
HAL Id: hal-04391195
https://normandie-univ.hal.science/hal-04391195

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniform SAmplINg with BOLTZmann
Matthieu Dien, Martin Pépin

To cite this version:
Matthieu Dien, Martin Pépin. Uniform SAmplINg with BOLTZmann. 25th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing, Sep 2023, Nancy, France.
�hal-04391195�

https://normandie-univ.hal.science/hal-04391195
https://hal.archives-ouvertes.fr


1

Uniform SAmplINg with BOLTZmann
Matthieu Dien Normandie Université, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Email: matthieu.dien@unicaen.fr MartinPépin Normandie Université, UNICAEN, ENSICAEN, CNRS, GREYC,
14000 Caen, France

Email: martin.pepin@unicaen.fr

Abstract—USAIN BOLTZ is a fast Python library for the uni-
form random generation of tree-like structures. It allows the user
to specify both (1) the data structure they wish to sample, using
simple combinators similar to those of context-free grammars,
and (2) their memory representation. The underlying algorithms
are optimised Boltzmann samplers allowing to get approximate-
size uniform random generation in linear time. Experimental
results show that USAIN BOLTZ matches the performance of the
experimental Arbogen package for OCaml, and out-performs the
Boltzmann brain Haskell library, while being easier to integrate
into existing scientific tools such as Sagemath.

Index Terms—Combinatorics, Trees, Random generation

I. INTRODUCTION

Discrete structures are often used in sciences to model a
concept or an object belonging to the original domain of study.
For example, tree structures represent lineage relations be-
tween people (history), words, languages (linguistics), or genes
(biology); and they also structure information (tree diagrams in
probabilities or data structures in computer science). In order
to understand the underlying patterns governing the shape of
the structures, random generation has proven to be a useful
experimentation tool. It is also a basic block of other algo-
rithms. For example, in the context of software engineering,
it allows to test the scalability of applications [1], to perform
unit tests [2], [3], or to study the asymptotic complexity of
algorithms. In bioinformatics, the random generation of RNA
secondary structures is also used to design RNA molecules for
nano-materials or therapeutics [4].

In these examples, the goal is to simulate the uniform
distribution: each outcome (of the same size) has the same
probability. Various generic approaches have been developed
to devise uniform samplers. Notable examples include Monte
Carlo techniques, based on Markov chains [5], [6]; the famous
recursive method from Nijenhuis and Wilf [7], [8], [9], which
applies to any data structure admitting a combinatorial decom-
position; and finally the Boltzmann method [10], which can
generically sample any data structure admiting a combinatorial
specification in the sense of [11].

This last method generally out-performs the others by
achieving linear time sampling if one can tolerate a small
imprecision in the size of the generated object. This is why we
opted for Boltzmann sampling in our library USAIN BOLTZ.

This research was partially supported by the ANR PPS project ANR-
19-CE48-0014 and the “DYNNET” project, co-funded by the Normandy
County Council and the European Union in the framework of the ERDF-
ESF operational program 2014-2020.

Our implementation1 has fast C++ routines in its core and
is exposed as a Python [12] library so that it integrates well
into the rich software environment that exists in Python for
scientific computing, notably thanks to Sagemath [13]. Our
implementation is open-source (GPLv3 license) to support the
open science dynamics and the free software movement.

The rest of this paper is organised as follows. Section II
gives some key facts on the theory behind USAIN BOLTZ.
Section III describes our running example. Section IV shows
how to use the library and explain some relevant features.
Then Section V presents a performance comparison with other
existing tools. And finally Section VI concludes with possible
improvements.

II. THE BOLTZMANN METHOD IN A NUTSHELL

The Boltzmann method works on combinatorial specifica-
tions, which are at the core of analytic combinatorics [11].
They offer a language with basic constructions and combi-
nators allowing to describe data structures by a system of
equations. The most important such constructions are the
disjoint union, the Cartesian product, and some base cases,
which we illustrate here in an example. A more complete list
can be found in [11, Theorem I.1 p.27]. Here is a specification
of the set of binary trees in this formalism:

B = E + Z × B × B. (1)

This reads as follows: a binary tree B is either a leaf E or an
internal node with two children Z × B × B. The × symbol
represents a Cartesian product (you need two Bs to form a pair
of children) and the + symbol represents a disjoint union.

A key component of such descriptions is the notion of size.
Here the symbol Z encodes the fact that an internal node
“accounts for one” in the size of a tree, hereby defining the
size of a binary tree as its number of internal nodes. By
opposition, the symbol E , represents a single object of size
zero. It is essential for the theory of Boltzmann samplers
that the number of objects of a given size described by
such a specification remains finite. This gives a well-founded
notion of “uniform object of size n”. Given a set A described
by such a specification, the Boltzmann method provides an
automatic way to build algorithms for the random sampling of
elements of A according to a specific probability distribution:
the Boltzmann model [10, p. 581]. It offers two guaranties.
First, two objects of the same size have the same probability
to be drawn (uniformity by size). And second, when coupled

1available at https://gitlab.com/ParComb/usain-boltz
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with (early) rejection as described in [10, p. 601], it allows
to draw objects of size close to a target size n (that is
in [(1− ϵ)n; (1 + ϵ)n] for some ϵ > 0) in linear time.

III. EXAMPLE OF APPLICATION: RNA SECONDARY
STRUCTURES

As an illustrative example that we will follow along this
paper, consider the RNA (RiboNucleic Acid) secondary struc-
tures as defined in [4]. These are a simplified view of the
structures resulting from the natural folding of RNA strands
in their environment. According to [4], RNA strands (chains
of nucleotides A, U , C, and G) fold in a hierarchical fashion
where matching pairs (A−U and C−G) create non-crossing
links (chemical bounds), as modelled below:

S = B × Z × (S + E) + B × Z × S × Z × (S + E)
B = UA + UU + UC + UG

(2)

Here, S represents a secondary structure, Z counts nu-
cleotides, E represents an empty strand, and B distinguishes
between the four kinds of nucleotides using marker variables.
The marker construction Ux does not contribute to the size
(like E), but it “marks” and keeps a count of some features
of the data structure. This allows to get statistics from the
sampler and to bias the generation (see below). The second
term B × Z × S × Z × (S + E), encodes a link between the
first nucleotide B ×Z and a matching nucleotide Z , within a
structure.

IV. USAIN BOLTZ

The first step to get a Boltzmann sampler using USAIN
BOLTZ is to give it a combinatorial specification. They are rep-
resented in Python using a hierarchy of classes, one for each
possible construction and one to represent the whole system of
equations. The most notable constructions are illustrated below
on the example of RNA secondary structures and the complete
list can be found online in our package’s documentation2 .

B, S, z, empty = RuleName("B"),
RuleName("S"), Atom(), Epsilon()↪→

A, U, C, G = Marker("A"), Marker("U"),
Marker("C"), Marker("G")↪→

grammar = Grammar({S: B * z * (S + empty) +
B * z * S * z * (S + empty),↪→

B: A + U + C + G})

Note that to be able to bind B and S in the Grammar, we
must declare S and B as RuleNames beforehand. Also, since
specifications are regular Python expressions it is possible to
define expressions outside of the grammar as short-hands, as
we did here with z and empty for instance.

Then, one needs to create a Generator instance, which
initialises the C++ sampler that runs under the hood, and
provides an interface to it. The simplest way to call this
sampler is then via the sample method which takes a size
window as an argument and outputs a result object storing
a generated structure (of size in the window) in result.obj
and some statistics in result.sizes.

2usain-boltz.readthedocs.io/en/latest/generated/usainboltz.grammar.html

generator = Generator(grammar)
result = generator.sample((10000, 15000))
# result.sizes = {A: 2080, U: 2063, G: 2087,

C: 2110, z: 10558}↪→

It is also possible to tune the generator (thanks to pa-
ganini [14]) towards producing more As and to apply size-
based rejection to A, to bias its output. For instance you can
tell that you want 3000 Adenine nucleotides in expectation
and reject any quantity lower than 2800 as so:

biased_gen = Generator(grammar,
expectations={A: 3000, z: 10000})↪→

res = biased_gen.sample({z: (10000, 15000),
A: (2800, 15000)})↪→

# res.sizes = {U: 2788, C: 2760, G: 2700, A:
2803, z: 13986}↪→

A. Generator optimisations

1) Simulation: Although the generation of objects of size
in [(1−ϵ)n; (1+ϵ)n] is linear in average, it has a non-negligible
cost in practice because of the useless allocations incurred
by the rejections. To circumvent this issue, we propose an
alternative rejection procedure that “simulates” the generation
of an object by only computing its size rather than actually
constructing it. When a size in the targeted size window is
found, we reset the pseudo random number generator to the
state in which it was just before the simulation and the actual
generator is run instead of the simulator. This technique gives
a significant speed-up as shown in Figure 1.
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Fig. 1. Comparison of the runtime spent in the simulation and generation
algorithms for RNA secondary structures (2) where ϵ = 0.1 and n varies. In
pink is the total simulation time, in blue is the portion of that runtime spent in
the last simulation (the successful one), and in yellow is the runtime spent in
the final generation. For selected values of n, we CPU-timed the algorithms 51
times with different seeds and show here their median and interquartile range
(IQR) in a box plot. The whiskers extend to the most distant measure that
lies within 1.5 times the IQR.

2) Non-recursive implementation: Another aspect of our
implementation is that we implemented both the simulation
and the generation routines in a non-recursive fashion. The
original description of the algorithm is not tail-recursive and
uses a stack space that is of the same order as the height of the

https://usain-boltz.readthedocs.io/en/latest/generated/usainboltz.grammar.html
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generated tree, that is
√
n in most cases (see [15]). This cannot

be neglected since stack space is often a limited resource. Our
implementation takes the form of a stack machine described
in the PhD thesis of one of the authors [16, p. 120].

B. Builders

A last feature of our implementation, which we believe
is unique to USAIN BOLTZ and makes it easy to integrate
inside another system, is the “builder” mechanism. The idea
is to let to the user of the library the choice of how the
generated objects are constructed rather than enforcing one
data representation. This is achieved by letting the user pass to
the generator a “builder” function for each symbol of the spec-
ification. These functions take a partially built structure as an
argument (a nested tuple in which all recursive sub-structures
are already fully built) and complete the construction.

For instance, here is an RNA secondary structure of size 15
generated with the default builders using tuples to represents
the elements of a Cartesian product:

(U, 'z', (C, 'z', 'epsilon'), 'z', (U, 'z',
(A, 'z', (G, 'z', (G, 'z',↪→

(C, 'z', 'epsilon')))), 'z', (C, 'z', (G,
'z', (C, 'z', (A, 'z', (U, 'z',↪→

'epsilon'), 'z', 'epsilon'))))))

One possible, more suitable, data representation is to use list of
markers to store the list of bases, and to store an offset together
with the first base of each link. To use this representation, we
must pass a builder for S to the generator. This builder will
receive either a tuple of type B * z * (S + empty) or
a tuple of type B * z * S * z * (S + empty) where
the S objects have already been built. Note that we keep the
default builder for B as it already does what we want.

dual = {A: U, U: A, C: G, G: C}
build_S_or_E = union_builder(lambda x: x,

lambda eps: [])↪→

def build_prefix(t): # case: B * z * (S +
Epsilon())↪→

base, z, se = t
return [base] + build_S_or_E(se)

def build_matching(t): # case: B * S * z *
(S + Epsilon())↪→

base, z, s, z, se = t
return [(base, len(s) + 1)] + s +

[dual[base]] + build_S_or_E(se)↪→

generator.set_builder(S,
union_builder(build_prefix,
build_matching))

↪→

↪→

Note the use of the union_builder function here. In
the case of the union of two classes (e.g. (S + empty)),
in order to avoid potential ambiguities, the generator tags
the generated object with an integer indicating from which
component of the union it comes. The union_builder
function automates the process of calling the right builder
depending on this tag, so that the user only has to specify
a sub-builder for each component of the union. For instance,
to build an element from (S + empty), we must provide
two builders. In case we receive an S, the object has already
been built so we pass the identity function, and in case
we receive an Epsilon(), we return the empty secondary
structure []. Finally we pass the builder to the generator by

calling the set_builder method. Using the same seed as
in the previous example the generator now yields:

[(U, 2), C, A, (U, 5), A, G, G, C, A, C, G,
C, (A, 2), U, U]↪→

V. PERFORMANCE COMPARISON

At the moment, few tools currently implement the Boltz-
mann method. An OCaml prototype called Arbogen [17] has
been developed by various people including the authors. It
has few features but implements the simulation mechanism.
Another tool called Boltzmann brain has been written in
Haskell [18], [14], [19], in the form of a compiler that takes a
Haskell data type as an input and produces a Haskell sampler,
and also as a template Haskell library. Unfortunately, due to
some (probably minor) bugs in Boltzmann brain, we could
not compare its performance with that of USAIN BOLTZ on
the RNA example. So we compared the three tools on the
simpler example of binary trees (1) which works across all
tools. The results are presented in Figure 2 and the sources of
the experiments are available at https://gitlab.com/ParComb/
usain-boltz/-/tree/master/benchmarks.
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Fig. 2. Comparison of the runtimes of USAIN BOLTZ, Arbogen, and
Boltzmann brain for generating binary trees. The setup is the same as for
the simulation benchmark of Figure 1: for each size, run the generator 51
times and draw some box plots to describe the runtime discrepancy between
the different runs. We can see a clear difference here between Boltzmann
brain and the other two tools, which we explain by the simulation trick (see
Section IV-A1).

VI. PERSPECTIVES

USAIN BOLTZ has more features than we could present in
this paper, but the literature on Boltzmann sampling is rich of
extensions we want to implement. For instance, the so-called
Pólya operators, allowing to deal with symmetries, have been
added to the Boltzmann framework in [20], [21]. We already
implemented the most common one (MSET) but some work
remains to be done in this direction. Moreover, USAIN BOLTZ
also supports labelled specifications [10, Sec.4, p. 593], but
no form of constrained labellings [22], [23] yet, which is also
planned for the future. Finally, some internal tuning of the

https://gitlab.com/ParComb/usain-boltz/-/tree/master/benchmarks
https://gitlab.com/ParComb/usain-boltz/-/tree/master/benchmarks
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algorithms is delegated to the open source paganini [14], [24]
library. But in rare occasions we fall out of its scope and
need a more general tool such as NewtonGF [25]. However
it is bound to the proprietary Maple computer algebra system
which makes the interface difficult. We would like to provide
our own Python implementation of this tool.
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