal to 0.5 were considered sensitive.

An equivalent procedure with additional environmental variables added to the model was alsoconducted (Table S2 for more details).

224

2.6.2. Mapping benthos and sediment spatial distribution in the eastern English

225 Channel

226 To complement the information provided by the different RDA analyses, two Hierarchical Ascending 227 Clustering (HAC) were performed to visualize the distribution of biological communities in relation to 228 GSD parameters within the eastern EC. For the DLT site, where data were collected on multiple dates 229 at the same station, the winter sampling data (predominant for the other sites) were prioritized. Thus, 230 the biological data were transformed using log(x+1) to minimize the effect of highly abundant species, 231 and the granulometric parameters used in subsection 2.6.1. were scaled to standardize the variables. 232 On these transformed data, a Bray-Curtis distance matrix for benthic organism abundance data and a 233 Manhattan distance matrix for granulometric parameters were computed. As these two distance 234 matrices were non-Euclidean, they were square root transformed before being used to perform a 235 Ward's Hierarchical Agglomerative Clustering, using an algorithm implementing the Ward's criterion 236 (Ward, 1963; Murtagh and Legendre, 2014). The formed clusters were then plotted on a map to 237 visualize the spatial correspondence that may exist between the two types of clustered data, and the 238 percentage of correspondence between the two classifications was subsequently determined by 239 calculating the Spearman correlation coefficient (ρ). Finally, heatmaps were plotted and associated 240 with the HAC to determine which granulometric parameters and species contributed the most to the 241 formation of the different clusters, using log(x+1) and scaled data used for the biological and grain size 242 datasets, respectively.

243 3. Results

244 3.1. Biological data summary

The selected species for the analyses (676 in total) were dominated by polychaetes (46%, comprising 311 species), malacostracans (24%, 162 species), bivalves (15%, 101 species), and gastropods (4%, 27 species). The most common species were the polychaetes *Nepthys hombergii* (54% occurrence), *Notomastus latericeus* (54%), and *Owenia fusiformis* (50%), and the most abundant species were *Owenia fusiformis* (466.6 ind./m², mean abundance), *Kurtiella bidentata* (246.1 ind./m²), and *Acrocnida brachiata* (87.7 ind./m²).

251 3.2. Species envelope identification

The ternary plots provide a valuable visualization of the sediment in which the studied species are most commonly found (Fig. 3). One can observe species that are predominantly associated with gravel or sandy gravel habitats, like *Galathea intermedia*, *Polititapes rhomboides* or *Glycymeris glycymeris*, species that show a preference for sandy habitats as *Echinocardium cordatum*, *Varicorbula gibba* or *Ensis leei*, as well as species that are more ubiquitous, occurring across different grain size conditions like *Caulleriella alata, Eteone longa* or *Notomastus latericeus* (Fig. 3). Interestingly, none of the species in the dataset appears to be strictly mud-dwelling. While some species can be found in muddy sediments, like *Owenia fusiformis, Kurtiella bidentata* or *Melinna palmata* (Fig. 3), it seems that none of them exhibit a true preference for highly muddy habitats (mud content exceeding 20%), but rather prefer less muddy environments. The presence of certain species in muddy habitats appears to reflect a certain tolerance to this grain size fraction rather than a genuine attraction to such environments.

These ternary plots are also useful to reveal differences in species sensitivities to changes in grain size. While some species exhibit a distinct peak in abundance within a specific sediment envelope and a decrease as conditions deviate from their preferred range (Fig. 3, *Galathea intermedia, Echinocardium cordatum* or *Varicorbula gibba*), other species like *Notomastus latericeus* display a broader peak of maximum abundance, resulting in a wider range of grain size where these species are found in high abundance, indicating a higher tolerance to variations in sediment composition.

Figure 3: Ternary plots of 12 species. Grain size fractions (mud, sand and gravel) are based on the Wentworth scale. N
 represents the total abundance and n denotes the occurrence of the species across all samples.

272 3.3. Fauna changes along a sedimentary gradient

273 Applying QR to the abundance distributions of multiple species allows for distinguishing several typical 274 responses based on the "edaphotope" (specific sediment or substrate conditions that are favorable to 275 a species) of the species along a grain size gradient, represented here by the percentage of gravel in 276 the sediment (for the reasons discussed later in section 3.4.). Thus, the biological response can take 277 the form of a skewed Gaussian distribution (Fig. 4a-b), a more or less gradual decreasing gradient (Fig. 278 4d-i, k), or a multimodal response (Fig. 4c, j, l). Species identified as predominantly gravel-dwelling in 279 the ternary plots (Fig. 3), except for Glycymeris glycymeris, appear to exhibit a Gaussian response, with 280 asymmetry tending towards lower percentages of gravel. Sand-dwelling and mud-dwelling species, on 281 the other hand, all show a decreasing curve along the grain size gradient, indicating a preference for 282 finer environments. Finally, more ubiquitous species (except for Eteone longa) and Glycymeris 283 glycymeris display a multimodal response, suggesting the potential existence of multiple grain size 284 preferences and validating the suitability of using B-splines to model the responses of different species.

285

Figure 4: (A) Quantile regression of 12 species encountered in the English Channel. The solid blue line represents the estimated
 optimal percentage of gravel for the species. The two dashed lines represent the lower and upper bounds of the 95%
 confidence interval around the estimated optimal value. In order to avoid overcrowding the graphical representation, only
 abundances below the 95th quantile were depicted in some cases. (B) Expected species successions along gravel gradient. Each
 ridge has been drawn using a quantile regression.

291 It is also interesting to note that for the two gravel-dwelling species exhibiting a Gaussian response 292 (Fig. 4a-b), the percentages of gravel associated to the highest abundances are relatively close, being 293 63% for *Galathea intermedia* and 58.3% for *Polititapes rhomboides*. Other species that can be 294 identified as preferring coarse habitats have shown optimal gravel percentages of a similar magnitude.

This is notably the case for *Leptochiton scabridus* (63.5%, data not shown) and *Spirobranchus triqueter* (66.9%, Fig. 4B), two species that live anchored to hard substrates. *Glycymeris glycymeris*, showing a different response, has an optimal gravel percentage identified at 82.6%, with a potential second preference observed around 20% of gravel, which is also reflected in the ternary plot of this species (Fig. 3).

300 By sorting these species according to their optimal gravel percentage, it is possible to visualize the 301 gradual turnover of potentially dominant species (Fig. 4B) along a gravel gradient, which corresponds 302 to an inshore-offshore gradient in the eastern EC. This turnover would lead from communities 303 dominated by sandy-dwelling species such as Varicorbula gibba and Pista cristata in coastal areas 304 (potentially with mud-tolerant species such as Owenia fusiformis or Melinna palmata when mud is 305 present, especially in estuaries and coastal embayment with muddy sediments) to offshore 306 communities dominated by more gravel-dwelling species such as Galathea intermedia, Spirobranchus 307 triqueter, and Eurysyllis tuberculata (Fig. 4B).

308 3.4. Grain size parameters influence on benthos distribution

309 Redundancy analysis (RDA) was performed on all taxa, examining their abundance in relation to various 310 granulometric parameters (Fig. 5a). Along the first axis of this RDA, which explains 12% of the total 311 inertia, stations characterized by a high percentage of gravel, a high sorting value (*i.e.*, poorly sorted), 312 and a high median (DLT, EOC, and GMO) are opposed to stations with an elevated positive skewness 313 (suggesting a gaussian asymmetry towards coarser sediments), observed for PEC, some GMH and 314 MABEMONO stations. The apparent opposition along axis 1 is therefore highly explained by grain size 315 parameters, separating stations characterized by a coarser sediment (gravelly or even coarser) from 316 those with finer sediment (sandy or finer). The coarser stations are characterized by high abundances 317 of Galathea intermedia, Spirobranchus triqueter, Notomastus latericeus (Fig. 5a), and Glycymeris 318 glycymeris (not shown). On the other hand, the stations with finer grain size exhibit high abundances 319 of Owenia fusiformis, Kurtiella bidentata, Phaxas pellucidus, Magelona spp., and Spiophanes bombyx 320 (Fig. 5a). These observations align with the findings of the ternary plots (Fig. 3), where Galathea 321 intermedia and Glycymeris glycymeris were identified as species associated with gravels, while Owenia 322 fusiformis and Kurtiella bidentata were associated with sandy and muddy environments.

Axis 2 of the RDA, on the other hand, explains only a very negligible fraction of the variance in benthic distributions, with a constrained eigenvalue lower than the unconstrained eigenvalue. This calls for caution in interpreting this component. Although this variable is poorly represented on axis 2, being more intermediate between components 1 and 2, the percentage of mud appears to be the sediment parameter that most discriminates the stations along axis 2 (Fig. 5a). The eastern EC is a relatively lowmud marine environment (Larsonneur et al., 1982), and only a few sediment stations included in this study, mainly from the PECTOW survey, exhibited a sufficiently significant mud percentage to be detectable. Hence, the only stations differentiated along axis 2 are those from PECTOW (along with a few estuarine stations from MABEMONO and GMH). This may explain the observed Guttman effect (Guttman, 1953), which is commonly observed when representing such variables in a multivariate space (Dauvin, 1988; Davoult, 1990). The adjusted R² of this RDA is reaching 0.2, which indicated that grain size parameters can explain 20% of total benthos distribution in the eastern part of the EC.

335 However, as shown by the ternary plots (Fig. 3), it appears that certain benthic species are more 336 affected by the grain size characteristics of the environment than others. Therefore, a second RDA was 337 performed after selecting 30 "grain size-sensitive" taxa. This analysis aimed to evaluate the most 338 discriminant parameters for these species (Fig. 5b). The results of this second RDA are relatively 339 consistent with those of the first RDA (Fig. 5a). By focusing only on these "grain size-sensitive" species, 340 it is observed that the adjusted R² of the overall RDA reaches 0.3, suggesting that, for these species, 341 their distribution and abundance can be explained up to 30% by sediment grain size alone. The variable 342 that appears to most constrain species distribution is the percentage of gravel, which is well 343 represented on axis 1 (Fig. 5b). Therefore, this variable was selected to plot QR (see section 3.3.) in 344 order to study the distributional changes in abundances along a grain size gradient. Here, it appears that grain size characteristics have a moderate influence on the distribution of benthic species, but it 345 346 is important to evaluate the contribution of other environmental variables to this distribution.

347

Figure 5 : Redundancy analysis (RDA) results showing the relationships between granulometric parameters and transformed

348 349 350 Hellinger abundance (a) all taxa sampled, present in at least 3% of all samples and (b) "grain size-sensitive" taxa of benthic species (scaling 2). The variable "Main mode" represents the grain size of the dominant mode. The colored points represent

351 the station, as follows: yellow for PECTOW, pink for GMH, blue for DLT, green for GMO, red for EOC and black for MABEMONO.

352 3.5. Grain size and environment influence on benthos distribution

353 Similar to the RDA analyses conducted with granulometric parameters alone (section 3.4.), the RDA 354 incorporating other environmental variables also exhibits a Guttman effect (Fig. 6, Guttman, 1953), 355 albeit with more nuances. This effect and the added variables contribute to a diagonalization of the 356 eigenspace, which is no longer solely interpretable in terms of components 1 and 2, but rather in terms 357 of an intermediate component, situated between components 1 and 2. This has also been emphasized 358 by Dauvin (1988), who recommended interpreting the observations' projections in the principal 359 component plane as a whole, rather than considering axes 1 and 2 separately. One of these 360 components involves the percentage of gravel, sorting value, grain size of the main mode, skewness, 361 as well as variables related to current dynamics (MCV) and wave exposure (KESW). In the upper left of 362 the eigenspace, the stations are characterized by a high percentage of gravel, an elevated negative 363 skewness (indicating a Gaussian asymmetry towards finer sediments), and strong hydrodynamics (e.g., 364 high current velocity), but no or a weak influence of waves. On the contrary, in the lower right of the 365 eigenspace, stations presented a lower gravel fraction, a higher percentage of sand (as indicated by 366 the membership percentage in EM1, Fig. 6), and a more nuanced hydrodynamics condition, with the 367 exception of waves that bring a significant amount of energy to these stations (KESW on Fig. 6). This 368 component represents an inshore-offshore gradient, with coastal stations (lower right) characterized 369 by moderate tidal currents, strong wave exposure, prone to the accumulation of fine sand sediment 370 (high membership percentage in EM1). Conversely, the stations depicted in the upper left would likely 371 correspond to offshore stations, characterized by strong hydrodynamics, no wave influence and a 372 predominantly coarse sediment composition.

373

Figure 6: Redundancy analysis (RDA) results showing the relationships between granulometric parameters, environmental variables, and transformed Hellinger abundance of benthic species present in at least 3% of all samples (scaling 2). The variable "Main Mode" represents the grain size of the dominant mode. Bathymetry is in negative values. MCV: Maximum Current Velocity. KESW: Kinetic Energy at the Seabed due to Waves. The colored points represent the station, as follows: yellow for PECTOW, pink for GMH, blue for DLT, green for GMO, red for EOC and black for MABEMONO.

379 The second component, which also exhibits a somewhat diagonal orientation, is characterized by 380 strong correlations with pH, oxygen concentration, salinity, bottom temperature, and percentage of 381 mud in the sediment. Therefore, stations located in the upper-right quadrant of the eigenspace are 382 characterized by high mud percentage, high oxygen concentration, higher pH, and lower salinity and bottom temperature compared to stations in the lower-left quadrant of the eigenspace. This 383 384 component can be interpreted as the effects of estuaries, particularly the Seine estuary, on the 385 environment. Thus, stations in the upper-right quadrant are heavily influenced by inputs from the 386 Seine River, resulting in significant desalination of the environment, lower bottom temperatures, and 387 substantial input of suspended matter, which explains the high percentage of mud at these stations. These stations are characterized by high abundances of species such as Owenia fusiformis, Kurtiella 388 389 bidentata, Abra alba, and Lagis koreni. In contrast, stations in the lower-left quadrant exhibit a weaker 390 (or no) estuarine influence, with warmer bottom temperatures and no desalination effects. These stations are notably characterized by high abundances of *Glycera lapidum* and *Polygordius lacteus*. 391

392 3.6. Mapping benthos and granulometric patterns

Hierarchical clustering revealed three major biological and granulometric clusters in the eastern EC. For the biological data (Fig. 7a, c), cluster *1* includes all stations from GMO and EOC sites, most stations from DLT and GMH sites, and some stations from the MABEMONO survey. This cluster was characterized by high abundances of species such as *Spirobranchus triqueter*, *Glycymeris glycymeris*, and *Galathea intermedia*. Cluster *2* consists almost exclusively of stations from the PECTOW survey, 398 except for one station from the MABEMONO survey (located offshore of the Rother River, UK, Fig. 7c) 399 and two stations from the GMH site, situated in the southeast part of this sector. This second cluster 400 was primarily characterized by high abundances of species such as Melinna palmata, Owenia 401 fusiformis, or Kurtiella bidentata. Lastly, cluster 3 comprises the remaining stations from PECTOW, 402 GMH, DLT, and MABEMONO, and was notably characterized by high abundances of the species 403 Nephtys cirrosa. The species Notomastus latericeus, Caulleriella alata, and Eteone longa, on the other 404 hand, did not appear to show higher abundances in one cluster over the other, in line with the patterns 405 observed in the ternary plots (Fig. 3).

406 Regarding the granulometric parameters (Fig. 7b, d), cluster 1 consists almost exclusively of data from the GMO and the MABEMONO surveys, characterized by a relatively high percentage of gravel, a high 407 408 mean and median, and a medium sorting value. Cluster 2 includes stations from MABEMONO, DLT, 409 GMH, some stations from GMO, PECTOW, and all stations from EOC. In contrast to cluster 1, this 410 second cluster also exhibited a high percentage of gravel, but with a lower mean and median value, as 411 well as a higher sorting value (indicating a poorer sediment sorting). Lastly, cluster 3 encompasses 412 stations from the PECTOW, DLT, MABEMONO, and GMH surveys. This cluster was generally 413 characterized by a high percentage of sand or mud.

414 There is a strong spatial correlation between benthic communities and granulometric parameters 415 within the formed clusters (Fig. 7c-d). By grouping clusters 1 and 2 from the granulometric clustering, 416 we obtain a cluster that closely resembles cluster 1 from the biological data clustering. Similarly, when 417 we group biological clusters 2 and 3, we get a cluster that closely matches granulometric cluster 3. 418 These groupings lead to a relatively high Spearman coefficient, indicating an 84% spatial match 419 between biological and granulometric clusters (Spearman's ρ =0.84, p<0.001). Lastly, the clustering of 420 granulometric parameters remarkably corresponds to the distribution of surface sediments in the 421 eastern EC (Fig. 1).

Figure 7: Hierarchical clustering and heatmap of (a) benthic abundance data and (b) granulometric parameters, and
 localization of the corresponding (c) biological and (d) granulometric clusters. Abundance data were log(x+1) transformed and
 granulometric parameters were scaled. Distance used were squared-root Bray-Curtis for biological data and squared-root
 Manhattan for granulometric parameters. Both hierarchical clustering were built using Ward's agglomerative algorithm
 (Ward, 1963; Murtagh and Legendre, 2014).

428 4. Discussion

429 4.1. Plotting species sedimentary envelope

430 Ternary plots have proven to be powerful representations to distinguish gravel-dwelling, sand-431 dwelling, and ubiquitous species. Many correspondences in classification between those initially 432 proposed by Glémarec (1969) for the continental shelf of the north of Bay of Biscay and the eastern 433 part of the EC have been noted. Species such as Glycymeris glycymeris, Polititapes rhomboides, Ensis 434 spp., Abra alba, or Owenia fusiformis were generally classified into the same categories (Glémarec, 435 1969). This highlights the applicability of this classification method for the eastern part of the EC. 436 However, these representations did not succeed to reveal any true mud-dwelling species in the eastern 437 EC, in contrast to what has been observed on the North of Bay of Biscay continental shelf (Glémarec, 438 1969), where few species like Abra nitida, A. segmentum, Sternaspis scutata, or Thyasira flexuosa have 439 been classified as strict mud-dwellers. Only Melinna palmata appears to come close to this 440 classification, although it seems to prefer slightly muddy sandy grounds (% mud < 20%), classifying it 441 as a mud-tolerant sand-dwelling species rather than a strict mud-dwelling species. Several hypotheses 442 could be proposed to explain the absence of strict mud-dwelling species in the eastern EC. The most 443 likely hypothesis is the absence or under-sampling of such habitats. Indeed, the only data from muddy stations were obtained from certain PECTOW monitoring stations. However, as indicated by RDA, the 444 445 estuarine influence present at these stations is so significant that the high variability in salinity and 446 temperature occurring there may not allow for the observation of the true abundances that potential 447 mud-dwelling species could exhibit under optimal environmental conditions. This bias could be 448 overcome by sampling a greater number of muddy habitats, which are less affected by the 449 environmental variations induced by the Seine Estuary, by complementing these data with stable 450 muddy habitats found in the eastern part of the EC (which are very scarce locations in this part of the 451 EC, Larsonneur et al., 1982). Including data from the western part of the EC can also be a solution, but 452 it must have to deal with the apparent climatic gradient when considering this part of the EC (Holme, 453 1961, 1966; Rees et al., 1999), even if the biotic homogenization (Olden and Rooney, 2006) would tend 454 to partially mitigate this gradient (Bolam et al., 2008).

455 4.2. Modeling species response along a grain size gradient

456 4.2.1 On the choice of conditional and response variables for investigating benthic species

457 distributions

458 At the scale of the eastern EC, RDA analyses appeared to indicate that gravel percentage was the most 459 relevant variable for discriminating the distribution of different samples and providing a better 460 description of benthic species distributions within this system, especially along the inshore-offshore 461 gradient. Hence, this variable was used to study the biological response along a grain size gradient 462 using QR. This finding is not surprising, considering the extensive coverage of coarse substrates in this 463 area, which account for over 80% of its surface (Larsonneur et al., 1982). Conversely, mud percentage 464 is a less relevant variable for studying the entire eastern EC system, as the only true muddy areas 465 investigated in this study were located at the Seine Estuary mouth (as underlined in section 4.1.). 466 However, similar to the findings underlined by Anderson (2008), the RDA analyses highlighted the 467 importance of using mud percentage to study the estuarine influence on benthic communities along a 468 grain size gradient, which is beyond the scope of this study (but discussed in more detail in subsection 469 4.5.2.). As emphasized by Anderson (2008), percentage of mud can serve as a proxy for various other 470 environmental factors in these estuarine systems, such as relative exposure, wave action, 471 permeability, porosity, or oxygen content (Gray, 1974; Anderson, 2008). On the other hand, Zettler et 472 al. (2013) and Cozzoli et al. (2013) opted to use the median of the GSD (d_{50}) and loss on ignition (LOI, a 473 proxy for sediment organic fraction) to model QR for different species sampled in major European 474 estuaries, in order to reconstruct the response of the species along the substrate gradient for each 475 salinity class. The use of these variables is justified as the compared estuaries in these studies are 476 spatially distant and may exhibit distinct hydrodynamic and sedimentary characteristics between the 477 sites. The differences in hydrological context in this case challenge the definition of mud, as the 478 mobilizing currents of the fine fraction may vary between these different estuaries (Dyer, 1995; Blott 479 and Pye, 2012). The use of d_{50} and LOI, which can be measured worldwide, is therefore particularly 480 justified within the framework of these studies. These observations underscore the necessity, for each 481 studied system, to judiciously select the most representative continuous environmental variable(s) to 482 investigate the distribution of benthic species along an environmental gradient, as well as the variable 483 that best represents the ecological relationship under study.

484 However, it should be noted that the measured variable (in this case, specific abundances per square 485 meter) could be replaced by a more representative biological variable that captures how well the 486 species thrives in the environment. Biomass, for example, would be a much more suitable choice, as it 487 indirectly represents the population size and also takes into account the species' ability to survive in a 488 given habitat (with the fittest and older individuals being more massive). This holds particularly true 489 for less mobile species like bivalves, where Glycymeris glycymeris, Polititapes rhomboides, Kurtiella 490 bidentata or Phaxas pellucidus serve as good candidates for capturing the effect of a grain size gradient 491 in the eastern EC. Unfortunately, this variable is relatively time-consuming to measure, which explains 492 why it is rarely used, and major protocol differences can make comparisons between different surveys 493 challenging.

494 4.2.2. Using quantile regressions for investigating benthic species distributions

495 This study, along with several previous ones (Cade and Noon, 2003; Thrush et al., 2003; Anderson, 496 2008; Vaz et al., 2008; Zettler et al., 2013), has highlighted the value of using QR, or more generally, 497 non-parametric regression methods. There are several advantages to consider when using these 498 methods. One major advantage is that they help to mitigate the influence of outliers, a common issue 499 in ecology (Benhadi-Marín, 2018), as mean-based regression methods are more sensitive to outliers 500 (Koenker and Bassett, 1978; Anderson, 2008). This characteristic has been particularly evident in 501 species that exhibit high variability in their biological response, such as polychaetes like Notomastus 502 *latericeus* or *Melinna palmata*, for example.

503 Furthermore, by modeling only the upper quantiles of distributions, it is assumed that the effects of 504 unmeasured variables will cause abundances to decrease (i.e., become more limiting) rather than 505 being facilitative (Kaiser et al., 1994; Terrell et al., 1996; Cade et al., 1999, 2005). For instance, in the 506 context of the eastern EC, even though the influence of the Seine Estuary on benthic communities has 507 been identified as a structuring force, QR have allowed to separate this effect and investigate the 508 distribution of several benthic species along a grain size gradient. This was achieved even when these 509 species showed sensitivity to the conditions imposed by the Seine Estuary (e.g., strong desalination, 510 decrease in bottom temperature). Thus, one of the major challenges in ecology, which is the unequal 511 variation of ecological data due to complex interactions between unmeasured factors, can be partially 512 overcome, enabling researchers to focus on the effect of the variable of interest and understand how 513 the environment limits the species' distribution.

514 Lastly, it is worth noting that biological responses exhibit unequal variations along a continuous 515 variable, implying that there is more than a single rate of change describing the relationship between 516 a response variable and measured predictor variables (Cade and Noon, 2003). QRSM are well-suited 517 for this purpose, as they estimate multiple rates of change from the minimum to maximum response, 518 providing a more comprehensive understanding of the relationships between variables that may be 519 missed by other regression methods, particularly linear ones. Therefore, QR are a statistically robust 520 tool for modeling species' responses to conditional environmental variables and studying the concept of limiting factors and the modeling of the "outer envelope" of species' distributions (Thrush et al., 521 522 2003; Zettler et al., 2013).

However, some limitations to using these statistical tools should be noted. One major disadvantage is that these models are dedicated to describing patterns in relation to a conditional variable, rather than attributing cause to this relationship (Ysebaert et al., 2002; Anderson, 2008). They provide valuable information about the type of response, optimum, or tolerance of a species to an environmental 527 variable without explaining the underlying biological causes. Consequently, the resulting models tend 528 to describe potential rather than actual patterns of species distributions (Vaz et al., 2008). To 529 complement these observations, further research is needed to investigate why such relationships are 530 observed and the true involvement of the conditional variable in the observed distributions. As 531 suggested by Snelgrove and Butman (1994), more experimental studies (using eco-hydraulic flumes or 532 mesocosms for instance) should be conducted to better understand the benthos-sediment 533 relationship, including the involvement of related factors such as hydrodynamics or larval settlement 534 in this relationship in order to include this knowledge into future models.

535 Another major limitation of using QR is the sample size. QR require a minimum amount of information 536 to be accurately modelled. In this study, for instance, only the 41 most abundant species were selected 537 for these analyses. Consequently, rare species that are highly specific to certain conditions are 538 disadvantaged. Additionally, samples must be adequately distributed across each order of magnitude 539 of the continuous scale under study (Thrush et al., 2005), to capture the entire variation of the 540 biological response along the conditional variable. In this study, a significant number of stations 541 characterized by high percentages of gravel (up to 98.8%) and stations depleted in gravel (down to 542 0%), characterized by high percentages of sand, mud, or a mixture of both, were included in these 543 analyses, thereby considering all the habitats encountered in the eastern EC, except for the muddy-544 gravel habitats with high abundances of *Ophiothrix fragilis* found in scarce locations of the central Bay 545 of Seine (Dauvin and Ruellet, 2008; Lozach et al., 2011; Murat et al., 2016).

Finally, although quite suitable, this method is currently relatively underutilized, particularly in the
context of the benthos-sediment relationship, which limits the extent of result comparisons (Cade and
Noon, 2003).

549 4.3. Species response along a grain size gradient

550 Using QRSM, Anderson (2008) found comparable biological responses to those reported in this study 551 when examining the correlation between mud percentage and estuarine species abundance. This 552 author identified four main response types: (i) a decline in abundance as mud content increased, (ii) a 553 unimodal relationship with a relatively precise estimated optimum, (iii) a unimodal relationship with a 554 relatively low precision in the estimated optimum, and (iv) an increase in abundance with increasing 555 mud content. Equivalents can be hypothesized with the gravel percentage, with decreasing 556 relationships as the gravel percentage increases (suggesting an increasing relationship with the 557 increase of sand, mud, or a mixture of both), and more or less spread unimodal relationships (skewed 558 Gaussians) with varying precision in the estimated optimum.

559 Additionally, similar to the observations made for Glycymeris glycymeris or Caulleriella alata, Anderson 560 (2008) also identified taxa exhibiting potentially multimodal responses within the Nereidae family or 561 the genus Paracalliope spp. This highlights the importance of using B-splines to model the response of 562 different species. However, it is possible that these multimodal responses could be attributed, at least 563 for some species, to a major methodological bias. Indeed, once the sediment is sampled, the vertical 564 structure is lost, as current sampling methods do not retain this information. It is therefore possible 565 that the actual sediment envelope of the species, the one in which the species is located, potentially 566 burrowed, may have characteristics that differ significantly from the "averaged" information obtained 567 by studying the GSD from sediment samples.

568 Take, for example, Glycymeris glycymeris. Although this species has been observed in both gravelly 569 and sandy environments (Ansell and Trueman, 1967), which seems to be confirmed by the results here, 570 it is possible that this species is actually present only within a gravelly envelope, burrowed under the 571 first centimeters of the sandy sediment. In fact, when examining the distribution of this species along 572 the gravel gradient (Fig. 8), we can observe that the density peak neighboring 20% of gravel is observed 573 at Dieppe Le Tréport (DLT on Fig. 8), while the second peak detected by QR, around 80%, corresponds 574 to abundances measured only at GMO. The DLT site is known to exhibit vertical stratification of its sediments, characterized by the presence of sand ripples overlying coarse sediments (visible on Fig. 1, 575 576 Ferret, 2011). The sand present at this site may therefore potentially "dilute" high percentage of gravel 577 found deeper, where G. glycymeris typically burrows. At the GMO site, gravels occupy the upper 578 sediment layers, including the envelope where G. glycymeris is present (G-tec pers. comm.), which 579 could explain why G. glycymeris is more abundant there. However, this hypothesis is probably not 580 verifiable since the depth to which G. glycymeris burrows appears to depend on the substratum (Ansell 581 and Trueman, 1967). In sand, this species is not deeply buried, and the posterior valve and mantle 582 margins are visible just above the surface (Ansell and Trueman, 1967). In gravel, animals bury deeper, 583 reaching depths of 'several cm' (Ansell and Trueman, 1967). Therefore, the two optima detected by 584 QR are likely not solely attributable to the bias described earlier, potentially implying the existence of 585 two ecotypes within this species.

586

Figure 8: Distribution of Glycymeris glycymeris abundances along a gravel percentage gradient. The points have been colored
 to represent the station where the abundance was measured.

589 To overcome this challenge, it would be interesting to investigate the vertical structure of sediments 590 at the different study sites and examine the vertical positioning of benthic species within the sediment. 591 Currently, there is limited data available on the vertical distribution of benthic species within coarse 592 sediments (Trueman et al., 1966; Dorgan, 2015), especially when they exhibit grain size stratification 593 (Navon, 2016). The scarcity of existing data on vertical sediment and biological distributions may be 594 historically attributed to technical limitations. For muddy sediments, typically characterized by high 595 levels of silt and clay, the use of Sediment Profile Imaging (SPI) has proven effectiveness in studying 596 sediment characteristics (vertical structuring, oxidized layer) and biological features (species burial 597 depth). However, in coarser and highly sandy environments, traditional SPI methods are less suitable 598 as they do not allow sufficient penetration into the sediment (Germano et al., 2011). To address this 599 challenge, the application of a DynamicSPI (DySPI) could be highly beneficial (Blanpain et al., 2009), as 600 the penetration mode of this device enables vertical investigation of coarser sediments.

601 4.4. Correspondence between sediment grain size and benthic community structure in

602 the eastern English Channel

603 In the eastern EC, several authors have found a relatively moderate correspondence between 604 sediment composition and the distribution of benthic species (Seiderer and Newell, 1999; Newell et 605 al., 2001). These studies obtained Spearman correlation coefficients (ρ) ranging from 0.37 (Seiderer 606 and Newell, 1999) to 0.44 (Newell et al., 2001) between biological communities and sediment grain 607 size at best, albeit primarily focusing only on coarse sediments and at a relatively small spatial scale. 608 According to these authors, such low values suggest that sediment grain size may play a minor role in 609 controlling benthic community structure. On a larger scale, encompassing both the eastern and 610 western EC (but only on the English side and with a limited number of stations), Rees et al. (1999) also 611 observed a moderate explanation of benthic community variability by sediment grain size ($\rho = 0.40$ for 612 sediment median diameter alone). Similarly, with a substantial dataset that still only encompassed the 613 English side of the EC and the surrounding waters of the United Kingdom, Cooper and Barry (2017) 614 found a 30% correlation between sand content and macrofaunal data. It's worth noting that the 615 highest explanatory rate, reaching 42%, was achieved when considering the current velocity along with 616 the sediment sand and mud percentages (Cooper and Barry, 2017). Thus, in line with the results of this 617 study, these authors also emphasize that sediment composition is not the exclusive primary factor 618 shaping benthic communities, as underlined by Bolam et al. (2008). Using side-scan sonar to 619 characterize sediment, similar perspectives have been obtained at various coarse sediment sites in the 620 EC, showing that seabed morphology (and not solely grain size composition) also has a significant 621 influence on benthic assemblages (Brown et al., 2001, 2002, 2004a, 2004b). These findings are 622 consistent with the results of this study, where grain size factors alone constrain the distribution of 623 species abundances in the eastern EC by "only" 20%. Despite this described minor contribution, 624 Seiderer and Newell (1999) still note a relatively strong correspondence between sediment 625 composition and the distribution of several species, such as Sabellaria spinulosa, which is mainly found 626 in coarse sand and gravelly substrates (2000-16000 µm). In the case of the eastern EC, this species has 627 also been observed in similar sediment conditions. Out of 48 occurrences, Sabellaria spinulosa was 628 associated with high percentages of gravel (ranging from 21% to 98%, with an average percentage of 629 57%) and coarse sand (ranging from 2% to 79%, with an average percentage of 43%), primarily at the 630 EOC and GMO sites, with a mean median grain size of 4230 µm. Sabellaria spinulosa is not the only 631 species showing a strong correspondence between its distribution and sediment composition, as 632 indicated by the strong spatial correlation (ρ =0.84) between the biological and granulometric clusters. 633 Other species such as Galathea intermedia, Glycymeris glycymeris, Polititapes rhomboides, 634 Spirobranchus triqueter, Owenia fusiformis, Abra alba or Phaxas pellucidus have shown high sensitivity 635 to grain size variations, exhibiting a strong correspondence between distribution and sediment 636 composition, as described by Seiderer and Newell (1999). By selecting these taxa, the percentage of 637 species distribution explained by granulometric parameters alone reached 30%, indicating that for 638 these species, grain size is a slightly more significant factor than for other more ubiquitous species. 639 These results, with some previous ones (Longhurst, 1958; Buchanan, 1963; Cassie and Michael, 1968; 640 Hughes and Thomas, 1971), collectively highlight the importance of a species-dependent approach to 641 study the benthos-sediment grain size relationship, which has been relatively understudied, where 642 most analyses focusing on the relationship between sediment composition and benthic assemblages 643 (Petersen, 1913; Ford, 1923; Seiderer and Newell, 1999; Newell et al., 2001).

644 By examining the benthos-grain size relationship after incorporating data from coarse environments 645 allows us to introduce some nuances to the conclusions drawn by Snelgrove and Butman (1994). At 646 the scale of the eastern EC, these parameters account for 20% of the variations in benthic communities 647 (a significant portion of the total variability), allowing for a good overall description of the community 648 distribution on a wide spatial scale, encompassing a great range of grain size. This is notably evident 649 through the 84% spatial match between the biological and grain size clusters (Fig. 7c-d). Furthermore, 650 it's worth noting that these conclusions may vary for species-level approaches (see previous sections 651 for more details), as not all species exhibit the same sensitivity to sediment grain size composition, 652 especially when the study area is primarily composed of coarse sediments. Indeed, coarse sediments 653 seem to support numerous species that require the presence of a coarse sediment fraction (such as 654 gravel or pebbles) for anchorage, for instance. This may also explain why the grain size-benthos 655 relationship appears to be more pronounced for such sediments when compared to sandy or muddy 656 ones.

4.5. Benthos shaping in the eastern English Channel

658 4.5.1. Sedimentary contribution to benthos structure

659 Several hypotheses can be formulated regarding how sediment grain size can affect the distribution of 660 benthic communities. The most obvious hypothesis is directly related to the physical substrate 661 provided by the sediment. Among the species identified as "grain size-sensitive", Spirobranchus 662 triqueter and Owenia fusiformis perfectly fit this notion. In the case of Spirobranchus triqueter, it 663 indeed requires a relatively coarse and stable substrate to anchor its calcareous tube (Tillin and Tyler-664 Walters, 2016). For Owenia fusiformis, the presence of sufficiently fine elements in the vicinity is 665 necessary for tube construction, without being too fine (Pinedo et al., 2000; Noffke et al., 2009). For 666 other "grain size-sensitive" species, the relationship may be less obvious, and several hypotheses have 667 been proposed. In these cases, sediment grain size is likely just a correlated variable to the true causes 668 driving their distributions (Snelgrove and Butman, 1994). In their review, Snelgrove and Butman (1994) 669 identified five major aspects of sediment variables to which benthos could respond. These aspects 670 include grain size (as discussed earlier), sediment organic matter content, microbial composition of the 671 sediment (bacteria and microalgae, particularly in finer sediments), sediment stability, and 672 amensalistic relationships occurring within the sediment (see Snelgrove and Butman, 1994, for details). 673 To summarize these last four major aspects, they particularly would influence the trophic ecology of 674 benthic species. For instance, deposit-feeders are more abundant in muddy habitats, while 675 suspension-feeders tend to have higher density in sandier areas (Sanders, 1958; Sanders et al., 1962; 676 Rhoads and Young, 1970; Rhoads, 1974). Based on this observation, Rhoads and Young (1970) 677 proposed the hypothesis of "trophic group amensalism" to explain the exclusion of suspension feeders 678 by deposit feeders in muddy habitats. According to this hypothesis, deposit feeders are less favored in 679 sandy areas due to the higher horizontal sediment fluxes (except for the "turbidity-influenced facies" 680 areas defined by Retière, 1979), which are more favorable for suspension feeders. On the other hand, 681 in muddy sediments, the resuspension of fine matter caused by the sediment reworking by deposit

feeders inhibits the filtering activity and larval burying of suspension feeders (Rhoads and Young, 1970;
Rhoads, 1974). While this hypothesis has received criticism in several aspects (see Snelgrove and
Butman, 1994, for review), it is one of the hypotheses explaining how sediment properties can
indirectly influence the distribution of benthic species, categorized into different functional groups.

686 However, it is important to note that the results presented here are based solely on a correlational 687 basis, which does not provide any explanation for the underlying mechanisms driving the observed 688 relationship (a limitation that was also highlighted in the species-based approach using QMRS, as 689 discussed in subsection 4.2.2.). Further experimental studies are needed to clarify these mechanisms 690 and determine the true implications of sedimentary factors in this relationship. Additionally, as 691 highlighted by Snelgrove and Butman (1994), the relationships between benthos and sediment may 692 be (perhaps exclusively) influenced by factors other than sediment properties. This perspective is 693 based on the understanding that sediment properties are reflective of boundary-layer flow and 694 sediment-transport regimes.

695 4.5.2. Other parameters influencing benthos structure

696 Among the non-sedimentary factors influencing the distribution of benthic species, hydrodynamic regime is likely one of the most influential factors shaping benthic community structure (Jumars and 697 698 Nowell, 1984; Davoult et al., 1988; Snelgrove and Butman, 1994). This suggestion is supported in the 699 eastern EC, where the RDA results demonstrate a strong correlation between hydrodynamic 700 parameters (e.g., maximum current velocity) and granulometric parameters (particularly gravel 701 percentage). Thus, it seems reasonable to consider granulometric characteristics as a reflection of the 702 hydrodynamic conditions, which have a greater impact on benthic communities than granulometric 703 parameters alone (although the influence of these parameters is likely not negligible, at least for 704 certain species, as discussed in subsection 4.5.1). This statement, however, must be nuanced for the 705 particular case of the EC. Indeed, this sea is classically described as being a sediment-starved platform 706 with coarse sediments that are less susceptible to mobilization by the prevailing currents, generating 707 "lag deposits" (Larsonneur et al., 1982; Reynaud et al., 2003). These coarse sediments are, in fact, 708 inherited from fluvial deposits during the last glacial period and subsequently reworked during the 709 Holocene transgression (Dingwall, 1975; Larsonneur et al., 1982). Additionally, the characteristics 710 attributed to the extensive bioclastic sediment cover (Larsonneur et al., 1982) in the EC should not be 711 overlooked. These sediments correspond to *in situ* production and may thus not be in equilibrium with 712 hydrodynamic conditions (Larsonneur et al., 1982). Moreover, their size is likely to decrease over time 713 due to fragmentation (Zuschin et al., 2003; Rieux, 2018). However, hydrodynamic forcing can still 714 influence benthic communities through various processes, including larval dispersal and settlement 715 through passive and active mechanisms (Thorson, 1957; Butman, 1987), as well as on trophic aspects by influencing the vertical and horizontal fluxes of organic matter (Sanders, 1958; Wildish, 1977), which
may partially explain the "trophic group amensalism" hypothesis presented in subsection 4.5.1.
(Rhoads and Young, 1970; Rhoads, 1974).

719 The RDA analysis also reveals an effect of the Seine River in the eastern EC, particularly in terms of 720 salinity drops and high seasonal temperature variations that can influence benthic communities. 721 Similar influences have been observed by Thiébaut et al. (1997), Ghertsos et al. (2001) and Dauvin et 722 al. (2017), but only at the smaller scale of the river mouth. Here, the observed effect appears to be 723 more gradual and follows the "coastal flow" also called "Region Of Freshwater Influence", or ROFI, 724 which has already been described as impacting biological communities, both benthic (Cabioch and 725 Glaçon, 1977, leading to the presence of Conopeum facies as indicators of salinity decreases) and 726 phytoplanktonic (Brylinski et al., 1984; Quisthoudt, 1987). Based on samplings conducted along the 727 English coast (including the North Sea, the EC, and the Bristol Channel), Rees et al. (1999) also detected 728 the significant contribution of major estuaries discharging into these seas, particularly highlighting the 729 influences of the Elbe/Weser, Tees, the Wash, Thames, Bristol Channel, Morecambe Bay, and Belfast 730 Lough. Therefore, it is not surprising that at the scale of the eastern EC, the contribution of the Seine 731 River plays a major role in shaping the distribution of benthic species.

732 5. Conclusions

733 This study explored the relationship between sediment grain size and benthic community structure in 734 the eastern English Channel (EC). The results indicated that the correspondence between sediment 735 composition and the distribution of benthic species is moderate, but it also depends on scale and 736 species. Some species, termed "grain size-sensitive", showed a strong correspondence between their 737 distribution and sediment composition, while others exhibited more ubiquitous responses. Sediment 738 grain size alone accounted for approximately 20% of the distribution of species abundances in the 739 eastern EC, indicating that other factors also play significant roles. The results also highlight the 740 importance of considering hydrodynamic influences, where the maximum current velocity was found 741 to be a relevant factor. The Seine River's influence on benthic communities was also evidenced, leading 742 to salinity decrease, turbidity increase and high seasonal temperature variability that influence some 743 species' distributions. Quantile regression revealed non-linear responses along grain size gradient for 744 several species, with some showing multimodal patterns. This approach provided a comprehensive 745 understanding of the relationships between species and sediment characteristics, taking into account 746 species-specific responses and the influence of environmental factors.

747 Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or

749 not-for-profit sectors.

750 CRediT authorphip contribution statement

Nathan Chauvel: Conceptualization, Formal analysis, Investigation, Visualization, Methodology, 751 Writing - original draft. Aurore Raoux: Data curation, Writing - review & editing. Pierre Weill: 752 753 Supervision, Methodology, Writing – review & editing. Laurent Dezilleau: Supervision, Writing – review 754 & editing. Yann Méar: Formal analysis, Writing - review & editing. Anne Murat: Formal analysis, 755 Writing - review & editing. Emmanuel Poizot: Formal analysis, Writing - review & editing. Aurélie 756 Foveau: Data curation, Writing - review & editing. Nicolas Desroy: Data curation, Writing - review & 757 editing. Éric Thiébaut: Data curation, Writing – review & editing. Jean-Claude Dauvin: Data curation, 758 Writing - review & editing. Jean-Philippe Pezy: Data curation, Supervision, Methodology, Writing -759 review & editing.

760 Acknowledgments

761 The present study was conducted as part of N. Chauvel's PhD thesis, funded by a ministerial 762 scholarship. The authors express their gratitude to the French Ministry of Higher Education and 763 Research for their financial support. We would also like to extend our appreciation to Magalie Legrain 764 for her invaluable contribution in conducting the majority of the granulometric analyses used in this 765 work. Special thanks to Sophie Lozach and Clément Garcia for acquiring part of the data and their 766 constructive discussions related to this paper. Similarly, our sincere thanks go to all persons involved 767 in the sample collection campaigns and subsequent sample processing, including the crews of the oceanographic vessels. Finally, we would like to thanks the two anonymous reviewers for their valuable 768 769 comments, contributing to the enhancement of this paper.

770 Appendix A. Supplementary data

771 772 773 Table S1: Summary of the methodological characteristics employed to collect the various data used. In the 'No. of stations

(replicates)' column, the number preceding the letters F and S designates the number of replicates for faunistic and

sedimentary analyses, respectively.

Site	MABEMONO	PECTOW (PEC)	Éoliennes Offshores du Calvados (EOC)	Granulats Marins Havrais (GMH)	Granulats	de la Manche (GMO)	e Orientale	Dieppe Le Tréport (DLT)
Surveys	MABEMONO (MAcroBEnthos de la Manche Orientale et du sud de la mer du NOrd)	PECTOW (PECTinaria koreni and OWenia fusiformis)	AN	NA	GIE GMO monitoring program	ROVMACE	BEMACE	NA
Date	-From March 2006 to November 2007	-March 2001, 2006, 2011 & 2016	-March 2020 & 2021	-February 2013 & 2021	-April 2018	-April 2009 -August 2009 -April 2010	-June 2007 -September 2007	-September 2014/2015 -March 2015/2016
Human activity	AN	Ч	Future location of an offshore wind farm (2025)	Aggregate extraction (open in 2019)	Aggregate	extraction (beg	an in 2012)	Future location of an offshore wind farm (2025)
N° stations (replicates)	101 (3F 1S)	73 (5F 1S)	6 (3F 1S)	18 (5 F 1S) and 20 (3F 1S)	20 (3F 1S)	E) 66	3F 1S)	25 (3F 1S)
Sampling	0.25 m² Hamon grab	Van Veen and Hamon grabs $(0.1 \text{ and } 0.25 \text{ m}^2)$	0.1 m² Van Veen grab	0.1 m² Hamon grab	0.1 m² Van Veen grab	0.25 m² H	amon grab	Van Veen grab (0.1 m²)
GSD analysis	20 sieves from 50 to 50000 µm	-2001, 2006, 2016: 14 sieves from 63 to 10000 μm -2011: 32 sieves from 50 to 63000 μm	27 sieves from 63 to 25000 µm	32 sieves from 50 to 63000 µm	32 sieves from 50 to 63000 μm	20 sieves from 50 to 50000 μm	20 sieves from 50 to 50000 µm	32 sieves, from 50 to 63000 µm
Sediment characteristics	Overview of the sediment types encountered in the eastern English Channel	More or less muddy sands	Medium-grained sediment, consisting mostly of relatively clean sands, occasional occurrences of gravels	West-to-east gradient of decreasing sediment grain size	Coarse subst characteriz	rate relatively h ed by a bed of s	omogeneous, andy gravel	Three main sediment facies, arranged in a fining gradient from southwest to northeast. Sand dunes.
Data sources	Foveau (2009)	<u>https://doi.org/10.18142/154</u> Bacouillard et al. (2020)	Raoux et al. (2021)	Pezy et al. (2013); Pezy et al. (2021)	Pezy et al. (2019)	Lozach (2011)	Lozach (2011)	Pezy (2017)

774 Table S2: Supplementary environmental variables added for the multivariate analyses.

Variable (Acronym in multivariate analyses, if relevant)	Spatial resolution (Approximate values)	Value	Units	Source
Bathymetry	115 x 115 m²	Measured and modelled values	meters (m)	https://emodnet.ec.europa.eu/ en
Photosynthetic Active Radiation at the seabed (PAR)	100 x 100 m²	Satellite measurements	mol.photon.m ⁻² .d ⁻¹	https://emodnet.ec.europa.eu/en
Average Kinetic Energy at the Seabed due to Waves (KESW)	100 x 100 m²	90 th percentile annual average obtained from models	N.m ² .s ⁻¹	<u>https://emodnet.ec.europa.eu/en</u>
Maximum Current Velocity (MCV)	-	Ranges of maximum current values obtained from numerical models	m.s ⁻¹	https://data.shom.fr/
Seabed temperature	7 x 7 km²	Monthly average values derived from models	°C	https://doi.org/10.48670/moi-00059
Salinity	7 x 7 km²	Monthly average values derived from models	-	https://doi.org/10.48670/moi-00059
Mass concentration of chlorophyll a ([Chla])	7 x 7 km²	Monthly average values derived from models	mg.m ⁻³	https://doi.org/10.48670/moi-00058
рН	7 x 7 km²	Monthly average values derived from models	-	https://doi.org/10.48670/moi-00058
O ₂ concentration (O ₂)	7 x 7 km²	Monthly average values derived from models	mmol.m ⁻³	https://doi.org/10.48670/moi-00058

776 References

- 777 Anderson, M.J., 2008. Animal-sediment relationships re-visited: Characterising species' distributions
- along an environmental gradient using canonical analysis and quantile regression splines. J. Exp. Mar.
- 779 Biol. Ecol. 366, 16–27. https://doi.org/10.1016/j.jembe.2008.07.006
- 780 Ansell, A.D., Trueman, E.R., 1967. Observations on burrowing in *Glycymeris glycymeris* (L.) (Bivalvia,
- 781 Arcacea). J. Exp. Mar. Biol. Ecol. 1, 65–75. https://doi.org/10.1016/0022-0981(67)90007-X
- 782 Bacouillard, L., Baux, N., Dauvin, J.C., Desroy, N., Geiger, K.J., Gentil, F., Thiébaut, É., 2020. Long-term
- spatio-temporal changes of the muddy fine sand benthic community of the Bay of Seine (eastern
- 784 English Channel). Mar. Env. Res. 161, 105062. <u>https://doi.org/10.1016/j.marenvres.2020.105062</u>
- 785 Benhadi-Marín, J., 2018. A conceptual framework to deal with outliers in ecology. Biodivers. Conserv.
- 786 27, 3295–3300. <u>https://doi.org/10.1007/s10531-018-1602-2</u>
- 787 Blanpain, O., du Bois, P.B., Cugier, P., Lafite, R., Lunven, M., Dupont, J., Le Gall, E., Legrand, J., Pichavant,
- P., 2009. Dynamic sediment profile imaging (DySPI): a new field method for the study of dynamic
 processes at the sediment-water interface. Limnol. Oceanogr.: Methods 7, 8–20.
- processes at the sediment-water interface. Limnol. Oceanogr.: Methods 7,
 <u>https://doi.org/10.4319/lom.2009.7.8</u>
- 791 Blott, S.J., Pye, K., 2012. Particle size scales and classification of sediment types based on particle size
- 792 distributions: Review and recommended procedures. Sedimentology 59, 2071–2096.
 793 https://doi.org/10.1111/j.1365-3091.2012.01335.x
- Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of
 unconsolidated sediments. Earth Surf. Process. Landforms 26, 1237–1248.
 https://doi.org/10.1002/esp.261
- Boehlert, G., Gill, A., 2010. Environmental and Ecological Effects of Ocean Renewable Energy
 Development A Current Synthesis. Oceanography 23, 68–81.
 https://doi.org/10.5670/oceanog.2010.46
- Bolam, S.G., Eggleton, J., Smith, R., Mason, C., Vanstaen, K., Rees, H., 2008. Spatial distribution of
 macrofaunal assemblages along the English Channel. J. Mar. Biol. Ass. U.K. 88, 675–687.
 https://doi.org/10.1017/S0025315408001276
- 803 Boyd, S.E., Rees, H.L., 2003. An examination of the spatial scale of impact on the marine benthos arising
- from marine aggregate extraction in the central English Channel. Estuar. Coast. Shelf Sci. 57, 1–16.
- 805 <u>https://doi.org/10.1016/S0272-7714(02)00313-X</u>

- Bradshaw, C., Jakobsson, M., Brüchert, V., Bonaglia, S., Mörth, C.-M., Muchowski, J., Stranne, C., Sköld,
 M., 2021. Physical Disturbance by Bottom Trawling Suspends Particulate Matter and Alters
 Biogeochemical Processes on and Near the Seafloor. Front. Mar. Sci. 8, 683331.
 https://doi.org/10.3389/fmars.2021.683331
- Brown, C.J., Cooper, K.M., Meadows, W.J., Limpenny, D.S., Rees, H.L., 2002. Small-scale mapping of
 sea-bed assemblages in the eastern English Channel using sidescan sonar and remote sampling
 techniques. Estuar. Coast. Shelf Sci. 54, 263–278. https://doi.org/10.1006/ecss.2001.0841
- Brown, C.J., Hewer, A., Limpenny, D., Cooper, K., Rees, H., Meadows, W., 2004a. Mapping seabed
 biotopes using sidescan sonar in regions of heterogeneous substrata: Case study east of the Isle of
 Wight, English Channel. Underw. Technol. 26, 27–36. <u>https://doi.org/10.3723/175605404783101558</u>
- 816 Brown, C.J., Hewer, A.J., Meadows, W.J., Limpenny, D.S., Cooper, K.M., Rees, H.L., 2004b. Mapping
- 817 seabed biotopes at Hastings Shingle Bank, eastern English Channel. Part 1. Assessment using sidescan
- 818 sonar. J. Mar. Biol. Ass. U.K. 84, 481–488. <u>https://doi.org/10.1017/S002531540400949Xh</u>
- 819 Brown, C.J., Hewer, A.J., Meadows, W.J., Limpenny, D.S., Cooper, K.M., Rees, H.L., Vivian, C.M.G., 2001.
- 820 Mapping of gravel biotopes and an examination of the factors controlling the distribution, type and
- diversity of their biological communities. Centre for Environment, Fisheries and Aquaculture Science,Lowestoft, UK.
- Brylinski, J.M., Dupont, J., Bentley, D., 1984. Conditions hydrobiologiques au large du Cap Gris-Nez
 (France)-premiers résultats. Oceanol. Acta 7, 315–322.
- 825 Buchanan, J.B., 1963. The bottom fauna communities and their sediment relationships off the coast of
- 826 Northumberland. Oikos 14, 154. <u>https://doi.org/10.2307/3564971</u>
- 827 Buchanan, J.B., Sheader, M., Kingston, P.F., 1978. Sources of variability in the benthic macrofauna off
- the south Northumberland coast, 1971–1976. J. Mar. Biol. Ass. U.K. 58, 191–209.
 https://doi.org/10.1017/S0025315400024498
- Burnham, K.P., Anderson, D.R. (Eds.), 2004. Model Selection and Multimodel Inference. Springer, New
 York, USA. <u>https://doi.org/10.1007/b97636</u>
- 832 Butman, C.A., 1987. Larval settlement of soft-sediment invertebrates: the spatial scales of pattern
- 833 explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr.
- 834 Mar. Biol. Annu. Rev. 25, 113–165.
- Cabioch, L., 1968. Contribution à la connaissance des peuplements benthiques de la Manche
 occidentale. Cah. Biol. Mar. 9, 493–720.

- Cabioch, L., Glaçon, R., 1977. Distribution des peuplements benthiques en Manche orientale, du Cap
 d'Antifer à la Baie de Somme. C. R. Acad. Sci. 285, 209–210.
- 839 Cade, B.S., Noon, B.R., 2003. A gentle introduction to quantile regression for ecologists. Front. Ecol.
- 840 Environ. 1, 412–420. <u>https://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2</u>
- 841 Cade, B.S., Noon, B.R., Flather, C.H., 2005. Quantile Regression Reveals Hidden Bias and Uncertainty in

842 Habitat Models. Ecology 86, 786–800. <u>https://doi.org/10.1890/04-0785</u>

- Cade, B.S., Terrell, J.W., Schroeder, R.L., 1999. Estimating Effects of Limiting Factors with Regression
 Quantiles. Ecology 80, 311–323. <u>https://doi.org/10.1890/0012-</u>
 9658(1999)080[0311:EEOLFW]2.0.CO;2
- Cassie, R.M., Michael, A.D., 1968. Fauna and sediments of an intertidal mud flat: A multivariate
 analysis. J. Exp. Mar. Biol. Ecol. 2, 1–23. https://doi.org/10.1016/0022-0981(68)90010-5
- Clabaut, P., Davoult, D., 1989. Interaction between benthic macrofaunas and associated sediments of
 a high-energy subtidal zone. Example of Baie de Wissant, eastern English Channel. C.R. Acad. Sci. 308,
 1349–1356.
- Cooper, K., Boyd, S., Eggleton, J., Limpenny, D., Rees, H., Vanstaen, K., 2007. Recovery of the seabed
 following marine aggregate dredging on the Hastings Shingle Bank off the southeast coast of England.
- 853 Estuar. Coast. Shelf Sci. 75, 547–558. <u>https://doi.org/10.1016/j.ecss.2007.06.004</u>
- 854 Cooper, K.M., Barry, J., 2017. A big data approach to macrofaunal baseline assessment, monitoring and
- sustainable exploitation of the seabed. Sci. Rep. 7, 12431. <u>https://doi.org/10.1038/s41598-017-11377-</u>
 <u>9</u>
- Cozzoli, F., Bouma, T.J., Ysebaert, T., Herman, P.M.J., 2013. Application of non-linear quantile
 regression to macrozoobenthic species distribution modelling: comparing two contrasting basins. Mar.
 Ecol. Prog. Ser. 475, 119–133. https://doi.org/10.3354/meps10112
- Bauvin, J.C., 2019. The English Channel: La Manche, in: World Seas: An Environmental Evaluation.
 Academic Press, pp. 153–188. <u>https://doi.org/10.1016/B978-0-12-805068-2.00008-5</u>
- Dauvin, J.C., 2015. History of benthic research in the English Channel: From general patterns of
 communities to habitat mosaic description. J. Sea Res. 100, 32–45.
 https://doi.org/10.1016/j.seares.2014.11.005
- Dauvin, J.C., 2012. Are the eastern and western basins of the English Channel two separate
 ecosystems?. Mar. Pollut. Bull. 64, 463–471. https://doi.org/10.1016/j.marpolbul.2011.12.010

- Bauvin, J.C., 1988. Évolution temporelle (août 1977-août 1980) du peuplement des sables grossiers à *Amphioxus lanceolatus-Venus fasciata* de la baie de Morlaix (France). Oceanol. Acta 11, 11.
- Bauvin, J.C., Lozachmeur, O., 2006. Mer côtière à forte pression anthropique propice au
 développement d'une Gestion Intégrée: exemple du bassin oriental de la Manche (Atlantique nord-
- 871 est). Vertigo 7. <u>https://doi.org/10.4000/vertigo.1914</u>
- B72 Dauvin, J.C., Lucas, S., Navon, M., Lesourd, S., Mear, Y., Poizot, E., Alizier, S., 2017. Does the
- 873 hydrodynamic, morphometric and sedimentary environment explain the structure of soft-bottom
- 874 benthic assemblages in the Eastern Bay of Seine (English Channel)? Estuar. Coast. Shelf Sci. 189, 156–
- 875 172. https://doi.org/10.1016/j.ecss.2017.03.014
- 876 Dauvin, J.C., Ruellet, T., 2008. Macrozoobenthic biomass in the Bay of Seine (eastern English Channel).
- 877 J. Sea Res. 59, 320–326. <u>https://doi.org/10.1016/j.seares.2008.02.003</u>
- Davoult, D., 1990. Biofaciès et structure trophique du peuplement des cailloutis du Pas-de-Calais
 (France). Oceanol. Acta 14, 335-348.
- Davoult, D., Dewarumez, J.-M., Prygiel, J., Richard, A., 1988. Carte des peuplements benthiques de la
 partie française de la Mer du Nord, Publication IFREMER, Station marine de Wimereux, Région NordPas-de-Calais. ed, IFREMER/Région Nord-Pas-de-Calais.
- Desprez, M., 2000. Physical and biological impact of marine aggregate extraction along the French
 coast of the Eastern English Channel: short- and long-term post-dredging restoration. ICES J. Mar. Sci.
- 885 57, 1428–1438. <u>https://doi.org/10.1006/jmsc.2000.0926</u>
- Desprez, M., Pearce, B., Le Bot, S., 2010. The biological impact of overflowing sands around a marine
 aggregate extraction site: Dieppe (eastern English Channel). ICES J. Mar. Sci. 67, 270–277.
 https://doi.org/10.1093/icesjms/fsp245
- Dietze, E., Dietze, M., 2019. Grain size distribution unmixing using the R package EMMAgeo. E&G
 Quaternary Sci. J. 68, 29–46. <u>https://doi.org/10.5194/egqsj-68-29-2019</u>
- Dietze, E., Hartmann, K., Diekmann, B., IJmker, J., Lehmkuhl, F., Opitz, S., Stauch, G., Wünnemann, B.,
- 892 Borchers, A., 2012. An end-member algorithm for deciphering modern detrital processes from lake
- 893 sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment. Geol. 243–244, 169–180.
- 894 <u>https://doi.org/10.1016/j.sedgeo.2011.09.014</u>
- Dietze, M., Schulte, P., Dietze, E., 2022. Application of end-member modelling to grain size data:
 Constraints and limitations. Sedimentology 69, 845–863. <u>https://doi.org/10.1111/sed.12929</u>

- ⁸⁹⁷Dingwall, R.G., 1975. Sub-bottom infilled channels in an area of the eastern English Channel. Phil Trans.
- 898 R. Soc. Lond. A 279, 233–241. <u>https://doi.org/10.1098/rsta.1975.0055</u>
- Borgan, K.M., 2015. The biomechanics of burrowing and boring. J. Exp. Biol. 218, 176–183.
 https://doi.org/10.1242/jeb.086983
- 901 Dunham, J.B., Cade, B.S., Terrell, J.W., 2002. Influences of Spatial and Temporal Variation on Fish-
- Habitat Relationships Defined by Regression Quantiles. Trans. Am. Fish. Soc. 131, 86–98.
 https://doi.org/10.1577/1548-8659(2002)131<0086:IOSATV>2.0.CO;2
- 904 Dyer, K.R., 1995. Sediment Transport Processes in Estuaries, in: Perillo, G.M.E. (Ed.), Developments in
- 905 Sedimentology, Geomorphology and Sedimentology of Estuaries. Elsevier, pp. 423–449. 906 https://doi.org/10.1016/S0070-4571(05)80034-2
- 907 Ferret, Y., 2011. Morphodynamique de dunes sous-marines en contexte de plate-forme mégatidale
- 908 (Manche orientale). Approche multi-échelles spatio-temporelles (PhD thesis). University of Rouen, 909 France.
- 910 Flint, R.W., Holland, J.S., 1980. Benthic infaunal variability on a transect in the Gulf of Mexico. Estuar.
- 911 Coast. Mar. Sci. 10, 1–14. <u>https://doi.org/10.1016/S0302-3524(80)80045-4</u>
- 912 Foden, J., Rogers, S., Jones, A., 2010. Recovery of UK seabed habitats from benthic fishing and
- 913 aggregate extraction—towards a cumulative impact assessment. Mar. Ecol. Prog. Ser. 411, 259–270.
- 914 https://doi.org/10.3354/meps08662
- 915 Foden, J., Rogers, S., Jones, A., 2009. Recovery rates of UK seabed habitats after cessation of aggregate
- 916 extraction. Mar. Ecol. Prog. Ser. 390, 15–26. <u>https://doi.org/10.3354/meps08169</u>
- 917 Ford, E., 1923. Animal Communities of the Level Sea-bottom in the Waters adjacent to Plymouth. J.
- 918 Mar. Biol. Ass. U.K. 13, 164–224. <u>https://doi.org/10.1017/S0025315400010985</u>
- 919 Foveau, A., 2009. Habitats et communautés benthiques du bassin oriental de la Manche : état des lieux
 920 au début du XXIème siècle (PhD thesis). University of Lille, France.
- 921 Fresi, E., Gambi, M.C., Focardi, S., Bargagli, R., Baldi, F., Falciai, L., 1983. Benthic Community and
- 922 Sediment Types: A Structural Analysis. Mar. Ecol. 4, 101–121. <u>https://doi.org/10.1111/j.1439-</u>
 923 0485.1983.tb00290.x
- 924 Germano, J.D., Rhoads, D.C., Valente, R.M., Carey, D.A., 2011. The use of sediment profile imaging (SPI)
- 925 for environmental impact assessments and monitoring studies: lessons learned from the past four 926 decades. Oceanogr. Mar. Biol. Ann. Rev. 49, 235–298.

- 927 Ghertsos, K., Luczak, C., Dauvin, J.C., 2001. Identification of global and local components of spatial
- 928 structure of marine benthic communities: example from the Bay of Seine (Eastern English Channel). J.
- 929 Sea Res. 45, 63–77. https://doi.org/10.1016/S1385-1101(00)00059-9
- 930 Glémarec, M., 1969. Les peuplements benthiques du plateau continental nord-gascogne (PhD thesis).
- 931 University of Brest, France.
- Glémarec, M., Monniot, C., 1966. Répartition des ascidies des fonds meubles de la côte sud de
 Bretagne. Cah. Biol. Mar. 7, 343-366.
- 934 Gray, J. S., 1974. Animal-sediment relationships. Oceanogr. Mar. Biol. Annu. Rev. 12, 223–261.
- 935 Gupta, S., Collier, J.S., Palmer-Felgate, A., Potter, G., 2007. Catastrophic flooding origin of shelf valley
- 936 systems in the English Channel. Nature 448, 342–345. <u>https://doi.org/10.1038/nature06018</u>
- 937 Guttman, L., 1953. A Note on Sir Cyril Burt's 'Factorial Analysis of Qualitative Data.' British Journal of
- 938 Statistical Psychology 6, 1–4. <u>https://doi.org/10.1111/j.2044-8317.1953.tb00126.x</u>
- Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D'Agrosa, C., Bruno, J.F., Casey, K.S.,
- 940 Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R.,
- 941 Spalding, M., Steneck, R., Watson, R., 2008. A Global Map of Human Impact on Marine Ecosystems.
- 942 Science 319, 948–952. <u>https://doi.org/10.1126/science.1149345</u>
- 943 Hamblin, R.J.O., Crosby, A., Balson, P.S., Jones, S.M., Chadwick, R.A., Penn, I.E., Arthur, M.J., 1992. The
- geology of the English Channel. United Kingdom offshore regional report. HMSO, London, UK.
- 945 Hastie, T.J., 1992. Generalized Additive Models, in: Chambers, J.M., Hastie, T.J. (Eds.), Statistical Models
- 946 in S. Routledge, New York, USA.
- Holme, N.A., 1966. The bottom fauna of the English Channel. Part II. J. Mar. Biol. Ass. U.K. 46, 401–493.
 https://doi.org/10.1017/S0025315400027193
- Holme, N.A., 1961. The Bottom Fauna of the English Channel. J. Mar. Biol. Ass. U.K. 41, 397–461.
 https://doi.org/10.1017/S0025315400023997
- Hughes, R.N., Thomas, M.L.H., 1971. The classification and ordination of shallow-water benthic
 samples from Prince Edward Island, Canada. J. Exp. Mar. Biol. Ecol. 7, 1–39.
 https://doi.org/10.1016/0022-0981(71)90002-5
- Hurvich, C.M., Tsai, C.-L., 1989. Regression and time series model selection in small samples.
 Biometrika 76, 297–307. <u>https://doi.org/10.1093/biomet/76.2.297</u>

- 956 Ivanov, E., Capet, A., De Borger, E., Degraer, S., Delhez, E.J.M., Soetaert, K., Vanaverbeke, J., Grégoire,
- 957 M., 2021. Offshore Wind Farm Footprint on Organic and Mineral Particle Flux to the Bottom. Front.
- 958 Mar. Sci. 8., 631799. https://doi.org/10.3389/fmars.2021.631799
- 959 Jumars, P.A., Nowell, A.R.M., 1984. Fluid and Sediment Dynamic Effects on Marine Benthic Community
- 960 Structure. Amer. Zool. 24, 45–55. <u>https://doi.org/10.1093/icb/24.1.45</u>
- 961 Kaiser, M.S., Speckman, P.L., Jones, J.R., 1994. Statistical Models for Limiting Nutrient Relations in
- 962 Inland Waters. J. Am. Stat. Assoc. 89, 410–423. <u>https://doi.org/10.1080/01621459.1994.10476763</u>
- 963 Klovan, J.E., Imbrie, J., 1971. An algorithm and Fortran-iv program for large-scaleQ-mode factor
- analysis and calculation of factor scores. Math. Geol. 3, 61–77. https://doi.org/10.1007/BF02047433
- 965 Koenker, R., 2022. Quantreg: Quantile Regression (R package version 5.94). <u>https://cran.r-</u>
 966 project.org/web/packages/quantreg/index.html
- 967 Koenker, R., Bassett, G., 1978. Regression Quantiles. Econometrica 46, 33–50.
 968 <u>https://doi.org/10.2307/1913643</u>
- Larsen, P.F., 1979. The shallow-water macrobenthos of a northern New England estuary. Mar. Biol. 55,
 69–78. <u>https://doi.org/10.1007/BF00391719</u>
- 271 Larsonneur, C., Bouysse, P., Auffret, J.-P., 1982. The superficial sediments of the English Channel and
 272 its Western Approaches. Sedimentology 29, 851–864. <u>https://doi.org/10.1111/j.1365-</u>
 2091.1982.tb00088.x
- 974 Le Bot, S., Lafite, R., Fournier, M., Baltzer, A., Desprez, M., 2010. Morphological and sedimentary 975 impacts and recovery on a mixed sandy to pebbly seabed exposed to marine aggregate extraction 976 (Eastern English Channel, France). Estuar. Coast. Shelf Sci. 89, 221-233. 977 https://doi.org/10.1016/j.ecss.2010.06.012
- Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species
 data. Oecologia 129, 271–280. <u>https://doi.org/10.1007/s004420100716</u>
- Lindeboom, H.J., Kouwenhoven, H.J., Bergman, M.J.N., Bouma, S., Brasseur, S., Daan, R., Fijn, R.C.,
 Haan, D. de, Dirksen, S., Hal, R. van, Lambers, R.H.R., Hofstede, R. ter, Krijgsveld, K.L., Leopold, M.,
 Scheidat, M., 2011. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone;
 a compilation. Environ. Res. Lett. 6, 035101. https://doi.org/10.1088/1748-9326/6/3/035101
- Longhurst, A.R., 1958. An ecological survey of the West African marine benthos. Colon. Off. Fish. Publ.
 11, 1–102.

- Lozach, S., 2011. Habitats benthiques marins du bassin oriental de la Manche: enjeux écologiques dans
 le contexte d'extraction de granulats marins (PhD thesis). University of Lille, France.
- 988 Lozach, S., Dauvin, J.C., 2012. Temporal stability of a coarse sediment community in the Central Eastern
- 989 English Channel Paleovalleys. J. Sea Res. 71, 14–24. <u>https://doi.org/10.1016/j.seares.2012.03.007</u>
- 990 Lozach, S., Dauvin, J.C., Méar, Y., Murat, A., Davoult, D., Migné, A., 2011. Sampling epifauna, a necessity
- 991 for a better assessment of benthic ecosystem functioning: An example of the epibenthic aggregated
- species Ophiothrix fragilis from the Bay of Seine. Mar. Pollut. Bull. 62, 2753–2760.
 https://doi.org/10.1016/j.marpolbul.2011.09.012
- Marquandt, D., 1980. You should standardize the predictor variables in your regression models.
 Discussion of: A critique of some ridge regression methods. J. Am. Stat. Assoc. 75, 87–91.
- 996 Murat, A., Méar, Y., Poizot, E., Dauvin, J.C., Beryouni, K., 2016. Silting up and development of anoxic
- 997 conditions enhanced by high abundance of the geoengineer species *Ophiothrix fragilis*. Cont. Shelf Res.
- 998 118, 11–22. <u>https://doi.org/10.1016/j.csr.2016.01.003</u>
- Murtagh, F., Legendre, P., 2014. Ward's Hierarchical Agglomerative Clustering Method: Which
 Algorithms Implement Ward's Criterion? J. Classif. 31, 274–295. <u>https://doi.org/10.1007/s00357-014-</u>
 9161-z
- 1002 Navon, M., 2016. Hétérogénéité sédimentaire et micro-habitats benthiques : approches *in situ* et
 1003 expérimentale (PhD thesis). University of Caen, France.
- 1004 Newell, R.C., Seiderer, L.J., Robinson, J.E., 2001. Animal:sediment relationships in coastal deposits of 1005 the eastern English Channel. J. Mar. Biol. Ass. U.K. 81, 1–9. https://doi.org/10.1017/S0025315401003344 1006
- Newell, R.C., Seiderer, L.J., Simpson, N.M., Robinson, J.E., 2004. Impacts of Marine Aggregate Dredging
 on Benthic Macrofauna off the South Coast of the United Kingdom. J. Coast. Res. 201, 115–125.
 https://doi.org/10.2112/1551-5036(2004)20[115:IOMAD0]2.0.CO;2
- Noffke, A., Hertweck, G., Kröncke, I., Wehrmann, A., 2009. Particle size selection and tube structure of
 the polychaete *Owenia fusiformis*. Estuar. Coast. Shelf Sci. 81, 160–168.
 <u>https://doi.org/10.1016/j.ecss.2008.10.010</u>
- 1013 Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Solymos,
- 1014 P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho,
- 1015 G., Chirico, M., Caceres, M.D., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B.,
- Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E.R., Smith, T., Stier, A., Braak,

- 1017 C.J.F.T., Weedon, J., 2022. vegan: Community Ecology Package (R package version 2.6-2).
 1018 https://CRAN.R-project.org/package=vegan
- 1019 Olden, J.D., Rooney, T.P., 2006. On defining and quantifying biotic homogenization. Glob. Ecol.
- 1020 Biogeogr. 15, 113–120. <u>https://doi.org/10.1111/j.1466-822X.2006.00214.x</u>
- 1021 Petersen, C.G.J., 1913. Determination of the quantity of animal life of the sea-bottom, its communities
- and their geographical importance. Ann. Inst. Océan. 6.
- Pezy, J.P., 2017. Approche écosystémique d'un futur parc éolien en Manche orientale: exemple du site
 de Dieppe–Le Tréport (PhD thesis). University of Caen, France.
- 1025 Pezy, J.P., Dauvin, J.C., 2021. Wide coverage but few quantitative data: Coarse sediments in the English
- 1026 Channel. Ecol. Indic. 121, 107010. <u>https://doi.org/10.1016/j.ecolind.2020.107010</u>
- 1027 Pezy, J.P., Navon, M., Dauvin, J.C., 2013. Étude du benthos dans le cadre du programme de Recherches
- 1028 du PER Granulats Marins Havrais Rapport de la campagne de février 2013. University of Caen, France.
- 1029 Pezy, J.P., Raoux, A., Andres, S., Legrain, M., Dauvin, J.C., 2019. État bio-sédimentaire de la concession
- 1030 Manche Orientale. University of Caen, France.
- Pezy, J.P., Raoux, A., Legrain, M., Boisserie, R., Dauvin, J.C., 2021. État initial avant exploitation Suivi
 des sédiments, des habitats et communautés Benthiques. University of Caen, France.
- 1033 Pinedo, S., Sardá, R., Rey, C., Bhaud, M., 2000. Effect of sediment particle size on recruitment of Owenia
- 1034 *fusiformis* in the Bay of Blanes (NW Mediterranean Sea): an experimental approach to explain field
- 1035 distribution. Mar. Ecol. Prog. Ser. 203, 205–213. <u>https://doi.org/10.3354/meps203205</u>
- 1036 Quisthoudt, C., 1987. Production primaire phytoplanctonique dans le detroit du Pas-de-Calais
- 1037 (France) : variations spatiales et annuelles au large du Cap Gris-Nez. C.R. Acad. Sc. 304, 245–250.
- Raoux, A., Pezy, J.P., Legrain, M., Boisserie, R., Dauvin, J.C., 2021. État de référence avant construction
 MSu3 Suivi de la qualité de l'eau, des sédiments, des habitats et communautés Benthiques. University
 of Caen, France.
- 1041 Rees, H.L., Pendle, M.A., Waldock, R., Limpenny, D.S., Boyd, S.E., 1999. A comparison of benthic
 1042 biodiversity in the North Sea, English Channel, and Celtic Seas. ICES J. Mar. Sci. 56, 228–246.
 1043 https://doi.org/10.1006/jmsc.1998.0438
- 1044 Retière, C., 1979. Contribution à la connaissance des peuplements benthiques du golfe normanno1045 breton (PhD thesis). University of Rennes, France.

- Reynaud, J.-Y., Tessier, B., Auffret, J.-P., Berné, S., Batist, M.D., Marsset, T., Walker, P., 2003. The
 offshore Quaternary sediment bodies of the English Channel and its Western Approaches. J. Quat. Sci.
 18, 361–371. https://doi.org/10.1002/jqs.758
- 1049 Rhoads, D.C., 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. Annu.1050 Rev. 12, 263-300.
- 1051 Rhoads, D.C., Young, D.K., 1970. The influence of deposit-feeding organisms on sediment stability and
 1052 community trophic structure. J. Mar. Res. 28, 150–178.
 1053 https://doi.org/10.1357/002224020834162167
- 1054 Rieux, A., 2018. Transport sédimentaire et architecture de barrières littorales silico-bioclastiques : une
 1055 approche par modélisation physique (PhD thesis). University of Caen, France.
- 1056 Robert, A.E., Quillien, N., Bacha, M., Caulle, C., Nexer, M., Parent, B., Garlan, T., Desroy, N., 2021.
- 1057 Sediment migrations drive the dynamic of macrobenthic ecosystems in subtidal sandy bedforms.
- 1058 Mar. Poll. Bull. 171, 112695. <u>https://doi.org/10.1016/j.marpolbul.2021.112695</u>
- Sanders, H.L., 1958. Benthic Studies in Buzzards Bay. I. Animal-Sediment Relationships. Limnol.
 Oceanogr. 3, 245–258. <u>https://doi.org/10.4319/lo.1958.3.5.0245</u>
- Sanders, H.L., Goudsmit, E.M., Mills, E.L., Hampson, G.E., 1962. A Study of the Intertidal Fauna of
 Barnstable Harbor, Massachusetts. Limnol. Oceanogr. 7, 63–79.
 https://doi.org/10.4319/lo.1962.7.1.0063
- 1064 Seiderer, L.J., Newell, R.C., 1999. Analysis of the relationship between sediment composition and
- benthic community structure in coastal deposits: Implications for marine aggregate dredging. ICES J.
 Mar. Sci. 56, 757–765. <u>https://doi.org/10.1006/jmsc.1999.0495</u>
- Shepard, F.P., 1954. Nomenclature based on sand-silt-clay ratios. J. Sediment. Res. 24, 151–158.
 https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D
- Smith, M.R., 2017. Ternary: An R Package for Creating Ternary Plots. R package version 2.2.1.
 https://cran.r-project.org/web/packages/Ternary/index.html
- 1071 Snelgrove, P.V.R., Butman, C.A., 1994. Animal-sediment relationships revisited: cause versus effect.
- 1072 Oceanogr. Mar. Biol. Annu. Rev. 32, 111-177.
- 1073 Terrell, J.W., Cade, B.S., Carpenter, J., Thompson, J.M., 1996. Modeling Stream Fish Habitat Limitations
- 1074 from Wedge-Shaped Patterns of Variation in Standing Stock. Trans. Am. Fish. Soc. 125, 104–117.
- 1075 https://doi.org/10.1577/1548-8659(1996)125<0104:MSFHLF>2.3.CO;2

- 1076 Thiébaut, E., Cabioch, L., Dauvin, J.C., Retière, C., Gentil, F., 1997. Spatio-temporal persistence of the
- 1077 *Abra alba-Pectinaria koreni* muddy-fine sand community of the eastern Bay of Seine. J. Mar. Biol.
 1078 Assoc. U.K. 77, 1165–1185.
- 1079 Thorson, G., 1957. Bottom Communities (Sublittoral or Shallow Shelf). Geological Society of America
 1080 Memoir 67, 461–534. <u>https://doi.org/10.1130/MEM67V1-p461</u>
- 1081 Thrush, S.F., Hewitt, J.E., Herman, P.M.J., Ysebaert, T., 2005. Multi-scale analysis of species– 1082 environment relationships. Mar. Ecol. Prog. Ser. 302, 13–26. <u>https://doi.org/10.3354/meps302013</u>
- 1083 Thrush, S.F., Hewitt, J.E., Norkko, A., Nicholls, P.E., Funnell, G.A., Ellis, J.I., 2003. Habitat change in
- estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar.
 Ecol. Prog. Ser. 263, 101–112. https://doi.org/10.3354/meps263101
- Tillin, H.M., Tyler-Walters, H., 2016. *Spirobranchus triqueter* with barnacles and bryozoan crusts on
 unstable circalittoral cobbles and pebbles. The Marine Life Information Network, Marine Biological
 Association of the United Kingdom., Plymouth, UK.
- Trueman, E.R., Brand, A.R., Davis, P., 1966. The Dynamics of Burrowing of Some Common Littoral
 Bivalves. J. Exp. Biol. 44, 469–492. <u>https://doi.org/10.1242/jeb.44.3.469</u>
- Tyler, P.A., Banner, F.T., 1977. The effect of coastal hydrodynamics on the echinoderm distribution in
 the sublittoral of Oxwich Bay, Bristol Channel. Estuar. Coast. Mar. Sci. 5, 293–308.
 https://doi.org/10.1016/0302-3524(77)90057-3
- 1094 Vaz, S., Martin, C.S., Eastwood, P.D., Ernande, B., Carpentier, A., Meaden, G.J., Coppin, F., 2008.
 1095 Modelling Species Distributions Using Regression Quantiles. J. Appl. Ecol. 45, 204–217.
- Wang, J., Zou, X., Yu, W., Zhang, D., Wang, T., 2019. Effects of established offshore wind farms on
 energy flow of coastal ecosystems: A case study of the Rudong offshore wind farms in China. Ocean
 Coast. Manag. 171, 111–118. https://doi.org/10.1016/j.ocecoaman.2019.01.016
- 1099 Ward, J.H., 1963. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 58, 236–
 244. <u>https://doi.org/10.1080/01621459.1963.10500845</u>
- 1101 Warwick, R.M., Davies, J.R., 1977. The distribution of sublittoral macrofauna communities in the Bristol
- 1102 Channel in relation to the substrate. Estuar. Coast. Mar. Sci. 5, 267–288. <u>https://doi.org/10.1016/0302-</u>
 1103 3524(77)90022-6
- 1104 Weltje, G.J., 1997. End-member modeling of compositional data: Numerical-statistical algorithms for
- solving the explicit mixing problem. Math. Geol. 29, 503–549. https://doi.org/10.1007/BF02775085

- 1106 Wildish, D.J., 1977. Factors controlling marine and estuarine sublittoral macrofauna. Helgoländer Wiss.
- 1107 Meeresunters. 30, 445–454. <u>https://doi.org/10.1007/BF02207853</u>
- WoRMS Editorial Board, 2023. WoRMS World Register of Marine Species [WWW Document]. World
 Register of Marine Species. URL <u>https://www.marinespecies.org/</u> (accessed 3.24.23).
- 1110 Young, D.K., Rhoads, D.C., 1971. Animal-sediment relations in Cape Cod Bay, Massachusetts I. A
- 1111 transect study. Mar. Biol. 11, 242–254. <u>https://doi.org/10.1007/BF00401272</u>
- 1112 Ysebaert, T., Meire, P., Herman, P.M.J., Verbeek, H., 2002. Macrobenthic species response surfaces
- along estuarine gradients: prediction by logistic regression. Mar. Ecol. Prog. Ser. 225, 79–95.
- 1114 https://doi.org/10.3354/meps225079
- 1115 Zettler, M.L., Proffitt, C.E., Darr, A., Degraer, S., Devriese, L., Greathead, C., Kotta, J., Magni, P., Martin,
- 1116 G., Reiss, H., Speybroeck, J., Tagliapietra, D., Hoey, G.V., Ysebaert, T., 2013. On the Myths of Indicator
- 1117 Species: Issues and Further Consideration in the Use of Static Concepts for Ecological Applications.
- 1118 PLOS ONE 8, e78219. <u>https://doi.org/10.1371/journal.pone.0078219</u>
- 1119 Zuschin, M., Stachowitsch, M., Stanton, R.J., 2003. Patterns and processes of shell fragmentation in
- modern and ancient marine environments. Earth-Sci. Rev. 63, 33–82. <u>https://doi.org/10.1016/S0012-</u>
- 1121 <u>8252(03)00014-X</u>