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ARTICLE OPEN

Hypoxia-induced activation of NDR2 underlies brain metastases
from Non-Small Cell Lung Cancer
Jérôme Levallet 1, Tiphaine Biojout1, Céline Bazille1,2, Manon Douyère1, Fatéméh Dubois 1,2,3, Dimitri Leite Ferreira1,4,
Jasmine Taylor1, Sylvain Teulier1,4, Jérôme Toutain5, Nicolas Elie6, Myriam Bernaudin5, Samuel Valable 5, Emmanuel Bergot1,4 and
Guénaëlle Levallet 1,2,3✉

© The Author(s) 2023

The molecular mechanisms induced by hypoxia are misunderstood in non-small cell lung cancer (NSCLC), and above all the hypoxia
and RASSF1A/Hippo signaling relationship. We confirmed that human NSCLC (n= 45) as their brain metastases (BM) counterpart
are hypoxic since positive with CAIX-antibody (target gene of Hypoxia-inducible factor (HIF)). A severe and prolonged hypoxia (0.2%
O2, 48 h) activated YAP (but not TAZ) in Human Bronchial Epithelial Cells (HBEC) lines by downregulating RASSF1A/kinases Hippo
(except for NDR2) regardless their promoter methylation status. Subsequently, the NDR2-overactived HBEC cells exacerbated a HIF-
1A, YAP and C-Jun-dependent-amoeboid migration, and mainly, support BM formation. Indeed, NDR2 is more expressed in human
tumor of metastatic NSCLC than in human localized NSCLC while NDR2 silencing in HBEC lines (by shRNA) prevented the xenograft
formation and growth in a lung cancer-derived BM model in mice. Collectively, our results indicated that NDR2 kinase is over-active
in NSCLC by hypoxia and supports BM formation. NDR2 expression is thus a useful biomarker to predict the metastases risk in
patients with NSCLC, easily measurable routinely by immunohistochemistry on tumor specimens.

Cell Death and Disease          (2023) 14:823 ; https://doi.org/10.1038/s41419-023-06345-3

INTRODUCTION
Hypoxia (oxygen deprivation) supports genomic instability,
aggressiveness of tumor cells, formation of metastases, and
resistance to treatment by non-small-cell lung cancers (NSCLC)
[1–3] by incompletely established mechanisms. One can hypothe-
size that hypoxia disrupts the RASSF1A (Ras association domain
family 1 isoform A)/Hippo signaling pathway [4–9] since YAP is
active in several hypoxic tumors [10] and interact either with (i)
hypoxia-inducible factor-1α (HIF-1A) to promote pancreatic ductal
adenocarcinoma invasion [9] or hepatocellular carcinoma cell
glycolysis under hypoxic stress [11], or with (ii) HIF-2A to promote
the progression of colon cancer [12]. Regarding NSCLC, that
hypoxia could disrupt the RASSF1A/Hippo signaling pathway, is of
particular interest since Hippo pathway is already known to be
altered following the loss of expression of RASSF1A in 25% of
patient with NSCLC [13], leading to aberrant activation of both the
Hippo kinase, NDR2 and the Hippo effector, YAP [14] and
supporting the subsequent initiation and dissemination of NSCLC
[14, 15]. Only one paper reports the role of RASSF1A-HIF-1A loop,
in a subset of NSCLC still expressing RASSF1A and the primary
cancer cells isolated from the same tumors, independent of Hippo
signaling [16]. Here, we decipher the HIF-1A/YAP/TAZ relationship
in presence or absence of RASSF1A in Human Bronchial Epithelial
Cells (HBEC) lines grown under severe (0.2% O2) and prolonged

(48 h) hypoxia (i.e. as conditions present in the core/bulk of lung
tumor [17–19]). We seek to determine whether NDR2 is
hyperactivated early (following epigenetic dysregulation) or late
(by hypoxia) during the natural history of NSCLC and could be a
useful tool to diagnose metastatic tumors in view of these pro-
migratory properties.

RESULTS
Human primitive NSCLC as their brain metastases are hypoxic
The H-Score of carbonic anhydrase 9 (CAIX), a transcriptional
target of HIF-1A [20], is similar between primary tumors of
patients with localized NSCLC (62.4 ± 12.3) or metastatic NSCLC
(71.2 ± 19.7), and comparable between primary tumors and
brain metastasis (65.4 ± 17.1, n= 20) from the same patients
(Fig. S1).

Hypoxia (0.2% O2, 48 h) activates YAP but not TAZ in
HBEC lines
HBEC-3 (Fig. S2) as the other HBEC lines (Fig. S3) survive to a
hypoxia (48 h, 0.2% O2, confirmed by the nuclear accumulation of
HIF-1A (HBEC-3: Fig. S2A, A549: S2B)) but reach confluence slowly
than in normoxia (HBEC-3: Fig. S2C; A549: Fig. S2D) since then
apoptosis increases (Caspase3/7 activity, HBEC-3: Fig. S2E, A549:
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Fig. S2F). However, HBEC-3 cells (Fig. S2G) as A549 cells (Fig. S2H)
still incorporate BrdU between 24 and 48 h.
Hypoxia (0.2% O2, 48 h) increases dephosphorylated YAP

protein while the expression of TAZ drastically decreases in
HBEC-3 (Fig. 1A). In line, hypoxia (0.2% O2, 48 h) increases the YAP
nuclear intensity like the RASSF1A depletion without additive
effect between these two events (Fig. 1B) while TAZ nuclear signal
decreases (Fig. S4). The RASSF1A depletion, which causes the
nuclear translocation of active YAP in HBEC-3 cells [15],
significantly increases the expression of these two target genes
of YAP [21, 22] (CTGF (Fig. 1C) and ANKRD1 (Fig. 1D)) confirming
that YAP is active when the HBEC-3 cells are in hypoxia (0.2% O2,
48 h). TAZ decrease (Western-Blot: Fig. S5A, B, C, immunofluores-
cence: Fig. S5H) but YAP accumulation (Fig. S5A, D, E) and
activation (YAP nuclear accumulation: Fig. S5F; CTGF and ANKRD1
expression: Fig. S5G) were also reported in others HBEC cells
grown in hypoxia (0.2% O2, confirmed by HIF1-A nuclear
accumulation (Fig. S5I).

Hypoxia (0.2% O2, 48 h) downregulated RASSF1A/kinases
Hippo in HBEC lines except for NDR2
Hypoxia (0.2% O2 for 48 h) decreases the expression of YAP’s
kinases MST1, LATS1, and NDR1/2 mRNA in RASSF1-depleted or

not HBEC cells with (Fig. 2A), however, at protein level, NDR2 is
preserved (Fig. 2B). In line, NDR2 kinase expression is not
significantly modified by hypoxia, whatever the cell line con-
sidered (Fig. S6A, E). Hypoxia (0.2% O2, 48 h) decreases Hippo
kinases, except NDR2, without changing the methylation status of
the promoters of their genes or of the target gene of YAP,
ANKRD1, known to be inactivated/hypermethylated in NSCLC
[8, 22] (HBEC-3: Fig. S7A, A549: Fig. S7B).

Hypoxia (0.2% O2, 48 h) exacerbates the ability of NDR2-
overactived NSCLC cells to perform a YAP/C-Jun and HIF-1A-
dependent amoeboid migration
HBEC-3 cells grown in hypoxia are individualized and adopted
stretched and/or even branched positions (Fig. 3A). We evaluate
the effect of this hypoxia on the epithelial-mesenchymal
transition, the adherent and communicating junctions and the
elasticity of HBEC-3 cells by measuring the expression of E- and
N-Cadherins [23], connexin-43 [24], and fascin [25] (Fig. 3B–D).
E-cadherin (epithelial marker) decreases while N-Cadherin
(mesenchymal marker) increases in HBEC-3 cells placed in hypoxia
(0.2% O2, 48 h) compared to cells cultured in normoxia but not in
RASSF1A- and/or NDR2-depleted HBEC-3 cells (Fig. 3B, RASSF1A
and/or NDR2 depletion are confirmed by RASSF1A (Fig. S8A)
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and/or (Fig. S8B) NDR2 expression assay). In line, in hypoxia (0.2%
O2, 48 h), fascin increases in HBEC-3 cells but not in RASSF1A- and/
or NDR2-depleted HBEC-3 cells (Fig. 3C). Finally, connexin-43
decreases in hypoxia (0.2% O2, 48 h) in HBEC-3 cells with or
without RASSF1A and/or NDR2 expression (Fig. 3D).
Control HBEC-3 cells (siNeg), grown in hypoxia (0.2% O2, 48 h),

adopt an individual migration mode while their migration is
collective in normoxia (Fig. 4A). This migration is of amoeboid type
for the “control” cells (Fig. 4B) while mesenchymal for RASSF1A-
depleted HBEC-3 cells (Fig. 4B). Since the type of migration
(individual versus collective) influences the cell velocity [26], we
measured the average velocity using the TrackMate module of the
Fiji® software. These analyzes demonstrate that hypoxia (0.2% O2,
48 h), like the inactivation of RASSF1A, significantly increases the
migration speed of HBEC-3 cells without additive effect (Fig. 4A).
We evaluate the route of these cells using the MtrackJ® module of
the Fiji® software, and show that compared to HBEC-3 cells in
normoxia, HBEC-3 cells in hypoxia move randomly above all when
depleted for RASSF1A (Fig. 4C).
Hypoxia and RASSF1A depletion exhibit similar effect on

increasing the velocity of HBEC-3 cells. Inactivation of YAP partly
prevents the gain in migration velocity induced by RASSF1A
depletion of HBEC-3 cells grown in hypoxia (0.2% O2, 48 h). As HIF-
1A leads cell movements [27], HIF-1A expression was thus
assessed in HBEC-3 at 48 h normoxia/hypoxia (protein level:
Fig. 5A, B; mRNA level: Fig. 5C). RASSF1A depletion increases HIF-
1A mRNA while this expression was significantly reduced in HBEC-
3 cells grown in hypoxia (Fig. 5C).
Hypoxia and/or RASSF1A and/or YAP depletion activates the

hypoxia factor HIF-1A. Indeed, the presence of nuclear HIF-1A in

HBEC-3 cells at high cell density is reported whether cultured in
normoxia or hypoxia (Fig. 5A). RASSF1A and/or YAP silencing
enhances the nuclear intensity of HIF-1A but not in the absence of
NDR2 (Fig. 5B). In line, hypoxia (0.2% O2, 48 h) increases the
expression of CAIX (target gene of HIF-1A [28]) mRNA in HBEC-3
cells (Fig. S9) all the more so when cells are depleted for RASSF1A
and/or YAP (Fig. S9).
The involvement of c-Jun in the positive effect of hypoxia on

NDR2 and YAP was evaluated with an inhibitor of JNK, the
SP600125. Indeed, c-Jun (1) is involved in cell motility, invasion
and TEM [29–31], (2) cooperates with HIF-1 in hypoxia-induced
gene transcription [32], (3) protects HIF-1A from degradation and
is induced by prolonged or chronic hypoxia [33, 34], (4) is
repressed by RASSF1A in lung cells [35], and (5) is a transcription
factor for both YAP-1 (https://www.genecards.org/cgi-bin/
carddisp.pl?gene=YAP1) and ARNT (https://www.genecards.org/
cgi-bin/carddisp.pl?gene=ARNT).
In normoxia, the RASSF1A depletion increases phospho-c-Jun in

HBEC-3 cells, while YAP and/or NDR2 silencing decreases
phospho-c-Jun/c-Jun ratio and abrogates effect of RASSF1A
depletion (Fig. 6A). In hypoxia, none of these effects are observed
as, when cells were pre-treated with SP600125, a repressor of
c-Jun activation. RASSF1A depletion significantly increases the
HBEC-3 cells velocity (Fig. 6B) and 3D-migration (Fig. 6C) while
hypoxia increases HBEC-3 cells velocity but decreases 3D-
migration. YAP as NDR2 increases the velocity and migration
induced by RASSF1A depletion in normoxia (Fig. 6B). In hypoxia,
the increase of cell velocity and the decrease of 3D migration is
still observed in the absence of RASSF1A and/or YAP expression
but not in the absence of NDR2 (Fig. 6B). The inhibition of c-Jun
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activation abrogates or reduces the effects of RASSF1A depletion
or hypoxia on HBEC-3 cell velocity (Fig. 6B) and 3D (Fig. 6C)
migration respectively (NDR2 and/or RASSF1A depletion are
confirmed by NDR2 (Fig. S10A) and/or RASSF1A (Fig. S10B)
expression assay).

NDR2 silencing strongly inhibits the xenograft formation and
growth in a mice brain metastases model
We use a lung cancer-derived brain metastases (BM) model in
mice, and inoculated H2030-BrM3 cells (shControl, shNDR1 or
shNDR2 (Fig. 7A–C)), in the right caudate putamen of Nude
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athymic mice (n= 10 per condition). At day 18, BM were observed
in 6/10 and 7/10 animals in shControl and shNDR1 group
respectively but not in shNDR2 group (Fig. 7D). At day 24, BM
reached 36.22 ± 5.8 mm3 in shNDR1 group and 18.73 ± 4.5 mm3 in
the shControl one (Table 1). In shNDR2 group, 6 animals started to
developed BM at day 24, with significantly lower average volume
(2.84 ± 0.9 mm3) compared to shControl and shNDR1 group
(Representative image: Fig. 7D, all mice brain: Fig. S11).
Immunostaining confirmed the lower expression of NDR1 and of
NDR2 in BM of respective experimental groups (Fig. 7E).
Comparable responses were obtained with the A549 xenograft
(Table 1).
Furthermore, we observed a reduction of the nuclear staining of

phospho-C-Jun and YAP in BM of shNDR2 group (Fig. 7F). In these
cells, expression of YAP target genes (ANKRD1/CTGF) was reduced
in comparison to the shControl or shNDR1 cell expression
(Fig. 7G).

NDR2 is more expressed in metastatic than in localized NSCLC
We assay NDR2, YAP and phospho-c-Jun expression in 25 patients
with localized cancer and 20 patients with metastatic cancer (Fig.
8A–C). NDR2 is more expressed in tumor of metastatic NSCLC (H-
score: 193.2 ± 5.8) than in localized NSCLC (136,4 ± 10,7). There
was no difference in the expression of NDR2 between the primary
and BM tumors of the same patients with NSCLC.
The nuclear YAP or phospho-c-Jun H-Score are similar between

primary tumors of patients with localized NSCLC (YAP: 27.1 ± 11.6,
phospho-c-Jun: 12.5 ± 5.3) and those with metastatic NSCLC (YAP:
21.9 ± 9.2, phospho-c-Jun: 9.8 ± 5.4). However, nuclear YAP or
phospho-c-Jun are 2-fold higher in BM (YAP: 53.3 ± 8.6, phospho-
c-Jun: 38.0 ± 9.7) than in primary tumor of patients with metastatic
NSCLC.

DISCUSSION
We hypothesized that a hypoxic tumor microenvironment could
contribute to the inactivation of the RASSF1A/Hippo pathway
during bronchial tumor growth and underlies brain metastases
formation. We first confirm that human primitive NSCLC as their
brain metastases are hypoxic [20, 36–40]. Then, we report the
ability of human bronchial epithelial cell (HBEC) lines expressing
(HBEC-3, BEAS-2B) or not RASSF1A (A549, H1299, H1915, H2030-
BRM3) to survive severe hypoxia at 0.2% oxygen which is
consistent with the work having maintained cultures of HBEC in
hypoxia (1% oxygen) for up to 28 days in an air-liquid interface
[41].
We discovered that hypoxia inactivates TAZ in HBEC-3 cells but

leads to the accumulation of active (dephosphorylated) nuclear
YAP. Such results were recovered for the other HBEC lines with a
few exceptions for BEAS-2B, H1299, and H1915 cell lines. For the
BEAS-2B, this can be explained by the high basal level of YAP
expression, probably due to their immortalization by SV40, an
inhibitor of p53 which leads to the activation of YAP [42] which
may not further increase. Under hypoxia, YAP is active in HBEC
lines. That hypoxia act differently on YAP and TAZ was already
described in ovarian cancer (5. The activation of YAP by hypoxia is

supported by the silencing of its negative regulators: RASSF1A and
Hippo kinases but not NDR2. That hypoxia inhibits Hippo kinases
and promotes the nuclear localization of YAP as well as its
transcriptional activity had already been reported in breast cancer
[12], the liver [11], the colon [43], the pancreas [9], or the ovary [5]
but not yet in lung cancer. Since hypoxia could influence the
Hippo pathway through epigenetic modifications [8], we deter-
mined the methylation status of promoters of genes encoding
members of the RASSF1A/Hippo pathway. We show that hypoxia
does not induce methylation of the promoters from Hippo kinases
or ANKRD1 genes (ANKRD1 was studied since [22] reported
frequent methylation of the promoter of this gene in bronchial
tumors and that we observed a very strong transcription of this
gene following hypoxia) nor does it demethylate the RASSF1A
promoter in A549 cells. The decrease in expression of RASSF1A
and of the kinases of the Hippo pathway induced by hypoxia does
not therefore imply a modification of the methylation status of the
promoters of the genes encoding these proteins. The mechanism
of action remains to be determined but could involve ubiquitin-
dependent regulations, as described in the breast cancer model in
which SIAH2 directs the LATS2 kinase to the proteasome [7].
Indeed, all the members of the Hippo pathway are subject to
regulation by ubiquitinylation [44].
YAP is described to transcribe genes involved in TEM and cell

movement [15]. We evaluated the effect of hypoxia on the
cytoarchitecture of HBEC-3 cells, their TEM and their 2D motility).
The immunostaining of the actin and tubulin filaments confirmed
that the RASSF1A depletion alters the cells morphology which
become large or stretched in normoxia [15]. Here, we report in an
original way that the alteration in cell morphology is enhanced
when cells are grown under severe hypoxia. Again, that hypoxia
alters the morphology of bronchial cells is in agreement with the
work which reports that hypoxia affects the differentiation of
HBEC in vitro: HBEC cells cultured at an air-liquid interface do not
more succeed in forming cilia at their apex, and adopt a mucoid
phenotype [41]. This change in morphology is in line with (i) the T
(EM that we report in parallel in these cells, (ii) the fact that they
undo their cell junctions (adherent and communicating), and (iii)
the fact that they strongly express fascin, molecule known for its
involvement in the formation of filopodia (fine cytoplasmic
extensions) but also in the extensibility of cells [25] as well as
cell migration [45]. This morphological/phenotypic change
explains why HBEC adopt an individual type of migration when
cultured in hypoxia and when they are brought to fill a mechanical
wound made on their cell layer while in normoxia, their migration
is collective. The hypoxia-induced amoeboid migration has only
been described once to date and to our knowledge in a head and
neck cancer model and is linked to HIF-1A [46]. We also observe
that the HBEC grown in hypoxia do not efficiently repair the
wound: HBEC move faster in hypoxia than in normoxia, but do not
only migrate toward the other bank, particularly RASSF1A-
depleted HBEC. This disorganized migration could be explained
by the fact HBEC-3 cells grown in hypoxia and depleted for
RASSF1A that strongly express the fascin which, as mentioned
above, controls cell movement and elasticity. An increase in fascin
has already been described in many cancers, in particular in

Fig. 4 Severe and prolonged (0.2% O2, 48 h) hypoxia leads to elasticity increase of HBEC-3 cells and thus to increase in individual type
migration. A, B Illustrations of the wound healing assay with HBEC-3 expressing or not RASSF1A, taken by inverted phase-contrast
microscope (×10 magnification) in normoxia/hypoxia, at T0, T6 and T15h after scraping (A), zooming in on cell migration for conditions siNeg-
hypoxia (B, upper panel) and siRASSF1A-hyopoxia (B, lower panel). A The average cell velocity (in µm/h) was measured in normoxia and
hypoxia for the control conditions, in the absence of RASSF1A. P-value *p < 0.05, **p < 0.01 (SEM n ≥ 3). C Diagram representing the migration
and the change of direction of HBEC-3, with in red the cells of the right edge of the wound and in blue those of the left edge (>300 cells)
using the MtrackJ® module of the Fiji® software. Histograms represent directional rate change (i.e. change of angle between two coordinates
(x, y) of the same cell at two different times) evaluated by TrackMATE®module of the Fiji® software for near 1000 cells per movie (SEM n ≥ 3). P-
value *p < 0.05, **p < 0.01.
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NSCLC, where it predicts a poorer prognosis [47] because it
promotes cell migration and invasion of NSCLC [48]. An increase in
fascin has also already been described when cells are in hypoxia
[49]. However, fascin is not a suitable therapeutic target since we
observed that its inhibition by siRNA caused major cytonuclear
abnormalities in HBEC (data not shown).
YAP is responsible for the increased collective migration rate

induced by the RASSF1A depleted-HBEC cells cultured in
normoxia [15]. We show here that, the migration velocity induced
by the RASSF1A depletion is independent of YAP but could be
dependent of NDR2 and HIF-1A which is stabilized by RASSF1A
and/or YAP silencing in hypoxia. This result is unexpected since it
was shown that RASSF1A stabilized HIF-1A in NSCLC cells [16] or
that YAP stabilized HIF-1A [11]. It is therefore probable that the
mechanisms allowing the stabilization of HIF-1A in the absence of
RASSF1A or YAP are different, and could, for example, involve the
transcription factor ETS-1 (v-ets erythroblastosis virus E26 onco-
gene homolog 1), which governs the gene expression of HIF-1A
[50] and is itself activated by JNK signaling [51], which is repressed
by RASSF1A [35]. Hypoxia experiments were carried out in
percentage of O2 and for a duration different than that used by
Dabral et al. [16], which suggests that the mechanisms are specific
to a level of hypoxia (moderate, severe, chronic).
YAP activity in hypoxia coincides with the Hippo kinases

decreases in hypoxia, except the NDR2 kinase, which appears to

be stabilized, consistently with YAP nuclear localization in HBEC
lines and YAP target genes expression. Indeed, NDR2 leads the
YAP nuclear translocation in a GTPase RhoB pathway mechanism
[14]. It would then be interesting to study the Rho protein
pathway within the different lines to further understand how
NDR2 promotes the YAP activation in hypoxia, hypoxia being also
involved in cancer cell migration via the RhoA pathway [52].
We subsequently studied the expression of NDR2 and YAP on

samples from patients with NSCLC. We show that NDR2 kinase
expression is higher in metastatic than in localized NSCLC
suggesting a link between the metastatic process and NDR2
expression. In addition, YAP is more frequently expressed higher
in metastatic than in localized NSCLC. These observations high-
light its potential role in the development of metastases, by
inducing the expression of pro-metastatic target genes as has
already been shown in breast cancer and melanoma cells [53]. The
results also show that the expression of YAP at the nuclear level is
higher in higher in metastatic than in localized NSCLC, which
again suggests that the metastases take place in a YAP-dependent
manner although this remains to be proven in an in-vivo study by
carrying out an extinction of the expression of YAP or else by
preventing its nuclear translocation.
Regarding the expression of YAP, the results did not reveal a

significant difference in expression between the metastatic or
non-metastatic NSCLC. Such comparison was not previously done
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by others to our knowledge but does not call into question the
role of YAP in the formation of carcinoma metastases, in particular
from lung, since independently of the quantity of YAP, the
important thing is its activation.
We finally used a model of lung cancer-derived BM and show

that silencing NDR2 kinase (but not NDR1) reduces the number of
metastases and the overall volume and rate of lesion progression.
Collectively, these results are therefore in favor of an effect of
metastatic promotion of NDR2 and consistent with the role of the
kinase NDR2 involved in the control of cell movement via
the regulation of YAP demonstrating a pro-metastatic effect of
the latter [15].
In conclusion, our results demonstrate that hypoxia is an

aggravating factor in bronchial carcinogenesis by silencing the

RASSF1A/Hippo pathway (except NDR2) in HBEC lines. These new
data improve our understanding of the relationship between the
tumor microenvironment, the Hippo signaling pathway, and the
adaptation of bronchial tumor cells. Our results shed light on HIF1
as a potential therapeutic target in patients with NSCLC with
inactivation of the RASSF1A gene, but also YAP. Thus, the
pharmacological targeting of these new targets could be effective
in preventing the spread of cancer and in improving the vital
prognosis of patients with NSCLC. Our results also indicated that
NDR2 kinase is over-active in NSCLC in part by hypoxia and
supports BM formation (Fig. 9). NDR2 expression is thus a useful
biomarker to predict the metastases risk in patients with NSCLC,
easily measurable routinely by immunohistochemistry on tumor
specimens.
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MATERIALS AND METHODS
Patients
We selected a retrospective population of 45 patients operated on a non-
metastatic NSCLC (n= 25) or metastatic NSCLC (n= 20) for whom both the
primitive tumor and the brain metastasis (BM) were available, at Caen
University Hospital between December 2009 and December 2019. Among
the 25 patients with localized NSCLC, 17 were men and 8 were women
with an average age of 71 years [54 – 86 years]. Among the 20 patients
with metastatic NSCLC, 15 were men and 5 were women with an average
age of 67 years [40–82 years]. As required by French laws, all patients
provided informed consent, and the study was approved by the
institutional ethics committee (North-West-Committee-for-Persons-Protec-
tion-III N°DC-2008-588).

Mice brain metastasis model
All animal investigations were performed under the current European
directive (2010/63/EU) following ARRIVE guidelines, in the housing and
laboratories #F14118001/#G14118001 and with the permission of the
regional committee on animal ethics (C2EA-54 CENOMEXA, project
#23280). Nude athymic mice (20-25 g, 8 weeks, male) were maintained
in specific pathogen-free housing. Mice were manipulated under
general anesthesia (5% isoflurane for induction, 2% for maintenance
in a 1 l/min of 70%N2O/30%O2). Body temperature was monitored and
maintained at 37.5 ± 0.5 °C throughout the experiments. Mice were
placed in a stereotaxic head holder and a scalp incision was performed
along the sagittal suture. H2030-BrM3 cells (105 cells in 3-μl-PBS
supplemented by glutamine (2 mM)) were injected over 5 min (0.6 μl/
min) via a fine needle (30 G) connected to a Hamilton syringe. The
injection sites were the right caudate putamen at a depth of 4 mm and
lateralization on the right of 2.5 mm. Mice were randomly selected, and
injected with H2030-BrM3 cells (shControl, shNDR1 or shNDR2).
Animals were followed twice a week by anatomical MRI over a 21 days’
period to follow BM development. The endpoints of the protocol to
limit pain of animals are described in the project authorization
number#23280 (C2EA-54 CENOMEXA). The number of animals
(n= 10/lot) was calculated to be as low as possible while allowing
robust measurements (the distribution is Gaussian and parametric tests
are applicable).

Acquisition of magnetic resonance imaging and sequence
analysis
The development of the lesions was monitored twice a week using
magnetic resonance imaging (MRI) on a 7 Tesla magnet (Pharmascan,
Bruker, Ettlingen, Germany). All experiments were performed under
isoflurane anesthesia: 5% and during induction and 2.5% during the
procedure in a 1 L/min mixture N20 and 02 (70 and 30%). The mouse is
placed in a cradle allowing the head to be held by ear and tooth bars.
Breathing is monitored in real time using a pressure balloon under the
abdomen.
Fast imaging, FLASH sequence (Fast Low Angle Shot); TR/TEeff: 100/

4 msec; resolution 0.39 × 0.39 × 3 mm3, acquisition time = 12 s), was out
to verify the positioning of the animal and allow acquisition
adjustments. T2-weighted imaging by rapid spin echo or RARE8 (Rapid
Acquisition Relaxation Enhanced 8) sequence was then acquired with
the following parameters: TR/TEeff = 5000/65 ms, number of repetitions

= 1, spatial resolution = 0.078 × 0.078, 26 slices 0.5 mm, acquisition
time= 2 min.
Tumor delineation was performed using ImageJ software (NIH, Wayne

Rasband, Maryland, USA) on all adjacent T2w slices and tumor volume was
achieved by multiplication of the sum of contiguous tumor surface areas
with the slice thickness.
To note, the acquisition of MRI and sequence analysis were performed

without knowing the group the animals belonged to (shControl, shNDR1 or
shNDR2).

Cell culture transfection and treatment
Immortalized human bronchial epithelial HBEC-3 cells, provided by Dr.
Michael White (UT Southwestern Medical Center, Dallas, TX, USA), were
grown as previously described [15]. BEAS-2B, A549, H1299, H1915 (from
the American Type Culture Collection), and H2030-BrM3 (KRASG12C

mutated from MSKCC, Dr Joan Massagué) were grown in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% (vol/vol) heat-
inactivated fetal bovine serum. Mediums were complemented by 100 U/
mL penicillin, 100 μg/mL streptomycin, and 2mM l-glutamine (Gibco, Life
Technologies, Grand Island, NY, USA), and cells incubated at 37 °C in a
humidified atmosphere with 5% CO2. Cells were routinely tested for
mycoplasma contamination using MycoAlert® Mycoplasma Detection Kits
(Lonza, Colmar, France), and recently authenticated by STR profiling
(Microsynth AG, Switzerland).
RNAi oligonucleotides (Eurogentec®) sequences are in Table S1. Non-

silencing negative control was from Dharmacon (Thermo Scientific,
Pittsburgh, PA, USA). Plasmids are described [15]. The transfection was
performed using Lipofectamine RNAiMax (Invitrogen, Carlsbad, CA, USA) in
accordance with the manufacturer’s instructions at 30% (siRNA) and 70%
(plasmids) of cell confluence.
For 0.2% oxygen culture, the cells were kept in a hypoxia workstation

(INVIVO2, Ruskinn, ABE, Guipry, France) with an atmosphere humidified
with 0.2% O2, 95% nitrogen and 5% CO2 at 37 °C.
For the c-jun pharmacological inhibition, the cells were treated with

SP600125 (1 μM) (Selleckchem, Houton, TX, USA).

Preparation of RNA and RT-PCR
The extraction of total RNA from cells was carried out using the illustra
RNAspin mini® column (GE Healthcare, Bio-Sciences, Pittsburgh, PA, USA),
according to the manufacturer’s instructions. Total RNA (250 ng) was
reverse-transcribed with random primers and 200 IU M-MLV reverse
transcriptase (37 °C, 90 min), followed by dissociation (70 °C, 5 min) with
Mastercycler Eppendorf®. The resulting cDNAs were diluted (1/10) and
used as templates. Polymerase chain reaction (PCR) was performed in a
Mx3005P QPCR system (Agilent Technology, Les Ulis, France) with 5 pmol
of each primer set (Table S2) and iQTM SYBR Green Supermix (Bio-Rad,
Hercules, CA, USA). S16 was used as an internal control. Positive standards
and reaction mixtures lacking the reverse transcriptase were employed
routinely as controls for each RNA sample. Relative quantification was
calculated using the ΔΔCt method.

Preparation of DNA and methylation-specific PCR assay
DNA samples were obtained from cells using the QIAamp DNA Tissue kit
(Qiagen, Les Ulis, France). Genomic DNA bisulfite modification was
performed using the Epitect kit (Qiagen, Les Ulis, France), according the
manufacturer’s instructions and previously described [54]. PCR was

Table 1. NDR2 silencing decreases formation and growth rate of BM from HBEC.

H2030-BrM3 A549

shControl shNDR1 shNDR2 shControl shNDR2

Animals with BM n (%) 7/10 (70%) 7/10 (70%) 6/10 (60%) 8/10 (80%) 5/9 (55.5%)

BM location

Striatum 7/7 (100%) 7/7 (100%) 6/7 (85.7%) 8/8 (100%) 0

Cortex 0 2/7 (28.6%) 0 1/8 (12.5%) 5/5 (100%)

Start growing (day after inoculation) 19.71 ± 1.11 18.00 ± 0.00 24.00 ± 0.00* 33.0 ± 6.3 40.6 ± 5.5*

Growth rate (mm3/day) 18.73 ± 4.53 36.22 ± 5.81* 2.84 ± 0.90**, ### 7.27 ± 1.57 0.33 ± 0.13**

t-test : * vs shControl ; # vs shNDR1.

J. Levallet et al.

10

Cell Death and Disease          (2023) 14:823 



conducted with specific primers for either the methylated or unmethylated
alleles (Table S3) in standard conditions.

Antibodies, immunofluorescence, immunohistochemistry,
immunoblotting, and image analysis
The antibodies are in Table S4.
For immunofluorescence, cells were seeded at a density of 2 × 104 per

24-well, then washed with phosphate-buffered saline (PBS) and fixed with
4% paraformaldehyde (20min, 37 °C). The cells were permeabilized with
frozen methanol for 10min and blocked with 4% bovine serum albumin
for 1 h and stained with primary antibodies at 4 °C overnight. After wash
with PBS, cells were stained with Alexa-488- or Alexa-555-conjugated
secondary antibodies (Molecular Probes, Invitrogen, Eugene, OR, USA) (1 h,

room temperature (RT)) and with DAPI (4,6 diamidino-2-phenylindole)
(SantaCruz Biotechnology, Dallas, TX, USA). Digital pictures were captured
using a high-throughput confocal microscopy (FluoView FV1000,
Olympus).
For immunohistochemistry, tumor paraffin-embedded blocks were

processed [55] with primary antibody diluted at 1:200. An overall IHC
composite score was calculated (staining intensity (0–3, 0: negative, 1:
weak, 2: moderate, and 3: strong) multiplied by the distribution (0–100%)
from all parts of the slide).
For immunoblotting, whole-cell protein extracts were prepared [15], and

proteins were detected by immunoblotting with the primary antibody
diluted to 1:1 000 in Tween (0.1%)-TBS buffer and horseradish peroxidase
(HRP)-conjugated secondary antibody, then revealed by enhanced
chemiluminescence using the ECL kit (Promega™, Charbonnières-les-Bains,
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Fig. 8 NDR2 expression increases in primitive NSCLC leading to brain metastasis. We immunostained a retrospective population of 45
patients operated on a non-metastatic NSCLC (n= 25) or metastatic NSCLC (n= 20) for whom both the primitive tumor and the brain
metastasis (BM) were available, with NDR2 (1:400), YAP (1:400) or phospho-c-Jun (1:50). Data are the mean ± SEM of a IHC score calculated as
the sum of the staining intensity (0–3) multiplied by the distribution (0–100%) (*p < 0.05, ***p < 0.001).
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Fig. 9 NDR2 underlies brain metastases from Non-Small Cell Lung Cancer. Hypoxia-induced activation of NDR2 underlies brain metastases
from Non-Small Cell Lung Cancer (Graphical abstract).
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France). Densitometry results of western blot were analyzed with Image J
software.

BrdU incorporation assay
BrdU incorporation assay kit (Millipore, Billerica, MA, USA) was used in
accordance with the manufacturer’s instructions. Spectrophotometric
detection was performed at 450 nm wavelength.

Caspase-3/7 assay
Caspase-3/7 activation was assayed using the Caspase-Glo 3/7 Lumines-
cence Assay (Promega Corp., Madison, WI, USA) according to the
manufacturer’s instructions.

Wound-healing assay
Transfected cells were grown in complete medium onto 24-well Collagen
IV coated plates (BD Biocoat™, Heidelberg, Germany). They were pretreated
with mitomycin C at non-cytotoxic concentrations (1 ug/ml) for 12 h before
an artificial “wound” carefully created at 0 h, using a P-20 pipette tip.
Photographs were taken (X10) at 0 h and 6 h. The average velocity of cell
migration was measured by subtracting distances across the wound at 0 h
and 6 h and expressed as μm/h.

3D migration assay
In all, 25 × 103 cells in 250 μl serum-free medium were added to the top
chambers of 24-well Transwell plates containing a cell culture inserted with
8 μm pore size (Greiner Bio-One, Courtaboeuf, France). The lower chamber
was filled with 700 μl complete media. After 48 h of incubation, the non-
migrating cells (on the top) were removed and the migrating cells (on
filter’s lower surface) were stained using crystal violet then counted under
an inverted microscope at x20 magnification.

Statistical analysis
Data are means ± SEM of three independent experiments. The data were
analyzed using a two-tailed Student’s t-test (single comparison) or one-way
ANOVA followed by Dunnett’s (multiple comparison analysis, GraphPad
Prism 4, a GraphPad Software program (San Diego, CA, USA), the variance
was similar between the groups that are being statistically compared).
Differences are significant at p < 0.05.

DATA AVAILABILITY
All data are stored at the GIP Cyceron and Université de Caen Normandie (Caen,
France), and can be made available upon request.
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