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Simple Summary: Iberian pig (Sus mediterraneus) is a rustic breed that thrives in the Mediterranean
forest in the Southwest of the Iberian Peninsula, traditionally raised in open range, grazing acorn
and grass. The information on nutrient requirements of Iberian pigs compared with modern breeds
is scarce and derived from modern breeds, even though there are evidences that they have distinct
metabolic and nutritional features, showing a much lower growth rate and protein deposition. This
study attempts to shed light on this issue. By using net portal appearance, the intestinal absorption
of nutrients is considered, and therefore the nutrient availability for pig growth is estimated. The
present study focused on the net portal appearance of amino acids in Iberian pigs compared to a
modern breed known as Landrace. Iberian pigs showed a lower net portal appearance of amino
acids than Landrace pigs, regardless of the content of protein in the diet. Differences in net portal
appearance of amino acids may partially explain the lower growth rate of Iberian pigs compared to
modern breeds, maybe as result of a greater use of amino acids by the gastrointestinal tract. Strategies
supplementing key gut amino acids in support of gut function may improve pig performance during
the productive period.

Abstract: Iberian pigs have low rates of muscle protein deposition compared with modern breeds.
Differences in net portal appearance (NPA) of amino acids (AA) might partially explain that. NPA
of AA was measured in six Iberian and six Landrace gilts (28 kg) fitted with catheters in portal and
mesenteric (para-aminohippuric acid infusion) veins, and carotid artery. Blood samples from porta
and artery were simultaneously taken at 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, and 6-h after feeding two
isoenergetic diets (14–14.5 MJ metabolizable energy/kg dry matter) with different crude protein (145
(LCP) and 187 (HCP) g/kg dry matter) content. NPA of essential AA (EAA) and non-essential AA
(NEAA) was lower (p < 0.05) in Iberian than Landrace pigs, and in LCP than HCP diet. Fractional
absorption (NPA/AA intake) of EAA, NEAA, and total AA was, respectively, 36, 49, and 44% lower
in LCP than HCP diet in Iberian pigs; and 8, 2, and 4% greater in Landrace pigs. Fractional absorption
of EAA, NEAA, and total AA was 42, 68, and 60% lower in Iberian than Landrace pigs fed LPC diet;
and 1, 36, and 26% when fed the HCP diet. NPA of AA may partially explain the low growth rate of
Iberian pigs.

Keywords: amino acid; net portal appearance; pig; portal-drained viscera

1. Introduction

Iberian pig (Sus mediterraneus) is an autochthonous breed that thrives in the Mediter-
ranean forest in the Southwest of the Iberian Peninsula (Spain and Portugal), consuming
acorns (1.3–6 kg dry matter (DM)/day [1]) from oak-trees (Quercus ilex rotundifolia and Quer-
cus suber) complemented with pasture, and provides products of exceptional organoleptical
properties [2]. This particular agroecosystem is denominated dehesa. The productive cy-
cle of the Iberian pig is orientated towards a final grazing/fattening period at the dehesa
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named montanera. Nowadays, productive cycle follows a semi-extensive system offering
balanced compound feed from weaning to about 100 kg body weight (BW) then pigs
are further finished outdoors at montanera up to 160 kg BW in fall and winter. However,
most Iberian pigs are raised under a standard balanced diet during the whole productive
period as the stocking rate at montanera is very low, limiting the number of pigs under
extensive conditions.

The information on nutrient requirements of Iberian pigs compared with modern
breeds is scanty, even though there are evidences that they have distinct metabolic [3] and
nutritional features [4].

The gastrointestinal tract has a huge metabolic influence relative to its weight; more-
over, its relative contribution to whole-body protein synthesis is disproportionately ele-
vated [4]. Comparative studies between Iberian and Landrace pigs [5] reported greater
splanchnic tissue weight/BW ratio in Iberian than Landrace pigs although greater portal
drained viscera heat production has been reported for the latter [6]. The Iberian pig has a
reduced capacity for protein deposition at maximal growth compared with lean breeds [7],
with whole-body protein synthesis and degradation rates lower in Iberian than in Landrace
pigs when given an optimal dietary amino acid (AA) supply [8]. Surprisingly, muscle frac-
tional protein synthesis was greater in Iberian than in Landrace gilts [5], although muscles
were smaller for the former. There is controversial information about the digestive features
of Iberian pigs. The post-weaning N digestibility was lower in Iberian compared with
Landrace pigs [8] and apparent total tract digestibility of crude protein (CP) did not differ in
piglets [9]. Although ileal digestibility of AA was measured in Iberian pigs [10,11], available
information on net portal appearance (NPA) is very scarce [12]. Differential capacity of
AA absorption and/or use by the gastrointestinal tract would imply diverging amount
of nutrients available to the peripheral tissues. Again, very little information is available
in the literature relating comparative capacity of AA absorption in native and modern
breeds which is a good approach to evaluate bioavailability of AA. Differences in NPA of
AA might partially explain the lower growth rate reported in Iberian compared to modern
breeds. The main objective of this study was to investigate differences between Iberian
and Landrace growing pigs on NPA of AA after feeding diets with different CP content.
The information could be used to establish recommendations of AA supplementation for
Iberian pigs.

2. Materials and Methods
2.1. Animals and Diet

Six Iberian (Silvela strain; Sánchez Romero Carvajal, Jabugo S.A., Puerto de Santa
María, Spain) and six Landrace (Granja El Arenal, Córdoba, Spain) gilts of similar age and
BW (80 ± 3 vs. 75 ± 2 days and 25.3 ± 0.4 vs. 25.6 ± 0.9 kg BW for Iberian and Landrace
pigs, respectively) were utilized.

One week before surgery, pigs were housed in individual pens in a controlled en-
vironment room (21 ± 1.5 ◦C) with ad libitum access to an appropriate standard diet
(145 g CP/kg DM and 14.3 MJ metabolizable energy (ME)/kg DM for Iberian [7]; and 187 g
CP/kg DM and 14.3 MJ ME/kg DM for Landrace [13]) based on barley-soybean meal was
offered with free access to water. After surgery, pigs were fed (2.4 × ME for maintenance;
444 kJ/kg0.75 BW/day [14]) twice a day at 09:00 (0.25 of the daily ration) and at 15:00 h
(0.75 of the daily ration). Composition and chemical analysis of diets is shown in Table 1.

DM (no. 934.01) and total ash (no. 942.05) analysis were performed by standard
procedures [15]. Total N was determined according to the Dumas’ method, by total
combustion in TruSpec CN equipment (Leco Corporation, St. Joseph, MI, USA) and
CP determined as total N × 6.25. Gross energy was measured in an isoperibolic bomb
calorimeter (Parr Instrument Co., Moline, IL, USA). AA composition of diets (Alanine (Ala),
Aspartic acid (Asp), Cysteine (Cys), Glutamic acid (Glu), Glycine (Gly), Histidine (His),
Isoleucine (Iso), Leucine (Leu), Lysine (Lys), Methionine (Met), Phenylalanine (Phe), Proline
(Pro), Serine (Ser), Threonine (Thr), Tyrosine (Tyr), and Valine (Val)) was determined after
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protein hydrolysis in 6 mol/L hydrochloric acid plus 10 g/kg phenol in sealed tubes at
110 ◦C for 24 h, by high performance liquid chromatography (HPLC) using the Waters Pico-
Tag method for hydrolysates which involves pre-column with phenylisothiocyanate [16]
and a Waters Nova-Pak C18 phase reverse column (4 µm, 3.9 × 150 mm). Cys and Met in the
diet were determined as cysteic acid and Met sulphone, respectively, obtained by oxidation
with performic acid before protein hydrolysis [17]. Tryptophan (Trp) was not determined.
Free AA in plasma were determined by HPLC using the Waters Pico-Tag method for
physiological AA using a reverse phase column (Waters Pico-Tag, 3.9 × 300 mm) and
pre-column derivatization with phenylisothiocyanate [16].

Table 1. Composition (g/kg) and chemical analysis (dry matter (DM) basis) of low (LCP) and high
crude protein (HCP) content diets.

LCP HCP

Barley grain 866 802
Soybean meal 96.2 125

Fish meal 4 40
Calcium carbonate 8 8

Calcium acid phosphate 12 12
Sodium chloride 5 5

L-Lys 4.32 3.92
Thr 1.05 0.96
Met 0.47 0.21

Vitamin-mineral premix 1 3 3
Chemical analysis

DM, g/kg 870.12 875.14
Ash, g/kg 58.41 59.96
CP, g/kg 145.43 187.12

Gross energy, MJ/kg 17.83 18.08
Amino acids

EAA 2 58.0 73.7
Arg 9.86 13.3
His 3.93 5.01
Ile 4.38 5.74

Leu 8.31 11.0
Lys 11.5 13.6
Met 2.51 3.47
Phe 5.52 7.04
Thr 6.51 7.50
Val 5.52 7.10

NEAA 2 60.1 77.2
Ala 4.95 7.12
Asp 7.78 11.4
Cys 2.01 2.51
Glu 21.9 26.6
Gly 5.03 7.00
Pro 9.13 10.7
Ser 5.00 6.55
Tyr 4.27 5.22

Total AA 2 118.1 150.8
1 Provided per kg of complete diet: 9836 international units (IU) vitamin A as retinyl acetate; 2253 IU vitamin
D3 as cholecalciferol; 2.52 IU vitamin E as DL-α-tocopheryl acetate; 1.5 mg menadione sodium bisulfite; 0.15 mg
thiamine; 3 mg riboflavin; 0.15 mg pyridoxine; 15 µg cyanocobalamin; 15 µg folic acid; 22.5 mg nicotinic acid;
15 mg D-pantothenic acid as calcium pantothenate; 15 mg Mn as MnSO4 × 4H2O; 75 mg Fe as FeSO4 × 7H2O;
120 mg Zn as ZnO; 450 µg I as KI; 60 mg Cu as CuSO4 × 5H2O; and 300 µg Co as CoSO4 × 7H2O). 2 Sum of
essential (EAA: Arginine (Arg), Histidine (His), Isoleucine (Iso), Leucine (Leu), Lysine (Lys), Methionine (Met),
Phenylalanine (Phe), Threonine (Thr), and Valine (Val)), non-essential (NEAA: Alanine (Ala), Aspartic acid (Asp),
Cysteine (Cys), Glutamic acid (Glu), Glycine (Gly), Proline (Pro), Serine (Ser), and Tyrosine (Tyr)), and total amino
acids (AA).
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2.2. Experimental Schedule and Measurements

Pigs were adapted to close contact with the staff involved with sampling to reduce
stress to a minimum. Approximately at 29 kg BW pigs were fasted and water removed 24 h
before the installation of chronic indwelling catheters in portal and mesenteric veins, and
carotid artery. Briefly, pigs were fed 24 h prior to surgery with free access to water. General
anaesthesia was induced using an intramuscular (i.m.) combination of Ketamine (15 mg/kg
BW) and Azaperone (2 mg/kg BW), and maintained throughout the surgical procedure by
administering isoflurane (0.5–2%) and O2 (22–44 mL/kg BW/min) through a face mask.
A dose of 5 mL (i.m.) of N-butyl hyoscine bromide + sodium metamizol (Buscapina
Compositum) was administered as an analgesic and anti-spasm agent. Incision areas were
clipped closely, washed and scrubbed three times using iodine soap before the gilt was
moved to the surgery room table. Incision area was sprayed with povidone iodine (7.5%)
and alcohol (70%). Strict aseptic and sterile conditions were applied throughout the whole
procedure. First, the portal vein was catheterized through the visceral side of the liver left
lateral lobe; the catheter was inserted 6 cm towards the entry of the portal vein in the liver
and sutured to the parenchyma with non-absorbable suture. Second, a branch of mesenteric
vein was located, and catheter installed after separating the surrounding connective tissue,
a small puncture was made and the catheter inserted 10 cm downstream into the vein.
The catheter was secured by two non-absorbable sutures around the vessel. Third, the
carotid artery was not tied (occluded) but the catheter was secured in place with a purse-
string non-absorbable suture to allow blood flow and avoid later local infections. After
patency was confirmed by flushing with physiological saline containing 5 IU heparin/mL,
all the catheters (mesenteric vein and carotid artery: Tygon, i.d. 1.02 mm, o.d. 1.78 mm,
length 65 cm; portal vein: Tygon, i.d. 1.27 mm, o.d. 2.29 mm, length 65 cm) were filled
with physiological saline containing 250 IU heparin/mL and locked. Pigs were moved
to metabolic cages. They resumed their normal eating habits (fed at 25, 60, and 100% of
their preoperative intake for first, second, and third day after surgery, respectively) usually
in three days. Rectal temperature was normal. Amoxicillin was given i.m. for 4 days
after surgery. Around ten days later, stiches were removed and pigs were considered fully
recovered. Detailed description of the catheters design, construction and maintenance,
surgical procedure, and post-surgery care of pigs was published elsewhere [18]. Blood
sampling commenced when pigs were completely recovered from surgery at 32 kg average
BW, and following the identical feeding schedule described above in a crossover design
with a week adaptation for both diets. An initial 15 mL pulse dose of para-aminohippuric
acid (PAH; 2% w/v; Sigma-Aldrich Química S.A., Madrid, Spain) was administered into
mesenteric vein 45 min before blood sampling, followed by a continuous infusion of
0.8 mL/min using a syringe pump (Model 33, Harvard Apparatus Inc., Holliston, MA,
USA). Apyrogenic filters (MILLEX GP, Syringe Driven Filters Unit, 0.22 µm; Millipore,
Carringtwohill, Ireland) fitted infusion syringes. A blood sample using 4.5 mL heparinized
tubes (Monovette VetMed, Sarstedt, Nümbrecht, Germany) was taken simultaneously (for
haematocrit, PAH and AA analyses) from carotid artery and portal vein 0, 0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 5, and 6 h after feeding 0.25 of total daily ration. Haematocrit was determined
using a microcentrifuge (11,500× g for 5 min; Biocen, Orto-Alresa, Ajalvir, Madrid, Spain).
Plasma was obtained by centrifugation (4 ◦C and 1820 × g for 30 min; centrifuge 5810R
Eppendorf, Hamburg, Germany) and stored at −20 ◦C until PAH [19] and AA analyses.
Thr was not quantified in plasma because of co-elution with ammonia peak.

The portal blood flow (PBF) and portal plasma flow (PPF) were determined by the
indicator dilution method using haematocrit and plasma PAH concentrations [20]. The
PBF and NPA of AA were calculated according to the Fick principle of arterio-venous
concentration difference and flow rate [21]. The NPA of AA was calculated by multiplying
the porto-arterial plasma concentration difference of AA by PPF. Fractional absorption for
each AA was calculated as the ratio NPA/AA intake during the 6 h postprandial.
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2.3. Statistical Analyses

Data were subjected to ANOVA using the MIXED procedure of SAS (SAS Inst. Inc.,
Cary, NC, USA). The statistical model applied included the fixed effect of diet, breed, sam-
pling time, and corresponding interactions. Time of sampling within the pig was considered
as a repeated measure. Concentration at time zero of the AA was included as a covariate in
the statistical analysis. The differences were considered significant when p < 0.05.

3. Results

PPF was lower (p < 0.001) in Iberian than Landrace (539 and 859 mL/min, respectively)
pigs; and greater (p < 0.001) in diet HCP than LCP (759 and 639 mL/min, respectively). In
addition, PPF was influenced by time (p < 0.001). The maximum PPF peak for Iberian and
Landrace was 0.5 and 1 h after diet ingestion, respectively, reaching a maximum value of
668 for Iberian and 996 mL/min for Landrace gilts; with respect to the CP content, PPF
reached the maximum at 0.5 and 1 h for HCP (892 mL/min) and LCP (739 mL/min) diets,
respectively. After reaching the peak, it decreased thereafter until basal rate. No difference
in the time needed to eat 0.25 of daily ration was found between breeds.

NPA of AA during the 6 h sampling is shown in Table 2.

Table 2. Net portal appearance (NPA; µmol/min) of EAA, NEAA and total AA in Iberian and
Landrace pigs receiving either LCP (145 g CP/kg DM) or HCP (187 g CP/kg DM) diets.

Breed Diet p-Value

Iberian Landrace LCP HCP SEM 1 Breed Diet Breed × Diet

EAA 146.8 186.3 132.5 200.8 10.71 0.0388 0.0015 0.1244
Arg 25.7 30.4 20.2 35.9 3.03 0.4469 0.0119 0.5154
His 9.06 11.8 8.82 12.1 0.584 0.0203 0.0067 0.3054
Ile 13.6 12.0 12.3 13.3 1.03 0.4525 0.6259 <0.0001

Leu 23.7 37.4 25.1 36.0 1.60 <0.0001 0.0009 0.1877
Lys 36.1 40.5 29.6 46.9 2.48 0.3850 0.0008 0.3674
Met 7.53 7.96 6.55 8.94 0.449 0.6419 0.0094 0.0001
Phe 15.3 21.5 16.0 20.9 0.82 0.0003 0.0039 0.0401

Trp 2 1.65 5.07 2.03 4.69 0.491 0.0008 0.0084 0.8918
Val 14.2 19.7 11.9 22.1 2.14 0.2050 0.0200 0.6487

NEAA 275.3 519.3 309.9 484.7 24.37 <0.0001 0.0009 0.2948
Ala 93.9 161.1 105.1 149.9 5.88 <0.0001 0.0002 0.5512

Asn 2 43.1 65.3 47.0 61.3 2.72 0.0001 0.0100 0.4796
Asp 5.60 7.40 5.79 7.20 0.606 0.1452 0.2528 0.4883
Cit 2 13.7 11.0 12.9 11.9 0.90 0.1343 0.5803 0.2916
Cys 3.13 15.1 8.92 9.34 1.973 0.0031 0.9178 0.0289

Gln 2 −18.6 −20.1 −22.4 −16.3 0.43 0.8666 0.5078 0.8226
Glu −29.2 −7.29 −26.3 −10.2 4.284 0.0149 0.0738 0.8166
Gly 73.8 144.0 80.4 137.4 6.25 <0.0001 <0.0001 0.0695

Hyp 2 1.47 6.83 3.55 4.75 0.461 <0.0001 0.2011 0.0299
Orn 2 11.6 7.21 8.15 10.7 0.908 0.0180 0.1706 0.3447
Pro 46.9 77.4 55.9 68.3 3.72 0.0001 0.1015 0.1528
Ser 18.2 30.6 18.7 30.1 2.00 0.0026 0.0055 0.1236

Tau 2 1.79 5.63 1.84 5.58 0.651 0.0041 0.0052 0.6649
Tyr 9.87 15.1 10.3 14.7 0.739 0.0006 0.0042 0.6566

TAA 422.1 705.6 442.4 685.5 32.21 <0.0001 0.0008 0.1326
1 Standard error of mean; n = 6 pigs per breed. 2 Tryptophan (Trp), Asparagine (Asn), Citrulline (Cit), Glutamine
(Gln), Hydroxiproline (Hyp), Ornithine (Orn), Taurine (Tau).

There were no breed × diet interactions for essential AA (EAA), non-essential AA
(NEAA), and total AA. The overall NPA of the EAA His, Leu, Phe and Trp, and NEAA
Ala, Asparaguine (Asn), Cys, Glu, Gly, Hydroxiproline (Hyp), Pro, Ser, Taurine (Tau), and
Tyr was lower (p < 0.05) and that of Ornithine (Orn) was greater for Iberian than Landrace
pigs during the 6-h postprandial period. When pigs consumed a HCP diet the overall
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NPA of the EAA Arg, His, Leu, Lys, Met, Phe, Trp, and Val, and NEAA Ala, Asn, Gly, Ser,
Tau, and Tyr was greater (p < 0.05) and tended to be greater for Glu (p = 0.07). NPA was
negative for Glutamine (Gln) and Glu. NPA of EAA and NEAA was lower (21 and 47%,
respectively; p < 0.05) for Iberian than Landrace pigs as well as for LCP compared with
HCP diets (34 and 36%, respectively; p < 0.01). NPA of NEAA quantitatively represented
the major part of NPA of total AA (65 and 74% for Iberian and Landrace pigs, respectively).
NPA of EAA, NEAA, and total AA is shown in Figure 1. Overall, NPA rose until 1.5 h
after feeding, decreased until 2.5 h and increased again until 3.5 h to achieve a second peak
decreasing thereafter to a level similar to preprandial.
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Figure 1. NPA of EAA, NEAA and total AA along a 6 h sampling in Iberian (N) and Landrace (�)
pigs (n = 6/breed (B)) fed two diets (D) of different protein content. * p < 0.05, ** p < 0.01, *** p < 0.001,
NS = not significant (p > 0.05).

Fractional absorption (NPA/AA intake) is displayed in Table 3. Negative fractional
absorption was observed for Glu, and in the case of Cys for Iberian pigs fed a LCP diet. In
Iberian pigs, fractional absorption was 36, 49, and 44% lower for EAA, NEAA, and total
AA, respectively; whereas in Landrace pigs it was 8, 2, and 4%, respectively, greater in the
LCP than HCP diet. When LCP was fed, fractional absorption was 42, 68, and 60% lower
in Iberian than Landrace pigs. On the other hand, when the HCP diet was fed, fractional
absorption was 1, 36, and 26% lower in Iberian than Landrace pigs for EAA, NEAA, and
total AA, respectively.

Table 3. Fractional absorption (NPA/AA intake; mmol) of EAA, NEAA and total AA in Iberian
(Ib; n = 6) and Landrace (Ld; n = 6) pigs receiving either LCP (145 g CP/kg DM) or HCP
(187 g CP/kg DM) diets.

AA Intake Fractional Absorption

LCP HCP Ib-LCP Ib-HCP Ld-LCP Ld-HCP SEM p-Value

EAA 1 76.7 99.4 0.449 a 0.705 b 0.774 b 0.715 b 0.0426 0.0108
Arg 12.3 16.7 0.461 0.764 0.716 0.779 0.0842 0.3553
His 5.52 7.07 0.445 a 0.575 ab 0.705 b 0.652 b 0.0338 0.0283
Ile 7.27 9.59 0.400 a 0.717 b 0.817 b 0.282 a 0.0465 <0.0001

Leu 13.8 18.4 0.420 a 0.613 ab 0.890 c 0.798 bc 0.0357 <0.0001



Animals 2023, 13, 1263 7 of 12

Table 3. Cont.

AA Intake Fractional Absorption

LCP HCP Ib-LCP Ib-HCP Ld-LCP Ld-HCP SEM p-Value

Lys 17.1 20.4 0.529 a 0.830 b 0.716 ab 0.827 b 0.0472 0.0778
Met 3.66 5.10 0.440 a 0.749 b 0.847 b 0.515 a 0.0375 0.0002
Phe 7.28 9.33 0.549 a 0.752 b 1.029 c 0.856 bc 0.0349 <0.0001
Val 10.3 13.3 0.286 0.550 0.547 0.645 0.0678 0.2694

NEAA 1 108.3 139.7 0.419 a 0.819 b 1.301 c 1.277 c 0.0477 <0.0001
Ala 12.1 17.5 2.232 a 2.318 a 4.020 b 3.848 b 0.1385 <0.0001
Asp 12.7 18.8 0.151 0.113 0.177 0.164 0.0147 0.4503
Cys 3.61 4.54 −0.147 a 0.615 a 1.923 b 0.865 ab 0.1812 0.0006
Glu 32.4 39.6 −0.425 a −0.184 b −0.159 b −0.003 b 0.0451 0.0460
Gly 14.6 20.4 0.832 a 2.006 b 3.136 c 2.838 bc 0.1372 <0.0001
Pro 17.3 20.4 0.734 a 1.035 ab 1.597 c 1.383 bc 0.0712 0.0001
Ser 10.4 13.6 0.324 a 0.712 b 0.973 b 0.873 b 0.0619 0.0008
Tyr 5.13 6.31 0.516 a 0.707 ab 0.933 b 0.970 b 0.0482 0.0033

Total AA 1 182.0 235.2 0.439 a 0.784 b 1.100 c 1.060 c 0.0784 <0.0001
1 Sum stablished only for analyzed dietary AA. a,b,c Values within a row with unlike superscript letter were
significantly different.

4. Discussion

In the present study, the animals were fed 0.25 of the daily ration, proportional to the
measurement period (6 h). Overall, NPA of AA in the present study reached a maximum
during the first quarter of the sampling length in agreement with data reported in the
literature [12,22–24]. Compared with a previous study made in our lab [12], time to reach
the peak was longer as a consequence of the greater amount of feed offered in the present
study as there is an inverse relationship between amount of nutrients intake and the
necessary time to be absorbed by the portal-drained viscera (PDV). PPF (or PBF) measured
in our conditions was within the range of measurements in Landrace and Iberian pigs
fed an amount of feed proportional to the measurement period [6,12,25]. Nevertheless,
PBF depends upon the experimental conditions. Thus, PBF was affected by the amount of
feed intake [26] or by the adaptation to a low CP content [12]. Indeed, a relation between
feed intake and blood flow has been proved [27,28]. The decreased PPF (p < 0.001) in
Iberian vs. Landrace pigs may indicate differences in PDV physiology associated with
breed, as supported by the low energy efficiency for protein deposition [7] and greater
protein turnover in Iberian compared with Landrace pigs.

It is difficult to compare results of NPA of AA from different studies as NPA is affected
by numerous factors (protein content, fiber, ME intake, etc. [29]). Indeed, greater NPA
of AA were reported in Large White pigs fed diets of similar CP content (120–240 g/kg
DM [30]) than in the present study and lower values NPA of AA were found in Iberian pigs
fed diets with reduced CP content (52 g/kg DM [12]).

It is interesting to point out that NPA and fractional absorption of Lys in our study
were not low compared to other EAA. Although according to chemical score Lys was the
first limiting AA in milk-protein fed to piglets [31], the limiting EAA for extra-intestinal
protein deposition were Thr and Met according to net portal AA balance [32]. Amongst
EAA, NPA of AA was similar (p > 0.05) for Lys and Met between breeds, the lower values
corresponded to Trp followed by His, Phe and Leu, and were always greater (p < 0.05) in
Landrace pigs. Trp could be considered the first limiting AA followed by Met. Dietary
Arg is highly metabolized during intestinal transport to provide Orn and Citrulline (Cit)
in pigs [33,34], but unlike Gln, Arg is not oxidized at the small intestine [35]. We have no
explanation for the greater (p < 0.05) NPA of Orn in Iberian than in Landrace pigs since
Arg was not different (p > 0.1) as well as the NPA of Cit. Reverter et al. [36] reported that in
pigs Orn, Cit, Hyp, and Tau appeared in the hepatic portal blood without being present in
the diets, which could be due to metabolism in the arteries and to modification of absorbed
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AA in the digestive tract changing the proportions of absorbed AA relative to the dietary
content. Cit and Orn are metabolites of the urea cycle synthesized at the intestinal wall
in large amounts [37]. Fractional absorption and NPA of AA was always positive except
for Gln and Glu. Fractional absorption for Glu was negative, that is, the net use of these
AA by the PDV was greater than the dietary intake, implying a high rate of metabolism
in gastrointestinal tissues. Certainly, a greater rate of Glu metabolism was observed in
Iberian than in Landrace pigs and with pigs fed the LCP diet compared to the HCP diet.
Analogously, negative fractional absorption of Glu was reported when Iberian pigs were
fed with a diet of very low CP content (52 g/kg DM [12]). Fractional absorptions between
0.5–1 for most EAA have been reported using diets of similar protein content [36,38,39].

Glu, Gln and, to a lesser extent, Asp appear to be significant oxidative fuels in the
intestine, as reflected by their low or even negative NPA. Despite the importance of glucose
as oxidative fuel, Stoll et al. [40] obtained that the proportion of glucose oxidized completely
to CO2 was substantially less than that of either Gln or Glu in piglets, in agreement with
the positive NPA of glucose reported by Fernández-Fígares et al. [41] in Iberian pigs fed
acorn. A nearly complete first-pass removal of dietary Glu and Asp has been reported in
crossbred [32,39] or Iberian [12] pigs; it was also reported negative NPA of Glu + Gln but
not of Asp [36].

On the other hand, NPA of Ala, Gly, and Pro were the largest in the conditions of our
experiments; with values, respectively, 42, 49, and 39% lower in Iberian than in Landrace
pigs and their fractional absorption was always above 1 (that is, there was a net synthesis
at the PDV level) except for Gly (0.832) and Pro (0.734) in Iberian pigs fed the LCP diet.
Similarly, Hu et al. [39] reported fractional absorption exceeding 1 of Ala and Gly, pointing
out that these values are only possible if other AA are transaminated in the intestinal
mucosa during the absorptive process. High NPA of Ala and Gly are the result of metabolic
processes in the gut wall [22,32]. Gln and Glu act as precursors for Pro synthesis [42]. In
post-absorptive state, the intestine releases large amounts of Cit together with Ala and
Pro in pigs [43] indicating de novo synthesis by the gut. However, NPA of Cit and its
endogenous precursor Arg were not low in our study. In a previous study in Iberian pigs
fed a very low CP diet [12], the low NPA of Cit was paralleled by a negative NPA of Arg.
Indeed, dietary Cit supplementation was more efficient to increase Arg availability than
Arg supplementation in mice [44]. Orn originates from the metabolism of dietary and
blood Arg [45], in agreement with the large Orn concentration in portal blood and positive
NPA in this and other studies [29]. The absorption of dietary Cys into portal blood is very
limited in young pigs (less than 0.20 of dietary intake), implying extensive intestinal use of
Cys in first-pass [32,46], as a precursor for glutathione synthesis. In all the cases, NPA of
AA was both, numerically or statistically (p < 0.05) lower in Iberian compared to Landrace
pigs; on the contrary, NPA of Orn in Iberian was 38% greater than Landrace pigs.

Overall, we found that AA were used by PDV to a greater extent in Iberian than
Landrace pigs as indicated by their lower fractional absorption, maybe as a result of the
greater protein turnover showed by Iberian pigs together with the heavier relative weights
(as a proportion of BW) of stomach, large intestine, and total gastrointestinal tract of Iberian
compared to Landrace gilts [5]. Iberian pigs showed a lower fractional absorption for
EAA, NEAA, and total AA for the LCP diet, when compared to the HPC diet, which is in
agreement with the greater gut endogenous protein secretion and AA reabsorption after
digestion expected in pigs fed diets with increasing protein content [47]. It seems that
Iberian pigs AA utilization by PDV is increased when diet protein content is low, maybe
as an adaptation to the protein shortage in their natural environment (Mediterranean
woodland -dehesa-) during the grazing period (montanera). Fractional absorption was
comparable to literature values (0.67 [12], 0.64 [32], or 0.69 [33]). As previously mentioned,
except for Orn, NPA of AA (EAA, NEAA and total AA) was lower (p < 0.05) in Iberian
than in Landrace pigs indicating an overall greater catabolism of AA so that less AA
are available for productive tissues. Reverter et al. [36] reported that some AA such as
Cys seemed to be absorbed to a lesser extent on certain diets. This discrepancy between
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digested and absorbed AA could be due to synthesis of protein from AA in the intestinal
wall and/or catabolism of absorbed AA by the intestinal mucosa and the rest of the PDV,
transport via blood cells [48], or absorption of oligopeptides. There appears to be no
available quantitative data on the absorption of small peptides in pigs, and data from
ruminants are conflicting. Some authors have pointed out this possibility, indicating that
transport of peptides may be an important mechanism for inter-organ metabolism of some
AA [33]. Nevertheless, Fernández-Fígares et al. [49] reported that a major proportion of AA
appearing in portal blood of growing Iberian pigs was in the form of peptide AA, small
peptides representing on average 72% of total AA appearing in the portal vein.

In a previous study, Lachica et al. [12] established a correspondence between the low
NPA of AA and fractional absorption, and the poor CP content of diet. A nutrient deficient
diet may to reduce intestinal villi height of pigs [50], which may have further implication
in Iberian pigs, that have lower ileal villi length and villi-to-crypt ratio compared to
Landrace × Large White pigs [51]. This fact could explain the lower NPA of AA in Iberian
compared to Landrace pigs.

Lys was the first limiting AA in milk-protein fed to piglets according to chemical
score [31] while Thr and Met were the limiting AA according to net portal AA balance [32].
Amongst EAA, Trp showed the lowest NPA (p < 0.05) while Trp and Val had the lowest
fractional absorption particularly in Iberian pigs (0.418) so both AA could be considered
the first limiting AA (Trp for Iberian and Landrace pigs, and Val for Iberian pig) in the
current study. Comparative studies carried out in Iberian and Landrace pigs [5] showed
that splanchnic tissues represented 10.2 and 8.3% of total BW, respectively, and their
contribution to whole-body protein synthesis was, respectively, 48 and 32%. They found
no differences in protein synthesis rates of visceral tissues between both breeds although
protein synthesis rate of liver and duodenum were 6 to 10 times greater than those of muscle
for both genotypes. It could be speculated that the lower PBF in Iberian may partially
be responsible of the lower growth rate relative to Landrace pigs, especially taking into
account the greater splanchnic tissues mass relative to BW in Iberian pigs. This would be
in accordance with the low energy efficiency for protein deposition reported for Iberian
pigs [7]. In Iberian pig the maximum capacity for protein deposition is far less than values
found in lean and conventional genotypes irrespective of BW range, consequently, protein
deposition is a very inefficient process. The low energetic efficiency of protein deposition
might be attributed partly to the comparatively greater muscle protein turnover rate in
Iberian pigs [5]. Results support the existence of genetic variation in the efficiency of
energy use but the ultimate causes of low ME utilization for protein deposition (kp) values
observed in the Iberian pig remain unexplained [4].

The biological explanation for the differences in the proportion of dietary AA utilized
by the PDV is only partially understood and requires further studies to specifically establish
the functional purpose of each AA.

5. Conclusions

Overall, the net portal appearance of amino acids of Iberian pigs was lower than
Landrace pigs independently of the content of protein in the diet. The content of protein in
the diet increased the net portal appearance of amino acids. Strategies to supplement key
gut-amino acids in support of gut function may improve pig performance, so it could be
recommended during the productive period in Iberian pigs.
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