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Motivation: Inverse problems in thin plate bending
Thin plates find applications in several fields of science and

engineering. We recall here the case of plate elements for

a bridge deck. In some situations, it may be mandatory to

ensure the embedding and support of these plates for the

correct installation of this structure. However, direct mea-

surements may be impossible or difficult to obtain during

construction or during maintenance. An inverse problem

then arises!

Objectives : The aim of this study is to solve the inverse

Cauchy-type problem for the bilaplacian operator, which

governs the bending of thin plates, such as boundary con-

ditions are available only on part of the boundary. We pro-

pose to apply the fading regularization method and to im-

plement it numerically using Discrete Kirchhoff (DK) plate

elements.
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Figure 1: Plate elements for a bridge deck

Ill-posed Cauchy problem associated with the bilaplacian
The constitutive equation for the bending plate problem, under Kirchhoff-Love theory, is :

∫

Ω

(

(L∇)tD(L∇)w
)

︸ ︷︷ ︸

D∆2w

δw dxdy =

∫

Ω
q(x, y)δω dxdy

+

∫

Γ

[

Mn
∂δw

∂n
− Vnδw

]

ds +
∑

i

δwiRi.

It is characterized by the biharmonic operator to which boundary conditions, related to the transverse dis-

placement w, the normal rotation ∂w
∂n

, the moment Mn and the shear force Vn, are added at any point of the

boundary.
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These boundary conditions are not always accessible to measure-

ments. Hence, in the case of an inaccessible part Γi of the bound-

ary and an over-specified part of the boundary Γd, the resulting

Cauchy problem is ill-posed in the sense of Hadamard.







∆2w = 0 ∀x ∈ Ω

w = ϕd ∀x ∈ Γd
w,n = ψd ∀x ∈ Γd
Mn = Md ∀x ∈ Γd
Vn = Vd ∀x ∈ Γd

q

∂Ω = Γd ∪ Γi et Γd ∩ Γi = ∅. No boundary condition is given on the part Γi !

Discrete Kirchhoff plate element

Plate finite elements

Discrete Kirchhoff

Discrete Kirchhoff
Example of thick plate

elements :

-MITC4

-DSQ

-DKMQ

Thick plates

Reissner-Mindlin theory
Thin plates

Kirchhoff-Love theory

C1 regularity for

the displacement w

C0 regularity for w and

independent interpolation

for the rotation field

Example of non-

-conforming elements :

-Adini 1960

-Melosh 1963

-Bazeley 1966

-Cheung 1968

Poor performance due to

C1 regularity issue when

rotation field interpolation

comes from displacement

field

Get rid of C1 continuity

in a discrete way

Discrete Kirchhoff (DK)

finite elements

Example of DK finite

elements :

- DKT Dhatt 1968

- DKT Batoz 1980

- DKQ Batoz 1982

- MKQ12 2017

Neglecting the shear

force by applying

discrete Kirchhoff’s

theory (at corner nodes

and element edges)
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3 degrees of freedom per node :
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The stiffness matrix of the DKQ element is defined as
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The corresponding finite element formulation is : E(V) := Kd− F b = 0, such as b = (Mn,Vn, R).

The fading regularization method
• Idea: Find the solution of the equilibrium equation that best fits the boundary data while maintaining

independence of the regularization parameter and stability towards noisy data

V
k+1 = Argmin

V∈H(Γ)

{

‖V − Φd‖
2
H(Γd)

+ c‖V −V
k‖2H(Γ)

}

• The fading regularization algorithm:

∥
∥
∥
∥
∥
∥
∥
∥

V
k+1 = Argmin

V∈R5N

Jk+1c (V)

with V = (d,Mn,Vn) = (W, θ,x, θ,y,Mn,Vn)

under the equality constraints E(V) = 0

where

Jk+1c (V) = ‖W|Γd − φd‖
2
L2(Γd)

+ ‖nyθ,x + nxθ,y|Γd
− µd‖

2
L2(Γd)

+ ‖Mn|Γd −Md‖
2
L2(Γd)

+ ‖Vn|Γd − Vd‖
2
L2(Γd)

+ c
(

‖W −W k‖2L2(Γ)

+ ‖θ,x − θ,x
k‖2L2(Γ) + ‖θ,y − θ,y

k‖2L2(Γ) + ‖Mn −Mk
n‖

2
L2(Γ) + ‖Vn − Vkn‖

2
L2(Γ)

)

Numerical simulations
We consider the biharmonic analytical solution:

uan(x, y) =
1

2
x(sin x cosh y − cos x sinh y), (x, y) ∈ Ω,

where Ω is a two-dimensional domain such as Cauchy data are given only on a part Γd of its boundary Γ.

Two example of domains are considered :

Γi

Γd

(a)

Γd

Γd

ΓiΓi

(b)

Figure 2: (a) An annular shaped domain and (b) a square domain such as data are given only on the part Γd of the boundary.
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Figure 3: Reconstructions of the boundary conditions on the inner boundary of an annular domain (Fig. 2a) such as data are

given on the outer boundary.
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Figure 4: Reconstructions of the boundary conditions on the boundary of a square domain (Fig. 2b) such as data are given on

two opposite sides.

Nomenclature
w vertical displacement of the plate

q transversal load

D the flexural rigidity of the plate

c regularization parameter

Ri concentrated forces at corner nodes

n outer normal

H(Γ) space of the operator solutions

δ level of noise
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