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Abstract 17 

 18 

In a paper entitled the paradox of plankton, Hutchinson asked “how it is possible for a number of 19 

species to coexist in a relatively isotropic or unstructured environment all competing for the same sorts 20 

of materials”. Particularly relevant for phytoplankton, this paradox was based on two implicit, and 21 

perhaps naive, postulates, i.e. (i) that all plankton species have similar requirements and (ii) that the 22 

marine environment is relatively homogeneous in space and time. A number of hypotheses, based on 23 

purely theoretical or experimental studies, have been proposed to solve this conundrum, ranging from 24 

spatio-temporal environmental heterogeneity to biotic chaotic variability. Here, we characterize the 25 

ecological niche of 117 plankton species belonging to three different taxonomic groups and show that 26 

all species have a niche sufficiently distinct to ensure coexistence in a structured marine environment. 27 

We also provide evidence that pelagic habitats are, unsurprisingly, more diverse in space and time 28 

than Hutchinson imagined, the marine environment being neither unstructured nor stable in space 29 

and time. We therefore conclude that the niche theory, and its corollary the principle of competitive 30 

exclusion, apply as much for the plankton as for other forms of life, be they terrestrial or marine.  31 

 32 

1. Introduction 33 

 34 
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Marine plankton is composed of both uni- and multicellular organisms covering a wide range of size, 35 

from less than 0.2 µm (virioplankton) to a few meters (e.g. the giant jellyfish Nemopilema nomurai)[1]. 36 

They are at the basis of the food web and play a key role in carbon dioxide regulation, influencing the 37 

composition of the Earth’s atmosphere [1–4]. The great diversity they exhibit has fascinated marine 38 

biologists for a long time [5–7] and it is now apparent that there is even more diversity than originally 39 

realised [8,9]. The mechanisms sustaining the plankton biodiversity remain debated, however, because 40 

it is assumed that plankton species coexist in an apparently homogeneous environment with few 41 

niches (sensu Hutchinson realised niche i.e. the set of environmental conditions modulated by biotic 42 

interactions, enabling a species to growth and reproduce [10]) thought to be available [11,12].   43 

 44 

Although it has been suggested that plankton species may share niches and coexist [13], many 45 

theoretical and laboratory studies have tried to resolve the “paradox of the plankton”[11] and have 46 

shown that the number of coexisting plankton species at equilibrium in a community cannot exceed 47 

the number of limiting resources [14–17]. Consequently, coexistence of a large number of species on 48 

a small number of limiting resources is only possible when other mechanisms are involved such as (i) 49 

temporal heterogeneity (i.e. a continuously changing pelagic environment due to the seasonal changes 50 

in hydro-meteorological forcing) and its influence on the structure of the water column [11,18–20], (ii) 51 

spatial heterogeneity in the relative resource supply rate [21]), (iii) spatial subdivision [22], (iv) chaotic 52 

variations in species abundance induced by competition [23] or (v) difference in the array of resources 53 

limiting species growth [17,24]. The tenet that underlies the paradox of the plankton —that the 54 

plankton environment is unstructured and so different plankton share the same niche, and therefore 55 

the question of whether niche separation might promote plankton coexistence— has received little 56 

attention, however.  57 

 58 

In this article, we examine how niche separation can enable plankton coexistence. Niche separation, 59 

which is often estimated by the degree of overlapping (i.e. the opposite of niche separation)[25], 60 

results from the principle of competitive exclusion [26,27]. By allowing a better exploitation of the 61 

available resources, this mechanism has been shown to enable terrestrial plant species coexistence 62 

[28,29]. Here, we examine the two postulates on which the paradox of the plankton is based, i.e. (i) do 63 

plankton species share niches and (ii) is the oceanic environment unstructured. To do so, we estimate 64 

the degree of niche overlapping of 117 plankton species belonging to three taxonomic groups 65 

(diatoms, dinoflagellates and calanoid copepods). We show that species’ niches of the three taxonomic 66 

groups are well separated and that the environment is much more structured in space and time than 67 

Hutchinson envisioned [11]. We conclude that these two mechanisms jointly ensure plankton species 68 

coexistence.   69 
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 70 

2. Materials and Methods 71 

 72 

(a) Biological data 73 

 74 

Plankton abundance data came from the Continuous Plankton Recorder (CPR) survey (Supplementary 75 

Text S1)[30]. It is a long-term plankton monitoring programme using a high-speed plankton recorder 76 

sampling at a depth of ~7-10m. Started in 1931, the CPR programme has since sampled plankton on a 77 

monthly basis in the North Atlantic Ocean and its adjacent seas [31,32]. We used the data collected 78 

between 1998 and 2018 in the North Atlantic Ocean and its adjacent seas [33]. This time period was 79 

chosen because it corresponds to the period covered by the environmental datasets we used (see 80 

Sections b and c). Species that were found in less than 100 CPR samples were removed from the 81 

analysis so that the total number of species used was 117; this reflected abundance data for 71 82 

phytoplankton (i.e. 45 diatoms and 26 dinoflagellates) and 46 calanoid copepod taxa.  83 

 84 

(b) Environmental data 85 

 86 

We used a set of nine different environmental variables to characterise the niches of the 117 species. 87 

The chosen variables were: bathymetry (in m), nitrate, phosphate and silicate concentrations (mmol.m-88 

3), Mixed Layer Depth (MLD, m), temperature (°C), Photosynthetically Active Radiations (PAR, E.m-89 

2.day-1), salinity (no unit) and chlorophyll-a concentration (mg.m-3). Detail descriptions and references 90 

for each dataset are provided in Supplementary Text S2.  91 

 92 

(c) Data pre-processing 93 

 94 

We used the environmental data collected between 1998 and 2018 to work on a common time period 95 

with respect to all datasets. All data were subsequently arranged on a grid covering the North Atlantic 96 

Ocean (100°W-10°E and 35°N-65°N). By means of nearest-neighbour interpolation [34], we attributed 97 

to each CPR sample a value for each of the nine chosen environmental variables at a depth of 8 m 98 

(except for bathymetry), a value included in the range of sampling depth of the CPR instrument [30,31]. 99 

All the samples with a missing value along a single dimension were discarded prior to the analyses. We 100 

therefore used a total of 90,527 CPR samples.  101 

 102 

(d) Niche separation 103 

 104 
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To characterise and compare the multidimensional niches of the 117 planktonic species, we used the 105 

recently proposed “species chromatogram” method [35,36]; this technique uses a chromatogram to 106 

display the multidimensional niche of a species in a two-dimensional space. To do so, p-standardised 107 

environmental gradients (one per environmental variable, e.g. temperature or nutrients), representing 108 

the p-niche environmental dimensions, are defined between 0 (the lowest value taken by an 109 

environmental variable) and 1 (the highest). Each gradient is divided into α equidistant categories (here 110 

α=50 for all chromatograms). For each category along each dimension (i.e. gradient), the mean species 111 

abundance is estimated by averaging the values of the k% of the CPR samples (associated to that 112 

category by means of the nearest-neighbour interpolation, see the previous section) with the highest 113 

abundance values (here k= 5%), if at least m samples are present in that category (here m=20 CPR 114 

samples). The mean abundances along each dimension are then standardised between 0 and 1, and 115 

smoothed by means of a second-order simple moving average to alleviate the noise associated with 116 

the CPR data. Finally, the niche is displayed as an array of coloured cells, which is called a species 117 

chromatogram (Supplementary Figure S1-12)[36].  118 

 119 

As each environmental gradient is globally standardised between 0 and 1, the niches of different 120 

species can be compared and a degree of niche overlapping (called index D) can be estimated among 121 

species [36]. This index is estimated by considering the categories with an abundance greater than or 122 

equal to a threshold T along each dimension, with 0<T≤1. They are then used to calculate the niche 123 

hypervolume, the shape of the niche being assimilated to a hyperrectangle. D is finally assessed for 124 

each pair of species by calculating the ratio of the hypervolume of the niche common to the two 125 

species on the total volume filled by the two species. The method is fully described in Kléparski & 126 

Beaugrand [36].  127 

 128 

Here, D was estimated for each pair of plankton species and for each combination of 1 to p-129 

environmental dimensions (i.e. 1 to p-dimensions considered simultaneously) and five thresholds T: 0, 130 

0.1, 0.25, 0.5 and 0.75. For phytoplankton (i.e. diatoms and dinoflagellates), we chose eight 131 

environmental dimensions (p=8): bathymetry, nitrate, phosphate and silicate concentrations, MLD, 132 

temperature, PAR and salinity (Figure 1 and Supplementary Figure S1-8). For copepods, we used six 133 

dimensions (p=6): bathymetry, MLD, temperature, PAR, salinity and chlorophyll-a concentration 134 

(Figure 1 and Supplementary Figure S9-12). D was calculated among species belonging to the same 135 

taxonomic group, i.e. among diatoms (45 species), dinoflagellates (26 species), phytoplankton (45 136 

diatoms + 26 dinoflagellates = 71 species) or calanoid copepods (46 species).  137 

 138 
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All species chromatograms on which index D is based are displayed in Supplementary Figures S1-12. 139 

We have synthetized the information of all species chromatograms by means of a community 140 

chromatogram [35,36]. To do so, species’ abundance was first replaced by 1 when its standardised 141 

abundance was higher than or equal to 0.5 in a category [35](see Figure 1a-d). Then, we estimated the 142 

number of co-occurring species in each category of the chromatogram and we converted it into 143 

percentage. Therefore, a community chromatogram displays the percentage of co-occurring species in 144 

each environmental category.  145 

 146 

(e) Habitat diversity  147 

 148 

Habitat diversity of the pelagic environment was estimated with respect to each environmental 149 

variable (but bathymetry that is constant) by means of the Shannon entropy [37]. In other words, we 150 

quantified the diversity of values that is taken by an environmental variable for each day or in each 151 

geographical cell. To do so, eight environmental matrices (121 latitudes x 441 longitudes x 24 depth 152 

levels (except for MLD) x 7670 days) were used and standardised between 0 (i.e. the lowest value of 153 

an environmental variable at the scale of the North Atlantic) and 1 (i.e. the highest). The environmental 154 

values taken by each matrix were then divided into 50 categories and the habitat diversity 𝐻(𝑆) 155 

(expressed in bit) was calculated as follows: 156 

 157 

𝐻(𝑆) = −∑ 𝑆𝑖 × 𝑙𝑜𝑔2(𝑆𝑖)
50
𝑖=1      (1) 158 

 159 

With 𝑆𝑖 the probability that the value of the 𝑖𝑡ℎ category was observed, i.e. its relative frequency. The 160 

estimate of the Shannon entropy was performed in two ways for each year between 1998 and 2018: 161 

(i) at a daily scale using all geographical cells and depth levels between 0 and 20 m and (ii) at a spatial 162 

scale using all the days and depth levels between 0 and 20m. The resulting annual cycles were then 163 

averaged (1998-2018). 164 

 165 

3. Results 166 

 167 

(a) Niche separation 168 

 169 

Species chromatograms are all displayed in Supplementary Figure S1-12. Their examination revealed 170 

that each species has a unique chromatogram and therefore a specific niche, although many overlaps 171 

were observed along all niche dimensions. The species chromatograms were summarised by 172 

taxonomic group under the form of a community chromatogram, where species abundance was 173 
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replaced by the percentage of co-occurring species in an environmental category (Figure 1a-d). At this 174 

organisational level, niche separation occurred between diatoms and dinoflagellates along five niche 175 

dimensions (bathymetry, silicate, temperature, PAR and salinity; Figure 1b-c). Similarly, a clear niche 176 

separation can be seen between phytoplankton and copepods with respect to salinity, although the 177 

two groups have overlapping chromatograms for bathymetry, temperature and PAR (Figure 1a and d). 178 

Hence, each group seems to have distinct environmental requirements, although niche overlaps are 179 

the rule. 180 

 181 

The calculation of the degree of niche overlapping (i.e. Index D) confirmed that species niches were 182 

rapidly separated when the number of environmental dimensions of the niche rose (Figure 1e-h). Niche 183 

overlapping diminished rapidly below 30% for the four taxonomic groups (Figure 1e-h). We therefore 184 

investigated whether T (i.e. the threshold of abundance between 0 and 1) influenced our perception 185 

of niche separation. When T increased from 0 to 0.75, overlapping rapidly reached a value below 20% 186 

and even close to 0% when T becomes higher than 0.25. Consequently, the niches of the four groups 187 

were almost totally separated towards the optimal part of their niche (i.e. the part of the niche where 188 

a species has its highest abundance [38,39]), although some overlapping was still observed in the 189 

suboptimal parts (i.e. the parts where a species has low abundance, i.e. when T<0.25) (Figure 1e-h), as 190 

might be the expected outcome of competition and natural selection [40].  191 

 192 
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 193 
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Figure 1. Community chromatograms and changes in the degree of niche overlapping for four groups of 194 

plankton. Community chromatogram of (a) phytoplankton, (b) diatoms, (c) dinoflagellates and (d) calanoid 195 

copepods. In a-d each column represents an environmental dimension. The Y axis corresponds to the 50 196 

environmental categories standardised between 0 and 1, i.e. it represents all the values taken by an 197 

environmental variable from the lowest (bottom category) to the highest (top category). Colours denote the 198 

percentage of co-occurring species in each category. High co-occurrence values are in red and low values in blue. 199 

Categories where no CPR samples are available are shown in white. Panels e-f represent the changes in the 200 

degree of niche overlapping for (e) phytoplankton, (f) diatoms, (g) dinoflagellates and (h) calanoid copepods. 201 

Niche overlapping has been estimated by means of a species chromatogram (i.e. index D, M&M section). 202 

Overlapping was assessed by considering simultaneously an increasing number of environmental dimensions, 203 

from 1 to 8 for phytoplankton, diatoms and dinoflagellates, and from 1 to 6 for calanoid copepods. Overlapping 204 

among species was based on five thresholds of abundance T=0 (blue lines with diamond), 0.1 (blue lines with 205 

dot), 0.25 (red lines with diamond), 0.5 (red lines with dot) and 0.75 (black lines with dot).  206 

 207 

(b) Habitat diversity 208 

 209 

We quantified habitat diversity in the North Atlantic Ocean by means of the Shannon entropy. The 210 

analysis was performed in two ways. First, based on different depth levels (0-20 m) for all geographical 211 

cells of the North Atlantic, we found two different daily patterns in habitat diversity:  the first pattern 212 

revealed higher diversity with respect to nutrients, MLD and chlorophyll-a in Spring (plots in Figure 2a, 213 

b, e, f and h) and the second pattern revealed high diversity in Summer for temperature, salinity and 214 

PAR (plots in Figure 2c, d and g). Second, based on depth levels (0-20m) and days, we identified spatial 215 

patterns in habitat diversity. High diversity was found in the northern parts of the North Atlantic Ocean 216 

for nutrients, MLD and chlorophyll-a (maps in Figure 2 a, b, e, f and h) whereas high habitat diversity 217 

was found along continental shelves and in the southern part of the North Atlantic Ocean for 218 

temperature and salinity (maps in Figure 2c-d). PAR showed high habitat diversity everywhere in the 219 

North Atlantic (Figure 2g). Our results therefore confirm that not only the environment is diverse in 220 

space and time but that it is also highly impermanent at the same scales (Figure 2). 221 

 222 
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 223 

Figure 2. Habitat diversity in the North Atlantic Ocean. Habitat diversity for (a) nitrate, (b) silicate, (c) 224 

temperature, (d) salinity, (e) phosphate, (f) MLD, (g) PAR and (h) chlorophyll-a. Changes in temporal diversity are 225 

shown by the plots and changes in spatial diversity by the maps below the plots. Habitat diversity was assessed 226 

by means of the Shannon entropy estimated on the annual changes of each environmental variable (see M&M 227 

section). High values of Shannon entropy (red colour in the maps) mean that habitats diversity is high and low 228 

values (blue colour in the maps) that habitat diversity is small.  229 

 230 

4. Discussion 231 

  232 

It is known that diatoms and dinoflagellates have distinct environmental requirements [41]. Here, our 233 

results are going farther and show that the niches of both phyto and zooplankton species rapidly 234 

separate when the number of niche dimensions rises (Figure 1). They also demonstrate that the pelagic 235 

environment is not only diverse but also impermanent in space and time (Figure 2), a result that has 236 

been shown by many studies since the original paper of Hutchinson [42–44]. Therefore, the two 237 

implicit postulates on which the Hutchinson’s paradox was based are incorrect. High niche 238 

differentiation leads species to have a unique combination of environmental conditions (i.e. a unique 239 

niche) where their performances in terms of growth and reproduction are optimal [28]. Therefore, 240 

each species covers a part of the multidimensional environmental space and the segregation along 241 

various environmental niche dimensions enables them to coexist in space and time, a mechanism that 242 

has been suggested  to enable terrestrial plant coexistence [28,29]. Furthermore, we have shown that 243 

niche separation can occur along a single unique dimension in a multivariable space. For example, two 244 

phytoplankton species may still coexist if they share the same niche for a nutrient but utilise a different 245 
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light wavelengths [45].  In other words, to simply resolve the plankton paradox we just need to fully 246 

understand marine environmental heterogeneity as it applies to the plankton.  247 

 248 

Because of the duality between the niche space and the real physical space (i.e. Hutchinson’s duality 249 

[46]), niche separation (Figure 1) can be related with the diversity of habitats we have observed (Figure 250 

2). Environmental variability is an important mechanism known to promote species coexistence 251 

because of a mechanism known as the “storage effect” [47,48]. This mechanism has three 252 

requirements: (i) the species of a given community have to develop strategies to survive during 253 

unfavourable environmental conditions, (ii) these species have distinct responses to environmental 254 

variability (i.e. distinct niches) and (iii) this variability affects competition, meaning that the niche-255 

environment interaction modulates competition (i.e. a species is more resistant to competition when 256 

its environment is more in adequation with its niche and inversely)[49,50].  257 

 258 

Expectedly, niche separation is maximal at the optimal part of a species’ niche (Figure 1e-h). Therefore, 259 

this separation alleviates competition and prevents competitive exclusion. Niche separation takes 260 

place through evolution via an alteration in life history strategies. Plankton have developed various 261 

strategies, like the development of pigments, cysts, spores, resting eggs or lipidic bags, that enable 262 

them to survive during adverse environmental conditions [51–55]. Some strategies (e.g. diatom 263 

morphological traits) even explain phenology and annual plankton succession [56,57]. Our study 264 

therefore shows that the niche theory, and its corollary the principle of competitive exclusion, applies 265 

for the plankton as for other groups, be they terrestrial or marine.  266 

 267 
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