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ABSTRACT

Contrastive learning has demonstrated great effectiveness in
representation learning especially for image classification
tasks. However, there is still a shortage in the studies target-
ing regression tasks, and more specifically applications on
hyperspectral data. In this paper, we propose a contrastive
learning framework for the regression tasks for hyperspectral
data. To this end, we provide a collection of transformations
relevant for augmenting hyperspectral data, and investigate
contrastive learning for regression. Experiments on syn-
thetic and real hyperspectral datasets show that the proposed
framework and transformations significantly improve the per-
formance of regression models, achieving better scores than
other state-of-the-art transformations.

Index Terms— Contrastive Learning, Hyperspectral
Data, Regression, Data Augmentation

1. INTRODUCTION

Hyperspectral imagery offers valuable insights into the phys-
ical properties of an object or area without the need for phys-
ical contact. Hyperspectral sensors capture a broad range of
information within the light spectrum, often spanning hun-
dreds of contiguous bands across a wavelength range of ap-
proximately 500 nm to 2500 nm. This capability allows each
material to possess its own distinct spectral signature. This
type of data has been gaining significant attention from the
signal processing and machine learning community, and be-
came a direct application for classification [1], regression [2],
unmixing [3] and object detection [4] tasks.

Recently, due to the limitation of supervised learning
techniques to labeled data, self-supervised learning methods
have been gaining popularity to learn general representations
from unlabeled data thus having more discriminative fea-
tures in the used neural networks. In this context, contrastive
learning [5] is a self-supervised approach that provides such
discriminative features by maximizing the similarity between
similar data examples and minimizing it between dissimilar
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ones. The use of such approach on hyperspectral data is
still encountering some challenges especially regarding the
augmentation techniques to be used. Data augmentation tech-
niques often used for general images (e.g., image rotation)
are not applicable to hyperspectral data. In this article, we in-
vestigate the use of contrastive learning to improve regression
results on hyperspectral data, with application in hyperspec-
tral unmixing and pollution estimation. The contributions can
be seen as following:

1. We revisit some popular augmentation techniques, of-
ten used in computer vision, to fit into hyperspectral
data. Besides, we make use of well-known radiative
transfer models that simulate the atmospheric effect on
hyperspectral data to generate augmented spectra.

2. We adapt the cross-entropy based contrastive loss to fit
regression tasks by incorporating the use of a ball of
given radius to select positive and negative pairs.

3. We show the performance of our method in real-world
scenario, including unmixing and prediction of pollu-
tion concentration in soil data.

The rest of the paper is organized as follows. Section 2 high-
lights some of the related work on contrastive learning with
hyperspectral data. In Section 3, we present the core ideas be-
hind our proposed method. The experimental studies with the
obtained results are presented in Section 4. The contributions
and future steps are summarized in Section 5.

2. RELATED WORK

Recently, there have been some studies investigating the use
of contrastive learning on hyperspectral data. However, the
majority of these studies were targeting classification tasks.
[6] introduced a contrastive learning network based on a near-
est neighbor augmentation scheme, by extracting similarities
from nearest neighbor samples to learn enhanced semantic re-
lationships. In [7], three data augmentation methods were in-
troduced to enhance the representation of features extracted
by contrastive learning. These methods were band erasure,
gradient mask and random occlusion. In the same context, [8]
introduced a spectral-spatial contrastive clustering network,
with a set of spectral-spatial augmentation techniques that in-
cludes random cropping, resizing, rotation, flipping, and blur-



Fig. 1. Architecture of the proposed method.

ring for the spatial domain, as well as band permutation and
band erasure for the spectral domain. [9] introduced a frame-
work for detecting surface changes in hyperspectral images
using self-supervised learning. Their main contributions in-
volved an augmentation technique based on a Gaussian noise
and a contrastive loss based on Pearson coefficient and neg-
ative cosine correlation. Similarly, [10] introduced a neigh-
borhood contrastive subspace clustering network for unsuper-
vised classification of large hyperspectral images based on a
superpixel pooling autoencoder. Besides, [11] demonstrated
that by pre-training an encoder on unlabeled pixels using the
proposed Barlow-Twins algorithm, accurate models can be
obtained even with a small number of labeled samples. For
Unmixing, the authors in [12] introduces in addition to the
standard reconstruction error loss often used, a contrastive
loss is applied to the endmember matrix to promote separa-
bility between endmembers and another regularization loss to
encourage the minimum simplex volume constraint in end-
members.

3. METHOD

3.1. Proposed Framework

The task we are addressing is a pixel-level regression on hy-
perspectral data. The process starts by extracting a batch of
N pixels X = [x1(λ), x2(λ), . . . , xN (λ)]⊤ ∈ RN×b from a
hyperspectral image, where λ is the wavelength with b total
number of wavelengths. X is then transformed using a de-
fined spectral transformation Φtransform to get X̃ , which will
be passed along with the original batch to a shared feature ex-
tractor Φw to get F̃ and F = [f1, f2, . . . , fN ]⊤ respectively.
These features are passed into a regression network gθ that
will generate the regression labels Ŷ = [ŷ1, ŷ2, . . . , ŷN ]⊤ ∈
RN×s for s prediction variables. The network will be trained
with a joint contrastive and regression losses simultaneously.
The architecture of the proposed method can be seen Figure 1.

3.2. Spectral Data Augmentation Methods

Most of data augmentation techniques focus on the spatial
domain of images such as geometric transformations, noise
injection, and color distortions. These techniques cannot be
adapted directly to the spectral domain as the used transfor-
mations should not create strong deformations to the original

spectrum in order not to loose useful information. In the fol-
lowing, we propose a new list of transformations that can be
adequate for the spectral domain:

1. The Spectral Shift involves shifting the spectrum in the
wavelength, such as

x̃(λ) = x(λ−∆), (1)

By applying random shifts, the model can learn to be
more robust to spectral variations in the input data.

2. The Spectral Flipping involves reversing the order of
spectral bands in a spectrum according to the following:

x̃(λ) = x(λmin + λmax − λ). (2)

where λmin and λmax are the minimum and maximum
wavelengths in the spectrum, respectively. This aug-
mentation technique can help the model learn the in-
variance to the order of spectral bands and handle po-
tential inconsistencies in the spectral ordering across
different datasets or sensors.

3. The Scattering Hapke’s Model [13] simulates realistic
scattering effects caused by light interaction with sur-
faces according to the following formula:

x̃ =
ω

(1 + 2µ1

√
1− ω)(1 + 2µ2

√
1− ω)

, (3)
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)2

(4)
where ω is the single scattering albedo of the material,
and µ1 (resp. µ2 ) is the cosine of the angle between
the incoming (resp. outgoing) radiation and the nor-
mal to the surface and µ0 is the initial cosine angle of
the incoming radiation. By varying µ1 and µ2, we can
generate spectra with different scattering effect.

4. The Atmospheric Compensation model [14] helps the
model learn to handle atmospheric effects. Assuming
full visibility and that the adjacency effect is negligible,
this model is given by:

x̃ = x
Esun-gr µ1 + Esky

Esun-gr µ2 + Esky
, (5)

where Esun−gr denotes the solar radiance observed at
the ground level, and Esky denotes the skylight. The
parameters µ1 and µ2 are the cosines of the angles be-
tween the surface normal and the direction of the sun at
each pixel and at the calibration panel, respectively.

5. The Elastic Distortion consists in a displacement grid
on the wavelength axis, such as

x̃(λ) = x(λ+ ϵ(λ)) = x
(
λ+

NG∑
i=1

Aie
− (λ−λi)

2

2σ2

)
(6)



where ϵ(λ) is the random displacement function ap-
plied to the input signal, NG is the number of Gaus-
sian kernels used to generate the distortion, Ai is the
amplitude of the i-th Gaussian kernel, λi its center
wavelength, and σ controls its width. This technique
can help the model learn to handle spectral variations
caused by distortions or misalignments.

In addition to this proposed list, there exist some augmen-
tation techniques that are already presented in literature:

1. The Band Erasure [8] randomly removing certain
wavelength from the spectral data.

2. The Band Permutation [8] involves randomly permut-
ing the order of the spectral bands.

3. The Nearest Neighbor [6] involves creating new syn-
thetic samples based on the average of the closest sam-
ples.

3.3. Contrastive Learning

After augmenting the data X with different views X̃ , both are
forwarded to the feature extractor Φw, which extracts the cor-
responding features, F and F̃ respectively, and then will be
later on passed to a regression head gθ. To optimize the fea-
ture extractor, we train the neural network so that two spectral
data transformed via different augmentation techniques and
with close regression labels should share similar features in
the latent space, while different spectra with different labels
should be far away. This type of training can be achieved
using a self-supervised contrastive loss [5].

In classification, selecting similar data pairs (referred to
as positive pairs) can be done by taking the transformed ver-
sion of an image as well as other images that belong to the
same class, while dealing with the rest as negative ones. In
regression, as we do not have class labels, the alternative is to
define for the i-th sample a ball Bi of radius r where positive
pair j is selected as following:

r ≥
∥∥yi − yj

∥∥
2
. (7)

The common contrastive loss used in most recent work is
based on the cross entropy, which can be written as

LContrastive = − 1

N

2N∑
i=1

∑
j∈Bi

log
exp

(
sim

(
f i, f j

)
/τ

)∑
k ̸∈Bi exp (sim (f i, fk) /τ)

(8)
where sim(u,v) = uTv/(∥u∥∥v∥) is the cosine similarity
between two vectors, and τ is a temperature scalar. By mini-
mizing this loss, the similarity between samples i-th and j-th
is maximized while minimizing the similarity between i-th
and k-th samples. For training, the contrastive loss is com-
bined with a standard mean squared error regression loss ac-
cording to the following:

Ltotal = LR + α LContrastive, (9)

LR =
1

N

N∑
i=1

∥∥yi − gθ
(
f i
)∥∥2 . (10)

4. EXPERMIMENTS & RESULTS

4.1. Synthetic Data

For the synthetic data, four random endmembers were se-
lected from the USGS digital spectral library [15]. Each end-
member is composed of 224 contiguous bands. A total of
100 × 100 pixels were generated with abundances follow-
ing a Dirichlet distribution. Additive zero-mean Gaussian
noise was added to the data with a signal-to-noise ratio of
20 dB. We considered a polynomial post-nonlinear mixing of
the endmembers where the nonlinearity is represented by the
element-wise product of two linear mixtures as following:

x = Ma+Ma⊙Ma+ n, (11)

with M ,a and n being endmember matrix, abundances
and noise vector respectively and ⊙ denotes the element-
wise product. The model was trained to predict the abun-
dances from the input of mixed spectra. For the architecture
of Φw, we used three fully connected layers mapping the
input shape to 128, 64 and 32 nodes respectively. For the
regression network gθ, we use two fully connected layers that
further reduces the dimension to 16 then to s = 4 abundances
to be estimated in this case. We trained our network with 100
epochs and a batch size of 32. We evaluated the influence
of each transformation with two regression metrics, R2 score
and the mean absolute error (MAE). The results are shown in
Table 1. We can see that the all the transformations presented
in the table improved the results compared to the baseline
model where no contrastive loss was applied. Besides, we
can see that the shift and elastic transformations provided the
top two results. These can be justified as elastic transform
can create similar adjustments to spectral data to that created
by the shift transform. Besides, in Figure 3(a) we compare
the prediction error distribution with and without the use of
the contrastive loss. We can see that the mean of the error
distribution is shifted closer to zero due to the contrastive
learning, which highlights the improvement in the prediction
values.

4.2. Real Soil Data

To evaluate our model on a more challenging environment,
we considered a dataset provided by Tellux for soil pollution
analysis using hyperspectral imaging [16]. The used soil is
formed of a mix between different soil matrices (sand, clay,
silt, organic material ...). The dataset is composed 10000
spectra with a spectral range [1130-2450 nm] and contain-
ing hydrocarbon pollution concentration ranging [0-20000
mg/kg] where each soil mixture is mixed with hydrocarbon
pollutants. An example of these spectral data as well as their



Fig. 2. Original and Transformed Examples from Real Data.

transformed versions obtained by the proposed transforma-
tions can be seen in Figure 2. We used the same settings
(architecture, batch size, ...) as for the synthetic data and
trained it with 1000 epochs. In the same way as with the
synthetic data, the obtained results given in Table 2 show a
clear improvement in R2 and MAE scores for all models with
contrastive loss compared to the baseline model. Besides,
shift, flip and elastic transformations provided the best re-
sults, which can be justified as these methods give invariance
to the model for spectral bands order while maintaining the
spectral profile. In addition, Figure 3(b) shows the shift in the
distribution error thanks to the use of the contrastive loss.

Table 1. Regression Results on Synthetic Data.
R2 MAE

Baseline (No Contrastive) 0.55± 0.004 0.073± 0.07

Band erasure [8] 0.62± 0.003 0.064± 0.05

Band Permutation [8] 0.63± 0.003 0.063± 0.05

Nearest Neighbor [6] 0.61± 0.004 0.065± 0.05

Scattering 0.64± 0.004 0.061± 0.06

Atmospheric 0.65± 0.004 0.059± 0.06

Flipping 0.62± 0.005 0.062± 0.07

Elastic 0.66± 0.003 0.058± 0.05

Shift 0.75± 0.003 0.053± 0.05

Table 2. Regression Results on Real Data.
R2 MAE

Baseline (No Contrastive) 0.45± 0.002 2274.04± 21.2

Band erasure [8] 0.54± 0.003 1620.22± 18.1

Band Permutation [8] 0.53± 0.003 1700.04± 20.5

Nearest Neighbor [6] 0.54± 0.003 1850.40± 34.5

Scattering 0.56± 0.003 1737.26± 18.2

Atmospheric 0.55± 0.002 1796.63± 16.1

Elastic 0.58± 0.002 1709.33± 18.3

Flip 0.59± 0.002 1708.52± 18.4

Shift 0.59± 0.002 1380.37± 16.5

4.3. Combination Study

To provide more robustness of the regression model to vari-
ous types of variability that might be present in the spectral
data, we combine several spectral transformations from the

Fig. 3. Prediction Error Distribution.

ones presented before. To reduce the number of all possible
combinations from the eight presented transformations, we
propose an incremental procedure where we start by taking
the transformation that provided the best result (namely the
shift transformation from Table 1 and Table 2) and then we
do all the 2-element combinations. After selecting the best
pair, we repeat the process to select the third transformation,
and so on. Table 3 and Table 4 provide the R2 scores of the
regression model, as well as the difference ∆R2 for each in-
cremental update. For simplification, we only show the in-
cremental settings that led to the best combinations. We can
see that combining the shift, atmospheric, elastic and scat-
tering transforms can improve the regression metrics when
combined together.

Table 3. Combination Study Results on Synthetic Data.
R2 ∆R2

Shift 0.7522 −
Shift + Atmospheric 0.7774 0.0252

Shift + Atmospheric + Scattering 0.7921 0.0147

Shift + Atmospheric + Scattering + Elastic 0.7922 0.0001

Table 4. Combination Study Results on Real Data.
R2 ∆R2

Shift 0.59000 −
Shift + Atmospheric 0.60639 0.01639

Shift + Atmospheric + Elastic 0.61791 0.01152

Shift + Atmospheric + Elastic + Scattering 0.61793 0.00002

5. CONCLUSION

In this paper, we investigated the ability of using contrastive
learning for regression tasks on hyperspectral data. We pre-
sented a set of spectral transformations adequate for hyper-
spectral data. Besides, a contrastive loss was added to the
training and a clear improvement was seen on the results of
both synthetic and real datasets. Future work involves com-
bining the presented framework with another domain adapta-
tion frameworks to generalize knowledge on unseen domains.
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