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The brain produces rhythms in a variety of frequency bands. Some are likely by-

products of neuronal processes; others are thought to be top-down. Produced entirely

naturally, these rhythms have clearly recognizable beats, but they are very far from

periodic in the sense of mathematics. The signals are broad-band, episodic, wandering

in amplitude and frequency; the rhythm comes and goes, degrading and regenerating.

Gamma rhythms, in particular, have been studied by many authors in computational

neuroscience, using reduced models as well as networks of hundreds to thousands

of integrate-and-fire neurons. All of these models captured successfully the oscillatory

nature of gamma rhythms, but the irregular character of gamma in reduced models has

not been investigated thoroughly. In this article, we tackle the mathematical question

of whether signals with the properties of brain rhythms can be generated from low

dimensional dynamical systems. We found that while adding white noise to single

periodic cycles can to some degree simulate gamma dynamics, such models tend to be

limited in their ability to capture the range of behaviors observed. Using an ODE with two

variables inspired by the FitzHugh-Nagumo and Leslie-Gower models, with stochastically

varying coefficients designed to control independently amplitude, frequency, and degree

of degeneracy, we were able to replicate the qualitative characteristics of natural brain

rhythms. To demonstrate model versatility, we simulate the power spectral densities of

gamma rhythms in various brain states recorded in experiments.

Keywords: brain rhythms, gamma-band activity, E/I-conductances, slow-fast dynamics, randomly varying

coefficients, power spectral densities

1. INTRODUCTION

Rhythms, or oscillatory patterns of neural activity, occur ubiquitously in many parts of the central
nervous system. One typically classifies them by their frequency bands. For example, β-band
rhythms (12–30 Hz) are related to muscles and movements, and γ -rhythms (30–90 Hz) are
implicated in information transfer and are associated with cognitive processes. Because brain
rhythms have unique signatures and are relatively easy to record, they have been studied in
hundreds of experimental article. The origins and functional roles of these rhythms, as well as their
connections to various brain disorders, are active topics of current research, though much remains
to be understood.
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This article is not concerned with the biological origins of
brain rhythms. Our interest lies in the signal itself, and our
challenge is to generate mathematically signals that possess
characteristics of rhythms produced naturally by the brain. We
will focus on gamma rhythms, and for definiteness, we will base
our study on gamma-band activity in the visual cortex, which
has been the subject of detailed experimental studies e.g., Gray
et al., 1989; Henrie and Shapley, 2005; Xing et al., 2012. Refer also
to the review article by Cardin (2016), and the modeling article
by Chariker et al. (2018).

Experimental data show that there are two aspects to the
character of gamma rhythms: one is their oscillatory nature, and
the other is their irregularity. In spite of their being called “a
rhythm,” gamma rhythms are far from periodic in the sense of
mathematics. There is a recognizable beat, to be sure, but spectral
power density studies show that gamma rhythms are broad-band,
with wandering frequencies and phases. Activity patterns are
episodic; the beats are uneven inmagnitude, degrading from time
to time before the resumption of oscillatory behavior.

Several earlier theoretical studies (Ermentrout and Kopell,
1998; Brunel and Hakim, 1999; Brunel, 2000; Whittington et al.,
2000; Tiesinga et al., 2001; Börgers and Kopell, 2003; Brunel
and Wang, 2003; Fries, 2005) captured well the oscillatory
behavior of gamma rhythms without delving into their irregular
character. The broad-band, episodic nature of gamma rhythms
was captured in biologically realistic models of the visual cortex,
e.g., Rangan and Young (2013); Chariker and Young (2014);
Chariker et al. (2018) using networks of hundreds to thousands
of integrate-and-fire neurons. A more detailed exposition of
earlier studies is given in the Section 6. In this article, we are
interested in the following question: How can one generate,
using reduced models or dynamical systems with few degrees of
freedom, irregular rhythms with the variability in frequency and
amplitude seen in natural brain rhythms?

We investigated the use of limit cycles perturbed by white
noise as has been proposed by several authors and found that
at the right noise level, these models do reproduce some gamma
characteristics. The use of shear and anisotropic noise appeared
to further improve the realism of the signal produced. We have
found, however, that the most straightforward way to simulate
the irregular character of gamma rhythms is to use a system
of Ordinary Differential Equations (ODE) parameterized by
quantities designed to control directly amplitude, frequency,
and degree of degeneracy, and to allow these parameters to
wander randomly.

For illustration, we present a specific example, consisting of
a 2D slow-fast system inspired by the well-known FitzHugh-
Nagumo and Leslie-Gower models. Viewing the two variables
as Excitatory (E) and Inhibitory (I) conductances of typical
neurons in a local population, this model produces results that
resemble gamma-band activity in the real cortex. Bonuses of

Abbreviations: E, Excitatory; I, Inhibitory; LIF, leaky integrate and fire;

PING model, Pyramidal-interneuronal network gamma model; ODE, Ordinary

Differential Equation; FHN, FitzHugh-Nagumo; REI, Recurrent Excitation

Inhibition; SDE, Stochastic Differential equation; PSD, Power Spectral Density;

KAM, Kolmogorov-Arnold-Moser.

the model include moment-to-moment balancing of E and I-
currents seen in experiments and known to theorists. To further
demonstrate the versatility of this model, we challenged it to
reproduce several sets of experimental data, including the power
spectral densities and spectrograms recorded from awake vs.
anesthetized monkeys, to simulate the changes in gamma-band
activity associated with increased contrast and the repeated
presentation of visual stimuli.

The rest of this article is organized as follows: In Section
2, we examine the use of limit cycles with noise to produce
gamma-like rhythms. The main model is presented in Sections 3
and 4: Section 3 describes the deterministic model; a stochastic
component is introduced in Section 4. In Section 5, we
demonstrate the model’s capabilities to simulate experimental
data. This is followed by Section 6.

2. RHYTHMS PRODUCED BY NOISY LIMIT
CYCLES

As discussed in the Introduction, experimental data of gamma
rhythms show a good deal of irregularity (Gray et al., 1989;
Henrie and Shapley, 2005; Xing et al., 2012; Cardin, 2016);
refer also to the modeling paper (Chariker et al., 2018). They
show that gamma rhythms are far from periodic in the sense
of mathematics but are broad-band, with wandering amplitudes
and frequencies, their time courses punctuated by intermittent
degradations in the rhythm. Reduced models that depict gamma
rhythms as limit cycles (e.g., Ermentrout and Kopell, 1998; Fries,
2005) are not intended to possess irregular features. Several other
authors (e.g., Brunel, 2000; Brunel and Wang, 2003) proposed to
model gamma rhythms by limit cycles perturbed by white noise.
Below we investigate the effectiveness of these stochastic models
as a tool for simulating the irregular character of gamma rhythms,
but first, we review quickly the idea of PSD, an important tool
used by neuroscientists.

2.1. Quick Review of PSD
For periodic signals, Fourier coefficients provide the right
mathematical tool for extracting the main frequencies.
To capture the pseudo-periodicity of gamma rhythms,
neuroscientists have used the following computational
tool (Henrie and Shapley, 2005; Chariker et al., 2018).

The idea is to fix a time interval of suitable length T and to
compute Fourier coefficients on [0,T] as if the signal was periodic
with period T, i.e., let

f̂ (k) =
1

T

∫ T

0
f (t)e−2iπk t

T dt , (1)

and define the power concentrated at frequency k to be |f̂ (k)|2. To
capture gamma-band frequencies, the time interval T is usually
chosen to be between 100 and 500 ms: too short of an interval
will fail to capture the relevant frequencies, and too long of an
interval is ineffective since the signal is not truly periodic.

For a fixed initial time t0, we perform the computation above
repeated withmany time shifts, i.e., we sample the signal on [t, t+
T] for t = t0, t0 + dt, t0 + 2dt, · · · for small dt, and the squares

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2022 | Volume 16 | Article 889235

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ambrosio and Young Reduced Models Generating Brain Rhythms

of the computed Fourier coefficients, |f̂ (k)|2, are averaged over all
of the samples to obtain what is called the power spectral density
(PSD) and often referred as the Welch method in computational
software, refer to Welch (1967).

2.2. Limit Cycles + White Noise
We consider here the system

{

x′ = x− y− (x2 + y2)x
y′ = x+ y− (x2 + y2)y

(2)

which in polar coordinates is

{

r′ = r − r3

θ ′ = 1
(3)

In this system, the unit circle has period 2π , and it attracts all
the trajectories distinct from the origin. To put the rhythm in the
gamma range, we slow time by a factor of 3 to obtain a frequency
of ∼ 50 Hz. Adding white noise, we obtain the following system
of stochastic differential equations (SDE):

{

dxt = xt − yt − (x2t + y2t )xt + µxdB
1
t

dyt = xt + yt − (x2t + y2t )yt + µydB
2
t

(4)

where (B1,B2) denotes a two dimensional Wiener process.

Typical solutions of Equation (4)- with µx = µ = µy at various
levels of noise are shown in Figure 1. The traces are plots of the
y-coordinate; the wriggly curves are sample paths of the SDE over
many cycles. PSDs at corresponding noise levels are also shown.

At µ = 0.2, the peaks of the y-trace are somewhat irregularly
spaced thanks to the noise, but the rhythm is too regular to
resemble gamma rhythms produced by the real cortex. Increasing
µ to 0.3 increases the amount of variability, but the rhythm is still
too regular; in particular, it does not degenerate as can be seen by
the empty spot near the origin in the phase plane trajectory. At
µ = 0.4, the noise has significantly broadened the PSD (which
is desirable), but local properties of Brownian paths also begin
to manifest in the y-traces in the form of short rises and falls
occurring at rapid successions. Such high-frequency oscillations
on top of the main gamma rhythm are not typical of the behavior
of membrane potentials in gamma activity. At µ = 0.5, the range
of signal frequency becomes a little too broad, threatening to
obstruct the main rhythm.

Our conclusion from the study above is that the addition
of noise to purely periodic dynamics produces variability that
goes some distance toward simulating the irregular character of
gamma rhythms, but the use of a single parameter, namely µ =

noise level, is too rigid: it is not irregular enough at low noise-
levels and introduces undesirable features when noise-level is
tuned too high.

2.3. Two Variants
Continuing to work with limit cycles subjected to white-noise
forcing, we give two examples below to show the beneficial effects
of an additional parameter.

Our first example adds shear to the deterministic dynamics.
We introduce a new parameter α to Equation (4) to give

{

dxt = xt − (x2 + y2)αyt − (x2t + y2t )xt + µB1t
dyt = (x2 + y2)αxt + yt − (x2t + y2t )yt + µB2t

(5)

The deterministic of this equation, reads in polar coordinates as,
{

r′ = r − r3

θ ′ = r2α
(6)

The idea is that the farther a trajectory is from the center, the
higher its angular velocity. Figure 2A shows the case of µ = 0.2
with α = 3. It is evident that at this noise level, shear produces
significantly more varied behaviors, a fact confirmed by a much
broader spectrum.

In a second example, we use anisotropic noise, i.e., the equation
is as in (4) with µx = 0.5 and µy = 0.2. The idea is that the
larger µx would add variability, while the smaller µy would not
result in the unwanted Brownian structures in y-traces. These
expectations are confirmed in Figure 2B.

Remark 1. We conclude from the study above that because
gamma signals are multi-faceted, to properly simulate them one
needs to be able to control—independently—their frequencies,
amplitudes, and degrees of degeneracy (i.e., the way the rhythm
degrades from time to time and re-emerges). There has to be a
mechanism for the system to switch from one regime to another at
seemingly random times. Limit cycles with noise controlled by one
or two parameters can reproduce certain aspects of the signal but do
not possess sufficient flexibility. We propose in the sections to follow
a system of ODEs with several parameters designed to control
directly the properties we think are important and to produce
the irregularity of gamma characteristics via stochastic motion in
parameter space.

3. PROPOSED MODEL: DETERMINISTIC
PART

In this section and the next, we present our main model,
consisting of a simple system of ODE with randomly varying
coefficients. The deterministic part of the model, its key
features, together with the quantities to be varied are presented
in Section 3; the stochastic component is introduced in
Section 4.

3.1. Model Equations and Basic Dynamical
Features
Below u and v represent the absolute values of the E and I-
conductances of a typical neuron in a local population. We
propose that their dynamics be described by

{

ǫut = u(−K(u− a1)(u− a2)− v)
vt = γ v(bu− v+ c)

(7)
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FIGURE 1 | Panel (A) illustrates the traces of the y-coordinate for Equation (4) with µx = µ = µy at various levels of noise: from top to bottom the parameter µ takes

the values 0.2, 0.3, 0.4, and 0.5. Panel (B) illustrates the trajectories of the same solutions in the x − y plane. At the bottom, in panel (C) are PSDs of the

corresponding noise levels.
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FIGURE 2 | Panel (A) shows traces of the y-coordinate for Equation (5) (i.e., with shear) with µx = µ = µy = 0.2 in the first row and for (4) with asymmetric

coefficients µx = 0.5 and µy = 0.2. Panel (B) illustrates the trajectories of the same solutions in the x − y plane. At the bottom, the PSD is illustrated in (C).

where a1, a2, b, and c are fixed parameters with a1 =

−0.01, a2 = 0.1, b = 11.9, c = 6.6 × 10−4.
These values are chosen to reproduce the nullclines in
Figures 3, 4, the dynamical significance of which are explained
below. The key parameters are ǫ, γ , and K. They will be
discussed at length below; for now, think of them as taking
values in

ǫ ∈ [0.01, 1], γ ∈ [1, 25] and K ∈ [30, 100].

We will adopt the following notation:

F(u, v) = u(−K(u− a1)(u− a2)− v), G(u, v) = γ v(bu− v+ c)

f (u) = −K(u− a1)(u− a2), g(u) = (bu+ c) .

The nullclines of Equation (7) are then given by

u = 0, v = f (u)

for the first equation, and

v = 0, v = g(u)
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for the second equation. Note that the polynomial f (u) =

−K(u − a1)(u − a2) reaches its maximum for u = 0.5(a1 + a2)
with a value of 0.25K(a2 − a1)

2.
Our choice of parameters allows only one intersection

between the quadratic function f (u) and the linear function g(u)
in the positive quadrant. This is ensured by the condition:

b
a1 + a2

2
+ c > 0.25(a2 − a1)

2K

which gives K < 176.8.
There are four stationary points in the positive quadrant, the

region of interest. They are

(0, 0), (0, c), (a2, 0), (u
∗, v∗)

where u∗ is the positive solution of

K(u− a1)(u− a2)+ bu+ c = 0

and v∗ = bu∗ + c. Refer to Figure 1, which gives a sense of the
global dynamics and basic structures of the system.

Theorem 1 establishes rigorously the region of interest for
this system.

Theorem 1. The positive (u, v)-quadrant is invariant under the
dynamics defined by Equation (7), and there exists a bounded
absorbing set to which all solutions enter.

Proof. The fact that the positive quadrant is positively invariant
follows from the fact that u = 0, vt = γ v(−v + c) and ǫut =

−u(K(u − a1)(u − a2)), v = 0, are solutions lying on the u and
v-axes. For the existence of an absorbing set, we compute

d

dt
(ǫu2 + v2) = 2

[

− Ku4 + K(a1 + a2)u
3 − Ka1a2u

2 − u2v

+ bγuv2 − γ v3 + cγ v2
]

(8)

By using Young inequality, for u, v > 0,

uv ≤
up

p
+

vq

q
,
1

p
+

1

q
= 1,

we can split the right hand side of (8) into a polynomial in
u of degree 4, and a polynomial in v of degree 3, with both
negative leading coefficients. Since the solution lies in the positive
quadrant, by polynomial comparison, we obtain:

d

dt
(ǫu2 + v2) ≤ −M(ǫu2 + v2)+ N (9)

where M > 0 and N > 0 can be chosen independently of initial
conditions. Integrating (9) leads to the existence of an absorbing
set attracting all trajectories.

Remark 2. Equation (7) is inspired by the FitzHugh-Nagumo
(FHN) and Leslie-Gower (LG) models. Starting from the FHN
system, a well-studied system with a slow-fast structure, we
replaced the cubic nullcline with a parabola in the first equation

and added factors of u and v respectively in front of the first
and second equations to constrain the solutions to the upper-
right quadrant. Such modifications were necessary because in the
classical FHN system, one variable describes voltage and the other
is the so-called recovery variable, but the dynamics of voltage
excursions and recovery follow different time courses than E- and
I-conductances. Also, both variables in FHN take negative values,
which the magnitudes of conductances do not. The variables in the
LG system, on the other hand, have been shown (refer to Ambrosio
et al., 2018) to have a dynamical character closer to that of the REI
mechanism in Chariker et al. (2018). Relaxing the fast constraint
(i.e., allowing ǫ to be larger) induces correlated dynamics in u and
v that are strikingly similar to those observed in experimental and
numerical simulations of conductance dynamics; compare, e.g.,
Figure 1 in Okun and Lampl (2009) and Figures 2B,E in Chariker
et al. (2018).

3.2. Varying the Parameter ǫ

Recall that we have three parameters: ǫ, γ , andK. We first explain
the role of ǫ, fixing for now γ = 1, and studying the dynamics as
ǫ is varied for each value of K. The dynamics of the system from
ǫ very small to very large for K = 60 (a fairly typical value of K)
are summarized in Figure 2. For ǫ ≪ 1, Equation (7) describes a
slow-fast system with a limit cycle as can be seen in the top two
panels of Figure 2. As ǫ is increased, this limit cycle turns into a
sink somewhere between ǫ = 0.1 and ǫ = 1. For large ǫ, e.g., at
ǫ = 10, one can show that the critical attractive manifold is the
line 1 : v = g(u). All the trajectories reach this line fast and then
follow it slowly toward the fixed point (u∗, v∗) as can be seen in
the bottom right panel.

Below we will give the analysis for ǫ very small, as well as the
Hopf bifurcation that takes the limit cycle to the sink.

3.2.1. The Case of ǫ ≪ 1
For ǫ small enough a slow-fast analysis allows to compute the
limit-cycle up to an O(ǫ) order. The behavior can be described
geometrically as follows. We denote by C the curve v = f (u).
For ǫ small enough, a trajectory starting from the right side
of C (i.e., at any point on the curve between A and D), will
increase along the curve (vt > 0 there) until it reaches the
maximum point A = ( a1+a2

2 , f ( a1+a2
2 )). Refer to Figure 2 top

left panel. This is a jump point, refer to Krupa and Szmolyan
(2001), i.e., from there the trajectory leaves C and goes at high
speed to reach a neighborhood of the point B = (0, f ( a1+a2

2 )).
After that, since at first ut < 0, the trajectory remains stuck
near the line u = 0. It goes down (vt < 0) until it crosses the
point (0, f (0)) = (0,−Ka1a2), at which point ut becomes positive.
This is a fold point but not a jump point, refer to Krupa and
Szmolyan (2001). Dynamics near this point have been analyzed
in Ambrosio et al. (2018). Refer also to Wang and Zhang (2019)
and references therein cited. The trajectory continues to follow
the axis u = 0 until it reaches a point C on the axis u = 0 which
is significantly below (0, f (0)). Here, there is the possibility of the
so-called canard phenomenon, refer to Benoît et al. (1981); Krupa
and Szmolyan (2001); Szmolyan and Wechselberger (2001). At
C, the trajectory leaves the axis u = 0 and goes very quickly
toward the pointD on C with the same ordinate as C. This gives a
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qualitative description of the limit-cycle. For ǫ sufficiently small,
precise statements can be rigorously deduced from Geometrical
Singular Perturbation Theory. Good reviews can be found in
Hek (2010); Jones (1995); Kaper (1999); Krupa and Szmolyan
(2001).

Let Ŵ′ be the closed curve defined by:

Ŵ′ = [A,B] ∪ [B,C] ∪ [C,D] ∪ ζ

where ζ ⊂ C is the arc from D to A.

Theorem 2. For ǫ > 0 sufficiently small, there is a limit cycle Ŵ

within distance O(ǫ) of Ŵ′.

For proof of the uniqueness of the limit-cycle in the case ǫ small,
refer to Wang and Zhang (2019).

We point out that the system defined by (7) provides a
simple example, in a Neuroscience context, in which canard
solutions emerge and can be computed explicitly. As a result of
the polynomial expression of the vector field, the computations
performed in Ambrosio et al. (2018) become simpler and explicit
around the point (0, f (0)).

3.2.2. Hopf Bifurcations

As indicated in Section 2.1, the range of ǫ of interest is [0.1, 1],
and it is in this range of ǫ that the limit cycle turns into a sink as
shown in Figure 2. We now give more detail on this bifurcation,
specifically, the Hopf bifurcation that occurs at (u∗, v∗) where
(u∗, v∗) is the unique fixed point in the interior of the positive
quadrant; refer to Section 2.1.

The Jacobian matrix at fixed points is

J =

(

1
ǫ
(−3Ku2 + 2K(a1 + a2)u− Ka1a2 − v) − 1

ǫ
u

bv −2v+ (bu+ c)

)

.

Substituting in v∗ = bu∗ + c, we obtain at (u∗, v∗), that

J(u∗,v∗) = J∗ =

(

− 1
ǫ
Ku∗(2u∗ − (a1 + a2)) − 1

ǫ
u∗

b(bu∗ + c) −(bu∗ + c)

)

,

which gives

det(J∗) =
1

ǫ
u∗(bu∗ + c)(K(2u∗ − (a1 + a2))+ b)

FIGURE 3 | This figure shows the fixed points, nullclines, and vector field, as well as the trajectories lying in the sets u = 0, v = 0, and the limit-cycle for K = 60 and

ǫ = 0.1. For these values, the parameter (a2, 0) is a saddle, and (u∗, v∗) is a source. The two fixed points (0, 0) and (0, c) are too close to be discernible in this figure. In

the inset, we zoom in to visualize them: (0, 0) is a source, and (0, c) is a saddle.
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FIGURE 4 | This figure illustrates the effect of varying ǫ, from small to large values. The parameter K is set to K = 60. The top left panel illustrates ǫ = 0.001, the top

right, ǫ = 0.1, bottom left, ǫ = 1, and bottom right ǫ = 10.

while

tr(J∗) = −
1

ǫ
Ku∗(2u∗ − (a1 + a2))− (bu∗ + c).

From the above expressions, we deduce the following
proposition.

Proposition 1. For K ∈ [30, 100], det(J∗) > 0. It follows that for
each K there exists a value of ǫ at which a Hopf bifurcation occurs.
This value is given by:

ǫ = Ku∗
a1 + a2 − 2u∗

bu∗ + c
.

We close this section with an application of the Poincare-
Bendixon theorem to our system.

Theorem 3. Each trajectory starting in the region {u > 0, v > 0}
either converges to (u∗, v∗) or evolves toward a limit-cycle. For

ǫ < Ku∗ a1+a2−2u∗

bu∗+c
, it converges toward a limit-cycle.

Proof. The proof follows from the analysis of the nullclines and
the nature of fixed points.

3.3. Dependence of Dynamics on the
Parameters ǫ,K, and γ

Continuing to keep γ = 1, we first examine the dynamics of
Equation (7) as functions of K and ǫ. Simulation results are
shown in Figure 4. Notice first that these results are consistent
with those in Figure 3 with regard to increasing ǫ for fixed K.
What is new here is the effect of varying K for each ǫ. Figure 4
shows clearly that larger K corresponds to larger excursions by u
and v. This means

(i) When solutions are attracted to a limit cycle, the limit cycle
has a larger diameter for larger K; and

(ii) Whether solutions eventually tend to a limit cycle or a sink,
this attracting set is located closer to u = 0, v = 0 for smaller
values of K.

Finally, we examine the effect of varying γ . From the equations,
it is clear that trajectories of Equation (7) will trace out the same
curves as long as γ ǫ remains constant; and that varying γ keeping
γ ǫ fixed corresponds to changing the speed with which one
moves along these curves. For example, at K = 60, for values
of ǫ = 0.1 and γ = 1, numerical simulation gives a limit cycle
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with period∼ 44 ms (equivalently frequency around 22 Hz). For
ǫ = 0.01, γ = 10, the period becomes 4.4 ms (frequency around
225 Hz).

Proposition 2. For each fixed K, the curves traced out by the
trajectories of Equation (7) depend only on ǫγ . Fixing K and ǫγ ,
and varying γ , velocities are proportional to γ ; in particular, the
frequency of the limit cycle is proportional to γ−1.

The meaning and main general effects of the variation of
parameters ǫ,K, and γ in Equation (7) can be summarized
as follows:

• Increasing ǫ changes the dynamical regime from one with a limit
cycle in a slow-fast system to one with an attractive fixed point;

• K controls the sizes of the excursion of (u, v) in the system’s
oscillatory behavior: in general, the larger K, the larger the
excursions; while

• For each fixed value of ǫγ , the magnitude of γ controls the
frequencies of the limit cycle.

As we will show momentarily, these are the parameters we need
to vary to produce the irregularities seen in gamma rhythms.

4. PROPOSED MODEL: STOCHASTIC
COMPONENTS

As discussed in the Section 1, there are two facets to gamma
rhythms as observed in the real cortex: one is their oscillatory

nature; the other is their irregular, episodic character. The
deterministic system in Section 2 provided the underlying
oscillations. Here, we create irregularity by adding randomness
to the deterministic model. Instead of adding white noise
to the system of ODE, we have found that allowing its
key parameters (as described in Section 3) to drift freely,
performing random walks within designated parameter ranges,
produces better results. This wandering parameters paradigm is
especially effective for modeling dynamical behavior that samples
different regimes, drifting from one regime to another after
seemingly random time durations. By choosing a deterministic
model capable of supporting the relevant dynamical regimes
at different parameter values, one can control the sampling
of different regimes by controlling the way the model’s
parameters wander.

As discussed earlier, gamma-band activity is quite varied in
character: when the rhythm is robust, the dynamics appear to
be following periodic orbits, the amplitudes and frequencies of
which vary with time in a way that is partially history-dependent.
When the rhythm degrades, it is as though the trajectory is near
a (weakly) stable equilibrium. Our deterministic model supports
these regimes; moreover, we have learned in Section 3.3 how
to switch between sinks and limit cycles, and how to vary the
amplitudes and frequencies of the cycles by changing parameters.
By allowing these parameters to wander, we ensure that the
amplitudes and frequencies of the gamma cycles will wander. We
then choose the ranges of parameters and the speeds with which
they vary as we see fit.

FIGURE 5 | Illustration of the Hopf bifurcation. In the top panel, we have plotted the Hopf bifurcation diagram in the K, ǫ plane. The bottom panels illustrate the

bifurcation for K = 60 as ǫ decreases. Left: ǫ = 0.4, a trajectory spiraling toward a sink. Middle: ǫ = 0.36, trajectories accumulating on a limit cycle following the sink’s

loss of stability. Right: ǫ = 0.3, the limit cycle growing in size.
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FIGURE 6 | This figure gives a panorama of sample trajectories within the parameter’s range of interest. Four panels corresponding to ǫ = 0.1, 0.2, 0.3, and 0.4 are

shown. In each panel, trajectories for different values of K are depicted in different colors: K = 30 (red), 50 (cyan), 70 (green), and 90 (purple). For each value of ǫ, the

larger K, the larger excursions in the phase-space.

In more detail, we first specify parameter ranges [Kmin,Kmax],
[ǫmin, ǫmax], and [fmin, fmax] for K, ǫ, and ǫγ , respectively.
For example, for the simulations shown in Figure 5, we used
[Kmin,Kmax] = [30, 100], [ǫmin, ǫmax] = [0.04, 0.1], and
[fmin, fmax] = [0.2, 0.5]. Let U

1
i ,U

2
i ,U

3
i , i = 1, 2, · · · , be

independent random variables uniformly distributed on [−1, 1].
Starting from initial values of K, ǫ, and γ within the specified
ranges, we update these parameters every 0.1 ms. At the ith step,
we let

K = K(1+ 0.1U1
i ),

constraining K to [Kmin,Kmax] according to the rule that if U
1
i =

u and K(1 + 0.1u) falls outside of [Kmin,Kmax], then we set
K = K(1− 0.1u). Next, we update ǫ by letting

ǫ = ǫ + 0.01U2
i

constraining ǫ to [ǫmin, ǫmax] as before.
Finally, we set

γ = γ + 0.1U3
i

if ǫγ ∈ [fmin, fmax]. If not, if ǫγ > fmax we set

γ =
fmax

ǫ
− 0.1× 0.5(1+ U

3
i )

and if ǫγ < fmin, we set

γ =
fmin

ǫ
+ 0.1× 0.5(1+ U

3
i )

Recall that it is the product ǫγ that determines the curves traced
out by the trajectories of the system (Proposition 2), and ǫγ ∈

[0.2, 0.5] corresponds to ǫ ∈ [0.2, 0.5] in Figures 3–6, where γ
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FIGURE 7 | This figure represents the evolution of the stochastic version of the system (7). The parameters used are K ∈ [30, 50], ǫ ∈ [0.04, 0.1], γ ǫ ∈ [0.2, 0.5]. We

plotted ū = 1.96u+ 0.00672 in solid purple, to be thought of as representing E-conductance, v in green, representing I-conductance. Since the ratio of E-current to

E-conductance is roughly three to four times that of the ratio of I-current to I-conductance, we have plotted also 3.5ū in dashed purple. Note the tight relationship

between 3.5ū and v.

was set = 1. Thus, to simulate gamma rhythms, the parameters
above are chosen so that most but not all of the time, the
dynamics are oscillatory. Once parameters that produce suitable
qualitative behaviors are located, it is generally simpler to adjust
the values of u, v, or the mean frequencies of the oscillations by
modifying slightly the two equations of Equation (7) (e.g., by
inserting a scaling coefficient in front).

Figure 7 shows a solution to the stochastic version of Equation
(7). The irregular nature of the rhythm is clearly visible, and it
possesses features remarkably similar to those in experimental
data, refer to e.g., Burns et al. (2011) (Figure 1B): One sees
the trajectory switching between robustly periodic and more
degenerate regimes as the parameters controlling degeneracy
are varied; the use of random walks with adjustable speeds has
allowed us to control the degree of history dependence. The
amplitudes and frequencies sampled are also controllable.

As discussed earlier, a bonus of this model is that it is
more than just a phenomenological model of gamma: the two
variables u and v suitably adjusted simulate the E and I-
conductances of a typical neuron in a local population under
drive. By definition, the E-current entering a neuron is defined
to be its E-conductance times a factor proportional to the
distance of membrane potential to the E-reversal potential, and
the same is true for I-currents. As this factor for E-current
is 3 to 4 times that for I, we have also plotted (in dash)
a graph that is 3.5 times the height of the E-conductance.
Modulo a multiplicative constant, then, the dashed purple and
green plots can be thought of as approximations of E and I-
currents, respectively, and it is striking how the two currents track
one another.

We remark on the tightness with which the green plots (I-
current) follow the dashed purple plots (E-current). There is
a well-known theory of balanced states (van Vreeswijk and
Sompolinsky, 1998) that asserts that in the limit as system size
tends to infinity, E-currents and I-currents are balanced when
averaged over time. Experimental results of Okun and Lampl
(2008) and subsequent theory (Denève and Machens, 2016) and
modeling paper (Chariker et al., 2018) show that much more
than that is true, namely that these currents are in fact roughly
balanced from moment to moment, not just when averaged

over time. The tight relationship between our dashed purple and
green curves in Figure 5 captured well this phenomenon.

5. DEMONSTRATION OF MODEL
VERSATILITY

Below we give three examples to demonstrate that the ODE
system with stochastically varying coefficients presented in
Sections 3 and 4 can be used to generate signals that simulate
rhythmic activity in the real cortex.

5.1. Example 1. Gamma Rhythms for
Awake vs. Anaesthetized Monkey
The first set of experimental results we used to challenge our
model was that reported in Xing et al. (2012). In this article,
the authors studied gamma rhythms in awake vs. anesthetized
monkeys. LFP from V1 (the primary visual cortex) in response
to high contrast sinusoidal grating patches were recorded and
the resulting data was analyzed. After the initial power increase
(which we do not model), peak gamma frequency was found to
be about of 60 Hz in the awake and 40 Hz in the anesthetized
monkeys studied (Figure 1 of Xing et al., 2012). Time frequency
analysis of single trials confirmed that oscillations in the awake
animal were faster (Figure 2). Also, for anesthetized monkeys,
the signal was weaker, having an amplitude about 60% that of
the awake (Figure 1). In addition to the PSD, which describes
spectral power averaged over time, the authors of Xing et al.
(2012) (Figure 2) studied temporal structures of gamma-band
activity. They found intermittent bursts of activity lasting
for small fractions of a second suggesting some short term
history dependence.

As proof of concept, we challenged our model to produce
two signals with the characteristics of brain rhythms of awake
and anesthetized monkeys as reported in the experimental
article above. Our goal is not a perfect match with data but to
demonstrate how these quantities can be manipulated through
parameter selection in a model like the one presented in Sections
3 and 4. Time traces, PSDs, and spectrograms (Fourier power
computed on shifted time intervals and plotted as a function
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FIGURE 8 | Reproducing signals with the characteristics of awake and anesthetized monkeys. The figures on the left side correspond to the awake state, and the

figures on the right side correspond to the anesthetized state. The figures result from the simulation of Equation (7). In (A), the traces of v are plotted as a function of

time. In (B), we represent the trajectories in the phase space. Panel (C) corresponds to the PSD and panel (D) to the spectrograms. The parameters are as follows:

Km = 50, KM = 90, ǫm = 0.07, ǫM = 0.16, fm = 0.35, fM = 0.4 for the left side. For the right side, the following changes are made:

Km = 40, KM = 68, ǫm = 0.08, ǫM = 0.18.

of time, refer to Section 2.1) for two signals intended to
simulate these two very different cortical states are presented
in Figure 8; the exact parameters used are given in the legend.

The amplitudes and peak frequencies of the PSD plots are in
agreement with the data and the spectrogram shows small bursts
of activity.
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FIGURE 9 | In (A), we reproduce low contrast vs. high contrast as in Jia et al.

(2013). This results for simulation of equation (7) with:

Km = 25,KM = 55.0, ǫm = 0.09, ǫM = 0.19, ǫγ ∈ [0.35, 0.4] for low contrast

and Km = 40,KM = 70.0, ǫm = 0.11, ǫM = 0.21, ǫγ ∈ [0.35, 0.4] for high

contrast. In (B), we illustrate the increase of power related to repeated

stimulations as in Brunet et al. (2014). The set of parameters is as follows, low

power: Km = 40,KM = 75.0, ǫm = 0.075, ǫM = 0.155, ǫγ ∈ [0.35, 0.4], mean

power: Km = 45,KM = 80.0, ǫm = 0.09, ǫM = 0.16, ǫγ ∈ [0.35, 0.4], and

Km = 50,KM = 90.0, ǫm = 0.09, ǫM = 0.19, ǫγ ∈ [0.35, 0.4] for high power.

5.2. Example 2. PSD in Primate Visual
Response: High vs. Low Contrast
It is well-known to visual neuroscientists that in primate
contrast response, peak frequency and spectral power increase
with contrast (Henrie and Shapley, 2005). For definiteness, we
challenged the model to reproduce characteristics of the signals
in Jia et al. (2013). Figure 2C of Jia et al. (2013) shows that in
response to a large grating (10◦ in diameter), peak frequency
increased from about 30 to 44 Hz, and stimulus-induced gamma
power was enhanced more than 3-fold as the contrast was
increased from about 6 to 50%. Selecting suitable parameters
from our model, we were able to build two signals having these
spectral characteristics. They are shown in Figure 9A.

5.3. Example 3. Effect of Stimulus
Repetition on Gamma-Band Activity
It is shown by Brunet et al. (2014) that the repeated presentation
of a visual grating stimulus to monkeys resulted in a steady
increase of visually induced gamma-band activity in V1 and
V4 (and in the synchronization of the two rhythms in these
two areas). The authors proposed this as a plausible way to
maintain effective stimulus signaling in the face of dwindling
firing rates, presumably due to adaptation. Figure 1 in Brunet
et al. (2014), which shows LFP traces and power spectra from a
recording session with an awakemonkey, shows peak frequencies
increasing slightly but hovering mostly around 60 Hz, consistent
with the values in Example 1. A striking feature here is that
the PSDs become increasingly sharply peaked, with significant
increases in gamma power at these frequencies with stimulus
repetition. In Figure 9B, we present the PSD of 3 signals with
these properties generated by our model.

The examples above demonstrate that the two dimensional
ODE system with stochastically varying coefficients presented

in Sections 3 and 4 of this article is sufficiently flexible that
through parameter selection, one can reproduce, on demand, a
variety of characteristics observed in gamma-band rhythms in the
real cortex.

6. DISCUSSION

Oscillatory behaviors are among the most widely observed
dynamical phenomena in physiology. They occur in the
spontaneous beating of heart cells (Glass et al., 1984), in central
pattern generators in animal locomotion (Cohen et al., 1988),
and in calcium oscillations that underlie a plethora of cellular
responses (Thul et al., 2008). For more examples refer to
Glass and Mackey (1988); Françoise (2005); Winfree (2000).
Physiological processes can also be more complex than just
purely oscillatory, sometimes they can even be mildly chaotic,
as has been observed in several studies, such as Bondarenko
(1994); Freeman (1987); van Vreeswijk and Sompolinsky (1998),
and Lin et al. (2012). Brain rhythms, gamma-band oscillations,
in particular, are neither purely oscillatory nor chaotic but
somewhere in between, and their simulation has been much
studied by theorists. We review below a sample of the main
results prior to this study.

6.1. Previous Study on Models of Gamma
Rhythms
An early and well-known model is PING (Whittington et al.,
2000; Börgers and Kopell, 2003); similar models include
(Ermentrout and Kopell, 1998; Tiesinga et al., 2001) among
others. These models were the first to use non-linear dynamics
to explain gamma rhythms. The original PING model produces
highly regular population spikes, capturing successfully the
oscillatory behavior of gamma rhythms but not their irregular
character. There were several follow-up studies e.g., (Borgers
et al., 2005; Börgers, 2017) in which network models were used
to produce more nuanced spike patterns.

Another body of study that received much attention is (Brunel
and Hakim, 1999; Brunel, 2000). In these studies, the authors
started with networks of sparsely coupled integrate-and-fire
neurons, and let system size tend to infinity while keeping the
number of connections an infinitely small fraction of system
size. Arguing that in such a limit distinct neurons are likely to
have disjoint sets of presynaptic cells, the authors of Brunel and
Hakim (1999); Brunel (2000) modeled neuronal dynamics by an
equation consisting of a deterministic part describing meanfield
activity plus a Gaussian noise that is independent of the neuron to
neuron, and gamma rhythms were modeled as regimes following
a supercritical Hopf bifurcation. These are the first reduced
models of gamma rhythms that we know of. Another much cited
article is by Brunel and Wang (2003). Here, the authors assumed
that gamma rhythms consisted of purely periodic motion plus
a noise term, and focused on the dependence of the period on
various factors.

Experimental studies from the last 15 years brought to light
some intriguing features of gamma rhythms produced by the real
cortex, stressing their broad-band nature (Henrie and Shapley,
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2005). They show that the amplitudes of the oscillations in local
field potentials can be quite large (Henrie and Shapley, 2005), far
from regimes that emerge following Hopf bifurcations. Another
feature of interest revealed by experimental results is that the
power and frequencies of the oscillations wander (Xing et al.,
2012), with the same patterns often persisting for tens, sometimes
up to 200 ms, indicative of some form of short-term memory.

More recently, a number of detailed biological network
models have appeared showing that gamma rhythms with
the properties above occur naturally as a consequence of
Excitatory-Inhibitory interaction in local neuronal processes,
calling attention to concepts such asmultiple firing events (MFE)
(Rangan and Young, 2013) and recurrent excitation-inhibition
(REI) (Chariker et al., 2018). The analysis in these recent
articles provided an understanding, at least qualitatively, of how
both the oscillatory and irregular characters of gamma rhythms
come about.

6.2. What This Article Is About: Goals and
Conclusion
This article is concerned not with physiological processes
associated with gamma rhythms but with the mathematical
properties of the signal itself. As these rhythms are naturally
produced and have very intriguing signatures, we sought to
understand how they can be produced using reduced neuronal
models defined by low dimensional dynamical systems. As noted
above, reduced models of gamma rhythms have been studied
before, but how well they capture the broad-band, irregular
nature of gamma rhythms had not been evaluated up until now.

Thus, we began in Section 2 with a study of the main group
of reduced models in the literature, namely those described
by periodic dynamics perturbed by white noise (Brunel, 2000;
Brunel and Wang, 2003). We found that these models do
reproduce some aspects of the irregular side of gamma behavior
but the multi-faceted nature of these behaviors required more
multi-dimensional control. To that end, we proposed, in Sections
3 and 4, a model inspired by the FitzHugh-Nagumo system.
We do not claim that the model we proposed is the only viable
model, far from it, but the following properties of this model
are of note: As parameters are varied, the dynamical regimes
described range from stable equilibria to Hopf bifurcations to
robust limit cycles. Other parameters offer direct control of the
amplitudes and frequencies of the periodic regimes. We found
also that varying parameter randomly but continuously, such as
random walks in parameter space, capture more realistically the
wandering nature of gamma characteristics.

In the final section, to demonstrate versatility we challenged
the model to reproduce several sets of experimental data, and
the model performed satisfactorily. We remark that the modeling
approach employed here can be used to study other rhythms
provided that we adjust augment the model to accommodate
the characteristics of the rhythm in question. A challenging
example is signals with superposition of rhythms. In this
case, an idea would be to consider two coupled models of
ours, the strength of coupling depending on the interaction of
these rhythms.

7. METHODS

Simulations of the system (7), in the deterministic case, were
performed using a standard RK4 method with a time step of dt =
0.01, on the time interval [0,T], with T = 5,000ms. The code is a
personal code written by the first author in the C ++ language.

More explicitly, this means that, classically, the
time interval [0,T] is divided into sub-intervals
[jdt, (j + 1)dt], j ∈ {0, ...,T/dt − 1}, and the solution
of (7) is approximated by the sequence (uj, vj)j∈{0,...,T/dt}

with (uj, vj) computed from (uj−1, vj−1) by using the
RK4 iteration.

For the stochastic version of Equation (7), the numerical
method remains the same, with the specification that
for j = 10, 20, · · · the parameters K, ǫ, and γ are
changed randomly according to the description given
in paragraph 3, i.e., let U

1
i ,U

2
i ,U

3
i , i ∈ {1, 2, ...., 49900}

be independent random variables uniformly distributed
on [−1, 1]. For j = 10i, i ∈ {1, ..., 49990},
we let

K = K(1+ 0.1U1
i ),

constraining K to [Kmin,Kmax] according to the rule that if
U
1
i = u and K(1 + 0.1u) falls outside of [Kmin,Kmax],

then we set K = K(1 − 0.1u). Next, we update ǫ

by letting

ǫ = ǫ + 0.01U2
i

constraining ǫ to [ǫmin, ǫmax] as before. Finally, we set

γ = γ + 0.1U3
i

if ǫ γ ∈ [fmin, fmax]. If not, if ǫ γ > fmax we set

γ =
fmax

ǫ
− 0.1× 0.5(1+ U

3
i )

and if ǫγ < fmin we set

γ =
fmin

ǫ
+ 0.1× 0.5(1+ U

3
i ).
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