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Abstract

Orthogonal coordinate systems represent an attractive alternative for the formulation of two-

dimensional composition space equations for partially premixed combustion: They avoid the need

of closure models for a cross scalar dissipation rate and allow for a direct recovery of the correspond-

ing flamelet equations in the asymptotic limits of non-premixed and premixed combustion. Despite

these remarkable features, this kind of coordinate systems still present some important unsolved

issues, which have limited their application so far. These difficulties are mainly associated with i)

the lack of an appropriate formalism for the definition of two variables having orthogonal gradients

in the entire flame domain and ii) the absence of corresponding closure models for the gradients

of these variables in two-dimensional composition space. In the present work, it is shown how a

Lagrangian interpretation of the flamelet derivative allows solving both problems. More specifically,

after the mixture fraction, Z, is adopted as first coordinate, the proposed approach allows to derive

i) two-dimensional composition space equations for all reactive scalars, ii) a transport equation for a

modified reaction progress variable, φ, satisfying the desired orthogonality condition, ∇Z · ∇φ = 0,

and iii) two-dimensional composition space equations for gZ = |∇Z| and gφ = |∇φ|. The obtained

set of two-dimensional equations in orthogonal composition space is general and it can describe

different flames of interest. In order to illustrate the capabilities of the formulation, the equations

are then specialized for planar flames with unity Lewis number, obtaining in this way a solvable set

of composition space equations in orthogonal coordinates. After an appropriate numerical approach

is introduced, the resulting 2D equations are solved to analyze the interaction between premixed

flamelets with a strain rate prescribed along the Z-dimension controlling the interaction. Both
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flame structures and budgets of the scalar gradient equations are studied and the results provide

new insights into the physics of scalar gradients in two-dimensional composition space. Finally,

conceivable coupling strategies of the present formulation with CFD codes for the simulation of

turbulent flames are discussed.

Keywords: Flamelet theory; Partially premixed combustion; Scalar gradient equations;

Orthogonal composition space

1. Introduction

During the last decades, several sets of flamelet equations (also called one-dimensional compo-

sition space equations) have been derived and analyzed for non-premixed [1–4], premixed [5–9] and

spray flames [10–14]. While these formulations work very well in the corresponding asymptotic limit

for which they were developed, it is well known that they are not appropriate for more complex

flames likely to be found in advanced combustion systems. Of particular interest are partially pre-

mixed flames (also called multi-regime flames), in which premixed and non-premixed combustion

modes can co-exist and interact [15, 16]. Therefore, several different sets of two-dimensional com-

position space equations have been proposed in recent years as extensions of the classical flamelet

theory [17–22], all of which make use of the mixture fraction, Z, and a second conditioning variable,

generalized here as φ, to define the composition space, (Z, φ, τ), where τ is a time-like variable.

Typically, φ is defined as some sort of reaction progress variable [17–23], but approaches using a

second mixture fraction [24] or enthalpy [25] also exist. For a comprehensive review of the associ-

ated literature on two-dimensional composition space equations, the reader is referred to the recent

works of Mueller and coworkers [21, 23] and Scholtissek et al. [22].

While the use of non-orthogonal coordinates represents the most common choice for the formu-

lation of two-dimensional composition space equations, Scholtissek et al. [22] have recently shown

how an orthogonal coordinate system can be defined based on the mixture fraction and a conven-

tional reaction progress variable, Yc. In particular, they introduced the following transformation

rule from physical into composition space

∇(·) = ∂(·)
∂Z

∇Z +
∂(·)
∂Yc

∣∣∣∣
Z

∇⊥Yc, (1)

where |Z indicates that a derivative has been taken keeping Z constant and

∇⊥Yc = ∇Yc − (nZ · ∇Yc)nZ (2)

is defined as the component of ∇Yc perpendicular to ∇Z, with nZ = ∇Z/|∇Z| denoting an unit

vector normal to the Z-isosurfaces. Based on this transformation, a set of composition space
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equations for chemical species and temperature was then derived and validated in the context of

triple flame structures obtained by means of numerical simulations [22].

One of the major advantages associated with the use of orthogonal composition space coordinates

is avoiding the need of closure models for the cross scalar dissipation rate, χZφ = 2D ∇Z · ∇φ,

since this quantity is identically zero by construction. This directly solves one of the most im-

portant problems related with the development of a general two-dimensional composition space

theory in non-orthogonal coordinates, making the approach of Scholtissek et al. [22] very attractive.

Additionally, Eq. (1) conveniently reduces in the asymptotic limits of non-premixed and premixed

combustion, which allows a direct and transparent recovery of the respective classical flamelet equa-

tions in those situations. More specifically, for non-premixed flames the gradients of Z and Yc tend

to align, which implies that ∇⊥Yc → 0 (the component of ∇Yc perpendicular to ∇Z vanishes). This

reduces Eq. (1) to ∇(·) ≈ ∂(·)/∂Z ∇Z, which corresponds to the classical flamelet transformation

for non-premixed flames [1, 15]. For the limit of premixed combustion, on the other hand, ∇Z → 0,

which implies that ∇⊥Yc → ∇Yc, since nZ · ∇Yc = |∇Z|∂Yc/∂Z ≈ 0 in this limit (see Eq. (2)).

Accordingly, for this case Eq. (1) reduces to ∇(·) ≈ ∂(·)/∂Yc ∇Yc, which coincides with the trans-

formation rules used in previous works in the context of one-dimensional premixed flamelets [26, 9].

Due to all these positive features, the use of orthogonal coordinates in composition space results

very promising, motivating new research efforts on the topic.

However, while conceptually very powerful, the approach introduced by Scholtissek et al. [22]

still presents some open issues, which have limited its application so far. First, an explicit definition

for the second coordinate, φ, ensuring a gradient of this quantity perpendicular to ∇Z in the flame

zone has not yet been provided. Instead, as illustrated in Eq. (1), the authors employed partial

derivatives with respect to Yc while keeping Z constant to express all terms in the equations as a

function of Z, Yc and τ only. While at a first glance this may appear as an unimportant detail,

it can be very restrictive in practice. In particular, computing ∂(·)/∂Yc|Z and ∇⊥Yc requires a

priori knowledge of the angle between ∇Z and ∇Yc, which is equivalent to knowing the cross scalar

dissipation rate. Additionally, the absence of an explicit equation for φ hinders the derivation of

appropriate closure models for the conditioning scalar gradients, gZ = |∇Z| and gφ = |∇φ|, which

are required for the development of a solvable set of composition space equations.

The major objective of the present work is addressing the open issues of the formulation of

Scholtissek et al. [22], while keeping its important advantages. More specifically, we aim to develop

a self-consistent composition space theory for partially premixed flames in orthogonal coordinates

(Z,φ, τ), including the following main components:
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C1: A simple and general formalism for the derivation of two-dimensional composition space equa-

tions based on a Lagrangian interpretation of the temporal flamelet derivative, ∂(·)/∂τ |Z,φ,

and a demonstration of its use in terms of the generic reactive scalar, ψ.

C2: An extension of the formalism to obtain a transport equation for the second coordinate, φ,

satisfying the required condition that ∇Z · ∇φ = 0 in the flame region.

C3: Further application of the proposed Lagrangian approach to obtain additional two-dimensional

equations for gZ and gφ.

C4: A specific formulation for unity Lewis number (without loss of generality) as an example of

how a solvable set of equations can be obtained in terms of four parameters: the two strain

rates, aZ = nZ ·∂u/∂nZ and aφ = nφ ·∂u/∂nφ, with ∂(·)/∂n denoting a directional derivative,

and the two curvatures, κZ = −∇ · nZ and κφ = −∇ · nφ, where nφ = ∇φ/|∇φ|.

C5: A demonstration of how the derived equations can be used to study the interaction between

different combustion regimes together with a corresponding appropriate numerical approach

for their solution.

Additionally, conceivable coupling strategies of the present formulation with CFD codes for

the simulation of turbulent flames are discussed. This work is expected to provide an appropriate

framework for a deep understanding of combustion physics in two-dimensional composition space,

as well as a proper basis for future applications of the theory to the development of modelling

strategies for the simulation of multi-regime turbulent flames.

2. General composition space formulation

In this section, the components C1 (Section 2.1), C2 (Section 2.2) and C3 (Section 2.3) of the

aimed two-dimensional composition space theory are developed. This is done in a general way, so

that the approach can be easily specialized later for any particular case of interest.

2.1. Equation for a generic reactive scalar ψ

We start considering two variables, Z and φ, which are governed by

∂Z

∂t
+ u · ∇Z = ΓZ (3)

and
∂φ

∂t
+ u · ∇φ = Γφ, (4)
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respectively. Here, u is the flow velocity, and the right hand sides (RHSs) of the above equations,

ΓZ and Γφ, can contain diffusion, chemical reactions and even evaporation effects, depending on

the considered flame type. While Z and φ will typically be a mixture fraction and some sort of

reaction progress variable, respectively, there is no need of specifying ΓZ and Γφ at this point and

we will keep them general for now. Two unit vectors perpendicular to the Z and φ isosurfaces can

be defined as

nZ =
∇Z
|∇Z|

and nφ =
∇φ
|∇φ|

, (5)

respectively. Since we aim to work on an orthogonal coordinate system, it will be imposed now

that nZ · nφ = 0, and this condition, together with other requirements identified later, will allow

determining an explicit form for Γφ.

We introduce now the general reactive scalar, ψ, which is governed by the following equation

∂ψ

∂t
+ u · ∇ψ = Γψ, (6)

where the transported variable could be the chemical species mass fraction, Yk, or the temperature,

T . We highlight at this point that a change of coordinates from (x, t) into (Z,φ, τ) could be directly

utilized now to obtain a ψ composition space equation, as it is commonly done in the literature (see

for example [17–22]). However, instead of that, we consider an alternative path here, for which we

introduce a mass-less particle moving with velocity up given by

up = u− ΓZ
|∇Z|

nZ − Γφ
|∇φ|

nφ. (7)

Considering Eq. (7), it is easy to prove that this particle velocity simultaneously satisfies the kine-

matic conditions
∂Z

∂t
+ up · ∇Z = 0 and

∂φ

∂t
+ up · ∇φ = 0, (8)

which implies that the particle follows a point located at the intersection between a Z and a φ-

isosurface. In other words, up is an extension of the classical definition of absolute velocity of a single

scalar isosurface, which is composed of the flow velocity and the relative velocity of the iso-scalar

surface (with respect to the flow) due to diffusion and reaction (see for example [27]). Now, since the

temporal derivative in composition space can be interpreted as a Lagrangian derivative computed

following the flame attached reference frame [28, 22], in the two-dimensional case considered here

∂(·)/∂τ |Z,φ can be written as
∂ψ

∂τ
=
∂ψ

∂t
+ up · ∇ψ. (9)
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Making use of Eqs. (6) and (7), we can rewrite Eq. (9) as

∂ψ

∂τ
= Γψ − ΓZ

|∇Z|
∂ψ

∂nZ
− Γφ

|∇φ|
∂ψ

∂nφ
, (10)

where ∂(·)/∂nϕ = nϕ · ∇(·) is a directional derivative. With this procedure, the transformation

of the temporal derivative through the application of the chain rule is avoided, which significantly

reduces the effort involved in the derivation of the composition space equations. Introducing now

the classical two-dimensional transformation rules for the spatial derivatives in physical space

∇ψ =
∂ψ

∂Z
∇Z +

∂ψ

∂φ
∇φ, (11)

where the directional derivatives can be calculated as

∂ψ

∂nZ
= |∇Z|∂ψ

∂Z
and

∂ψ

∂nφ
= |∇φ|∂ψ

∂φ
, (12)

we can rewrite Eq. (10) as
∂ψ

∂τ
= Γψ − ΓZ

∂ψ

∂Z
− Γφ

∂ψ

∂φ
, (13)

which describes the evolution of ψ on a flame attached reference frame simultaneously following

isosurfaces of Z and φ.

The importance of both the procedure and the generalized composition space equation for ψ

introduced in this section can be summarized now in two different aspects: First, even when a

flamelet-type transformation, Eq. (11), is still required in the present derivation, introducing Eq. (9)

leads to a procedure much simpler than the classical one, eliminating the need of transforming

the temporal derivative and appropriately collecting terms. Secondly, given its quite remarkable

generality, Eq. (13) represents a perfect starting point for the derivation of any particular specialized

formulation in two-dimensional composition space. More specifically, Γψ, ΓZ and Γφ can be defined

now with any degree of detail (including different effects such as differential diffusion, chemical

reaction source terms, evaporation source terms and any other additional effect that could be

required in any given case). After this, these terms just need to be transformed according to

Eq. (11) and inserted in Eq. (13) directly, completely eliminating the need of repeating the above-

presented derivation. This last aspect will be illustrated in the next section for the special case of

unity Lewis number for all species (without loss of generality).

The formalism presented in this section corresponds to the component C1 of the aimed compo-

sition space theory.

2.2. The φ-equation

We proceed now to obtain a general transport equation for φ, which requires specifying Γφ in

terms of some already defined quantities. For this, two additional conditions are introduced here.
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First, we will impose ∇φ = ∇⊥Yc, which will allow retaining all the advantage associated with the

formulation by Scholtissek et al. [22] (see discussion in the introduction). After multiplying Eq. (2)

by nφ (dot product) and conveniently re-arranging, this first condition leads to

|∇φ|∂Yc
∂φ

= |∇φ|, (14)

which can only be satisfied if
∂Yc
∂φ

= 1. (15)

Before imposing the required second condition, we remark that, as defined in the previous

subsection, the velocity up ensures by construction that a particle attached to a Z-isosurface remains

on it when time advances. However, if all the characteristics of the premixed limit are to be

recovered from the present formulation, we additionally need to ensure that the particle also remains

attached to a corresponding Yc-isosurface. For this, we consider the apparent flame velocity typically

introduced in the context of premixed flames as

sf = u− sdnc, (16)

with sd denoting the flame displacement speed and where nc = ∇Yc/|∇Yc| corresponds to an unit

vector normal to a reaction progress variable isosurface. With this apparent flame velocity, we can

impose the condition

up · nc = sf · nc, (17)

which formally ensures that our mass-less particles will remain on the corresponding Yc-isosurfaces

as required.

We introduce now the following general governing equation for the reaction progress variable

∂Yc
∂t

+ u · ∇Yc = Γc, (18)

for which an extension of the analysis performed by Gibson [27] allows finding a explicit expression

for sd [15]. This yields

sd =
Γc

|∇Yc|
. (19)

Using Eqs. (7), (19) and (17), we obtain

Γφ =
|∇φ|

(nφ · nc)

[
Γc

|∇Yc|
− ΓZ

|∇Z|
(nZ · nc)

]
, (20)

which specifies Γφ as a function of Γc, ΓZ and the scalar products between the different unit vectors

associated with the scalar surfaces under consideration. The latter can be computed now as

nZ · nc =
|∇Z|
|∇Yc|

∂Yc
∂Z

(21)
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and

nφ · nc =
|∇φ|
|∇Yc|

, (22)

respectively. With this, Eq. (20) reduces to

Γφ = Γc − ΓZ
∂Yc
∂Z

, (23)

which can be inserted in Eq. (4) to obtain

∂φ

∂t
+ u · ∇φ = Γc − ΓZ

∂Yc
∂Z

. (24)

With this equation, the component C2 of the aimed composition space theory has been specified.

2.3. Closure for the conditioning scalar gradients

While gZ and gφ do not explicitly appear in Eq. (13), it is well known that specifying Γψ and

applying the transformation rule given by Eq. (11) will lead to terms containing them. In order to

close these quantities, we start considering a generic scalar, S, which obeys the following equation

∂S

∂t
+ u · ∇S = ΓS . (25)

Since Eq. (25) has the same general form than Eqs. (3) and (4), we proceed now to derive a

single equation for gS = |∇S|, which can be then specialized for Z and φ.

To obtain a starting equation in physical space, we apply the operator nS · ∇(·) to Eq. (25).

After some convenient arrangements, this yields

∂gS
∂t

= −u · ∇gS + gSaS +
∂ΓS
∂nS

, (26)

where aS = −nS · ∂u/∂nS ·, with nS = ∇S/|∇S| denoting an unit vector normal to the isosurface

of S. A more detailed derivation of the gS-equation is given in Appendix A. Now, making use of

the Lagrangian interpretation of the temporal derivative in composition space, Eq. (9), we have

∂gS
∂τ

=
∂gS
∂t

+ up · ∇gS . (27)

Inserting Eq. (26) into Eq. (27), and making use of both the expression for the particle velocity,

Eq. (7), and the transformation rule, Eq. (11), we obtain

∂gS
∂τ

= −ΓZ
∂gS
∂Z

− Γφ
∂gS
∂φ

+ gSaS +
∂ΓS
∂nS

. (28)

Additionally, using the following mathematical identity

∂ΓS
∂nS

= gS
∂

∂nS

(
ΓS
gS

)
+

ΓS
gS

∂gS
∂nS

, (29)
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we can rewrite Eq. (28) as

∂gS
∂τ

= −ΓZ
∂gS
∂Z

− Γφ
∂gS
∂φ

+ gSaS + g2S
∂

∂S

(
ΓS
gS

)
+ ΓS

∂gS
∂S

. (30)

It is interesting to note at this point, that once Eq. (30) is specialized either for Z or φ, a tangential

derivative will remain, which differs from previous formulations for gZ and gc derived for the classical

non-premixed and premixed asymptotic limits [24, 4, 14, 22, 29]. Also, this result is not compatible

with the use of simple analytical expressions for the closure of the conditioning scalar gradients

typically having a one-dimensional dependency in composition space. With Eq. (30), the component

C3 of the aimed composition space theory has been specified.

3. Solvable system of equations for unity Lewis number

In the previous section, the components C1, C2 and C3 explained in the introduction have been

specified. The resulting set of equations, however, is not written in a solvable form. In order to

illustrate how a closed and solvable formulation can be obtained, we proceed now to specialize the

equations derived in Section 2. For simplicity, unity Lewis number will be assumed here, but we

remark that the formulation presented so far is general and that it can be directly used in non-unity

Lewis number situations, too. The equations obtained in this section correspond to the component

C4 specified in the introduction.

3.1. Composition space equations for chemical species and temperature

We proceed now to specialize Eq. (13) for chemical species, Yk, and temperature, T . These

quantities are assumed to be governed by

∂Yk
∂t

+ u · ∇Yk =
1

ρ
∇ · (ρD∇Yk) +

ω̇k
ρ

(31)

and

∂T

∂t
+ u · ∇T =

1

ρ
∇ · (ρD∇T ) + D

cp
∇T · ∇cp +

ω̇T
ρ

+

N∑
k=1

cp,k
cp
D∇Yk · ∇T, (32)

respectively. In Eqs. (31) and (32), ρ is the density, D is a diffusion coefficient, ω̇k is a mass

source term of species k due to chemical reaction and ω̇T is a corresponding energy source term.

Additionally, cp,k and cp are the specific heat capacity at constant pressure of species k and of the

mixture, respectively. While Eqs. (31) and (32) formally specify ΓYk and ΓT , we still need explicit

forms for ΓZ and Γφ. The former is specified by means of the transport equation of the mixture

fraction, which is assumed here to have the following form

∂Z

∂t
+ u · ∇Z =

1

ρ
∇ · (ρD∇Z) . (33)
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For Γφ, on the other hand, an expression can be directly obtained by means of Eq. (23), provided

that Γc is first specified. Assuming that Yc is governed by

∂Yc
∂t

+ u · ∇Yc =
1

ρ
∇ · (ρD∇Yc) +

ω̇c
ρ
, (34)

and making use of the transformation rule, Eq. (11), and Eq. (15) to rewrite the RHS as

Γc =
1

ρ
[∇ · (ρD∇Yc) + ω̇c]

=
1

ρ

[
∇ · (ρD∇φ) + ρD|∇Z|2∂

2Yc
∂Z2

+ ∇ · (ρD∇Z) ∂Yc
∂Z

+ ω̇c

]
, (35)

we can obtain the following transport equation for φ from Eq. (24)

∂φ

∂t
+ u · ∇φ =

1

ρ
∇ · (ρD∇φ) + ω̇φ

ρ
, (36)

where

ω̇φ = ρD|∇Z|2∂
2Yc
∂Z2

+ ω̇c. (37)

With ΓYk , ΓT , ΓZ and Γφ already specified, and after application of the above-defined transfor-

mation rules, Eq. (11), we can obtain now specific composition space equations for chemical species

and temperature. These yield

ρ
∂Yk
∂τ

+
∂Yk
∂φ

ω̇φ = ρDg2Z
∂2Yk
∂Z2

+ ρDg2φ
∂2Yk
∂φ2

+ ω̇k (38)

and

ρ
∂T

∂τ
+
∂T

∂φ
ω̇φ = ρDg2Z

∂2T

∂Z2
+ ρDg2φ

∂2T

∂φ2
+
ρD

cp

[
g2Z
∂T

∂Z

∂cp
∂Z

+ g2φ
∂T

∂φ

∂cp
∂φ

]
+

N∑
k=1

cp,k
cp

[
ρDg2Z

∂Yk
∂Z

∂T

∂Z
+ ρDg2φ

∂Yk
∂φ

∂T

∂φ

]
+ ω̇T , (39)

respectively. A detailed explanation of the transformation of ΓYk and ΓT is given in Appendix C.

In the next section, the gS-equation will be specialized for gZ and gφ.

3.2. The scalar gradient equations

Considering Eqs. (33) and (36), ΓZ and Γφ can be generalized as

ΓS =
1

ρ
∇ · (ρD∇S) +

δφSω̇S
ρ

=
1

ρ

∂

∂nS
(ρDgS)−DgSκS +

δφSω̇S
ρ

, (40)
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where κS = −∇ · nS is the curvature associated with the S-isosurface and δφS is the Kronecker

delta function, which adopts a value of 1 for S = φ and 0 for S = Z. With this, we can rewrite

part of the fourth term in the right hand side of Eq. (30) as

∂

∂S
(ΓS/gS) =

1

ρ

∂2

∂S2
(ρDgS)−

1

ρ2
∂ρ

∂S

∂

∂S
(ρDgS)

− ∂

∂S
(DκS) +

∂

∂S

(
δφ,Sω̇S
ρgS

)
. (41)

Inserting Eq. (41) into Eq. (30), and specializing for S = Z and S = φ, we obtain

∂gZ
∂τ

= −
[
gφ
ρ

∂

∂φ
(ρDgφ)−Dgφκφ +

ω̇φ
ρ

]
∂gZ
∂φ

+
g2Z
ρ

∂2

∂Z2
(ρDgZ)−

g2Z
ρ2

∂ρ

∂Z

∂

∂Z
(ρDgZ)

− g2Z
∂

∂Z
(DκZ) + gZaZ (42)

and

∂gφ
∂τ

= −
[
gZ
ρ

∂

∂Z
(ρDgZ)−DgZκZ

]
∂gφ
∂Z

+
g2φ
ρ

∂2

∂φ2
(ρDgφ)−

g2φ
ρ2
∂ρ

∂φ

∂

∂φ
(ρDgφ)

− g2φ
∂ (Dκφ)

∂φ
+ g2φ

∂

∂φ

(
ω̇φ
ρgφ

)
+ gφaφ, (43)

respectively, where use of Eq. (40) has been made. With Eqs. (42) and (43), the composition space

equations for chemical species and temperature, Eqs. (38) and (39), are closed provided the strain

rates, aZ and aφ, and the curvatures, κZ and κφ, can be properly modelled. This set of equations

represents the component C4 of the aimed composition space theory.

4. Assessment framework

In this section, an appropriate framework for the study of partially premixed combustion effects

is provided together with a numerical approach for the solution of the equations obtained in the

previous section. These elements represent the basis for the component C5 of the aimed composition

space theory.

4.1. Demonstration case

As a demonstration case, we choose the flame-tangential interaction between premixed flamelets

with different equivalence ratios (ϕ =0.5-1.7, CH4-air, p = 1 atm, T0 = 300 K). This scenario

mimics a flame-front propagating into a stratified mixture of fresh reactants. Both curvature effects
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and the influence of strain on the gφ-equation are neglected for simplicity and only steady state

solutions are analyzed. The interaction between the premixed flamelets is controlled by the strain

rate imposed for the gZ-equation which is discussed further below.

Figure 1 shows a schematic of the computational domain together with the initialization and

the boundary conditions. The Z and φ dimensions are normalized according to

Z∗(Z) =
Z − Zmin

Zmax − Zmin
(44)

and

φ∗(Z,φ) =
φ− φmin

φmax(Z)− φmin
, (45)

respectively. Utilizing the (Z∗, φ∗)-space allows an advantageous implementation of the numerical

solution algorithm solving the equations on a unit square grid (further details are provided in

Sec. 4.2). Note that the mixture fraction is normalized due to the fact that the left and right

boundary conditions correspond to lean (ϕ = 0.5, Zmin = 0.0284) and rich mixtures (ϕ = 1.7,

Zmax = 0.0903), respectively, and not to pure oxidizer and fuel. Even though we present this

normalization for a specific case here, we emphasize that it could analogously be applied for other,

more general cases.

For temperature and species, cold mixing between the lean and the rich mixture is prescribed as

boundary condition at φ∗ = 0. For the left (Z∗ = 0), lean and rich premixed flamelet solutions are

chosen, respectively. At the top boundary (φ∗ = 1) a non-premixed flame with an imposed strain

rate is prescribed.
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Figure 1: Schematic of the (Z∗, φ∗) computational domain.
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In order to introduce the assumptions adopted above, it is convenient to replace the strain rates

aZ and aφ by Ks,Z and Ks,φ, respectively, where

Ks,S = −1

ρ

∂

∂nS

(
ρΓS
gS

)
, (46)

with S denoting either Z or φ. This expression stems from the definition of strain usually employed

in strong stretch theory [30, 31]. According to the recent work by Olguin et al. [29], but using the

notation adopted in the present work, the relation between the both possible definitions of strain is

gSaS = gSKs,S +
∂gS
∂τ

+
ΓS
ρ

∂ρ

∂nS
. (47)

For the cases under consideration, Eq. (47) leads to

aZ = Ks,Z +

[
gZ

∂

∂Z
(ρDgZ)

]
1

ρ2
∂ρ

∂Z
, (48)

aφ =

[
gφ

∂

∂φ
(ρDgφ) + ω̇φ

]
1

ρ2
∂ρ

∂φ
, (49)

which formalizesKs,Z as the only free parameter controlling the interaction between the unstretched

premixed flamelets.

The analysis starts considering (one-dimensional, non-interacting) premixed flamelet solutions

corresponding to the local mixture fraction. For this situation, Ks,Z = 0, which implies that the

mixture stratification vanishes in the entire domain (gZ = 0). Accordingly, in this case the solver

reduces to a solution algorithm for non-interacting unstretched premixed flamelets [8] and the

top boundary condition simplifies to the chemical equilibrium corresponding to the local mixture

fraction. Other cases are then generated by keeping all boundary conditions considered in the first

case, but increasing the strain rate, Ks,Z . In particular, a constant Ks,Z is imposed in the entire

domain (including the bottom and top boundary conditions), which introduces important tangential

interactions between the different originally non-interacting premixed flamelets.

It should be noted that the concept of interacting premixed flamelets is just one interpretation

of the flame which is employed here for illustrative purposes. In general, the two-dimensional

composition space formulation does not rely on a (one-dimensional) flamelet representation for the

flame, even though one-dimensional premixed and non-premixed flamelet equations can be recovered

as limiting cases. We emphasize that multi-regime combustion characteristics arise in many different

flame configurations, as discussed in detail in the literature, see for instance [32, 19, 16, 22]. The

representation of other flame configurations in two-dimensional composition space depends on the

choice of the boundary conditions and the flame parameters, which will be explored in future work.
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4.2. Transformation rules

Solving the composition space equations on the (Z∗, φ∗)-grid requires a change in variables and

the reformulation of all terms according to the respective transformation rules, Eqs. (44) and (45).

The partial derivatives with respect to Z and φ are readily rewritten as

∂(·)
∂Z

=
1

∆Z

∂(·)
∂Z∗ − φ∗

∆φ

∂φmax

∂Z

∂(·)
∂φ∗ (50)

and
∂(·)
∂φ

=
1

∆φ

∂(·)
∂φ∗ , (51)

respectively, where ∆Z = Zmax − Zmin and ∆φ = φmax(Z) − φmin. Further details about this

transformation are provided in Appendix D. Considering the simplistic transformation rule for

Z, some readers might find it surprising that its partial derivatives are replaced by a combination

of both partial derivatives with respect to Z∗ and φ∗. This aspect can be understood from the

stretching of the space in the vertical direction, which is shown in Fig. 2. Keeping in mind that

a partial differentiation with respect to Z∗ implies φ∗ is held constant, which corresponds to a

horizontal direction in Fig. 2 (left), the bending of the iso-φ∗ gridlines in Fig. 2 (right) clearly

shows that the differentiation with respect to Z (i. e. with φ held constant) demands an additional

term describing the grid deformation. The latter depends on the upper bound φ = φmax(Z), which

appears in the second term in Eq. (50). On the other hand, differentiating with respect to φ

(i. e. along the vertical direction in Fig. 2) leads to a simple re-scaling of the partial derivative with

respect to φ∗.

Figure 2: Mapping of the scalar temperature field, computed on an orthogonal grid in (Z∗, φ∗)-space, to (Z,φ)-space.

The formulation of the 2D composition space equations with respect to the computational (Z∗, φ∗)-domain requires

a change of variables as described in Sec. 4.2 and Appendix D.
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Transforming the second partial derivatives with respect to Z and φ, one obtains

∂2(·)
∂Z2

=
1

(∆Z)2
∂2(·)
∂Z∗2 +m1

∂2(·)
∂φ∗∂Z∗

+m2
∂2(·)
∂φ∗2 +m3

∂(·)
∂φ∗ (52)

and
∂2(·)
∂φ2

=
1

(∆φ)2
∂2(·)
∂φ∗2 , (53)

with

m1 = −2
φ∗

∆φ∆Z

∂φmax

∂Z
,

m2 =
φ∗2

(∆φ)2

(
∂φmax

∂Z

)2

,

and

m3 =
2φ∗

(∆φ)2

(
∂φmax

∂Z

)2

− φ∗

∆φ

∂2φmax

∂Z2
.

The above transformation rules need to be carefully introduced for all partial derivatives of ther-

mochemical scalars appearing in derived the composition space equations. It is noted that the

transformation introduces cross derivatives according to Eq. (52), which can be computed on the

numerical grid, but no cross scalar dissipation rates, such that no further modeling efforts are

required. The formulation of the fully transformed equations in terms of Z∗ and φ∗ is provided

in Appendix E.

4.3. Solution algorithm

The equations for temperature, species and the gradients gZ and gφ are solved with an alternat-

ing direction implicit (ADI) scheme according to Douglas and Gunn [33]. With this method, two

tridiagonal matrixes are solved in every time step and the overall numerical solution is advanced until

convergence to a steady state. The steady state is verified by two measures: (i) temporal derivatives

of solution quantities are smaller than a prescribed threshold value and (ii) probes throughout the

two-dimensional domain confirm that the overall solution remains invariant with further integration

in τ . The grid resolution is set to 100 grid points in both dimensions. All species’ thermodynamic

properties, transport coefficients, and chemical source terms are evaluated with cantera [34] and a

reduced GRI 3.0 mechanism (28 species, 112 reactions) is adopted for the description of chemical

reactions [35].
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5. Results and discussion

In this section, we analyze numerical solutions of the 2D composition space equations. For

the demonstration case, a parameter variation of the strain rate Ks,Z between 0/s and 200/s is

performed, which can be understood as increasing interactions between initially separated premixed

flamelets, as previously stated. First, the response of the flame structure to this strain variation is

examined. Thereafter, a budget analysis of the novel gradient equations is performed. The section

concludes with a discussion of how the numerical approach could be integrated into existing state-

of-the-art simulation frameworks. With this analysis, the component C5 of the aimed theory is

completed.

5.1. Flame structure and the effect of strain

Figure 3: Contours for the solution quantities heat release rate (HRR), temperature T , mass fraction YCO, and the

gradient gφ in (Z∗, φ∗)-space. For orientation, the local equivalence ratio, ϕ, is plotted as a second axis on top.

The solution for selected thermochemical scalars is analyzed first by means of contours (Fig. 3)

and then for individual profiles along vertical slices in the (Z∗, φ∗)-space (Fig. 4). From top to
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bottom, Fig. 3 shows the heat release rate (HRR), the temperature, the mass fraction of CO and

the gradient gφ. Note that the local equivalence ratio is plotted as a second axis on top of Fig. 3

to aid the interpretation of the results. Inspecting the contour plot of the HRR (Fig. 3, top row),

the region with relevant heat release first exhibits a v-shape which becomes a disk shape towards

higher strain rates. Furthermore, the lower edge of this region moves slightly towards higher φ∗. For

the temperature (Fig. 3, second row), small changes are observed around stoichiometry (ϕ = 1, as

indicated on the top axis), where the temperature slightly decreases with increasing strain. Other

than that, visual differences in the contour plot remain small, which also applies for the species CO

(Fig. 3, third row). In contrast, the gradient gφ (Fig. 3, bottom row) shows a notable response to

the strain variation. The high-gradient region initially exhibits a u-shape, which becomes a v-shape

towards higher strain rates.

21 3 4

strain

1D premixed flamelet
2D solution (strain=0/s)
2D solution (strain=200/s)

Figure 4: Profiles of the solution quantities heat release rate (HRR), temperature T , mass fraction YCO, and the

gradient gφ along four vertical slices in (Z,φ∗)-space (dashed lines). The vertical slices are also marked in Fig. 3. All

profiles are colored according to the strain value prescribed for the 2D solution and brighter grey colors correspond

to a higher strain value. For reference, corresponding profiles of a 1D unstretched premixed flamelet are shown (red

solid line).
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For a more detailed inspection of the solution quantities, their profiles are extracted and com-

pared along four vertical slices (Z∗ = 0.2/.4/.6/.8) which are indicated in the lower left contour plot

in Fig. 3. The solution profiles along these four vertical slices are plotted in Fig. 4 (left to right).

The black dashed line corresponds to zero strain, while grey corresponds to an elevated strain rate

of 200/s. Furthermore, the solution for a 1D unstretched premixed flame, which corresponds to the

local mixture fraction Z∗ in each column, is plotted for reference. Notably, the zero strain solutions

are in perfect agreement with the 1D flamelet solution which confirms the recovery of the premixed

limit. It is further found that all solution quantities are affected by the flamelet-to-flamelet inter-

action close to stoichiometry (Fig. 4, second column). On the lean side (Z∗ = 0.2, first column) the

gradient gφ shows a clear response to the strain variation, while the HRR shows a small but notable

shift to higher φ∗, and the other solution quantities remain mostly unaffected. On the rich side

(Z∗ = 0.6/0.8), the gradient gφ changes significantly and the HRR again shows a minor response

to strain while T and YCO show almost no changes. In summary, the interaction between neigh-

bouring premixed flamelets starts to affect the stoichiometric region first, similar to the response

of non-premixed flames to strain. Increasing the strain rate, also lean and rich regions become

more and more affected. Since the largest variation of the thermochemical scalars, and the flames’

reactivity in general, are found in the vicinity of stoichiometry, this behaviour appears conceivable.

The observations further illustrate how the 2D model combines properties of both, premixed and

non-premixed flames, which is characteristic for partially premixed/multi-regime combustion.

5.2. Budget analysis for the gradient equations

Figure 5 shows the budgets of the gradient equations, Eqs. (42) and (43), for a 2D solution with

an intermediate strain rate of 100/s. All terms of the equations are evaluated along a vertical slice

(Z∗ = 0.3) and a horizontal slice (φ∗ = 0.8) of the (Z∗, φ∗)-domain, and they are shown in the

middle and on the ride side of Fig. 5, respectively. The slices are marked in the contour plots of the

gradients gZ (top) and gφ (bottom) on the left of the figure. For reference, the gradient equations

are shown with all relevant terms above the plots for the readers convenience. Inspecting the gZ

equation budgets, it is found that the diffusion terms mainly balance the φ-convection term1, with

a smaller but non-negligible contribution to the overall budget from the strain term. This marks a

significant difference to purely non-premixed flames, for which the φ-convection term does not exist

and where the diffusive terms consequently only compensate the strain term. As can be observed

1Terms which contain a first derivative of the corresponding solution quantity are formally interpreted as convective

terms in composition space.
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Figure 5: Left: contour plots of the gradients gZ = |∇Z| and gφ = |∇φ| corresponding to a 2D composition space

solution with strain=100/s. Budgets of the gradient equations are shown along horizontal slices (φ∗ = 0.8, middle)

and vertical slices (Z∗ = 0.3, right). For the readers convenience, the simplified Eqs. (42) and (43) are shown above

each plot indicating the individual terms.

from its contour plot, gZ is large at the lower boundary and smaller at the top boundary, which

shows that the gZ information prescribed at the lower boundary is propagated into the domain

by means of this φ-convection term (the term is positive everywhere). Hence, the interaction term

represents an important mechanism, distributing gradient information in the 2D composition space.

Considering the gφ equation budgets, primarily the φ-diffusion term and the source term, which

originates from chemical reactions, balance each other. These terms are also present in the gradient

equations for purely premixed flames [9]. Notably, the Z-convection term, which is a novel char-

acteristic for the 2D formulation, shows an almost negligible influence for the slice φ∗ = 0.8. This

is consistent with Fig. 4, which confirms that the gφ-profiles are almost unaffected by the imposed
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Figure 6: Budget of the gφ-equation along a horizontal slice (φ∗ = 0.2) corresponding to a 2D composition space

solution with strain=100/s. The terms are denoted analogously to Fig. 5.

strain (i. e. flamelet-flamelet interactions) for φ∗ > 0.5. Extracting an additional horizontal slice at

φ∗ = 0.2, the budgets appear different, cf. Fig. 6. Consistently with findings of the previous section,

which showed notable influence of the flamelet-flamelet interactions on gφ in the region φ∗ < 0.5,

now the strain term balances the φ-diffusion term with small, but non-negligible contributions from

the source and the Z-convection term. Furthermore, the budget terms are an order of magnitude

smaller. This is due to the fact that the progress variable source term, which appears similar to the

HRR shown in Fig. 3, dominates the equation budgets where it is large (around stoichiometry and

for φ∗ > 0.5). It should further be noted that the gradients gZ and gφ are large in this area, which

therefore corresponds to a confined region of high chemical activity in the physical space. Away

from this region of high chemical reactivity, flamelet-flamelet interactions show a pronounced effect

on the 2D composition space solution and it can be expected that this effect becomes stronger for

higher imposed strain rates.

6. Conceivable coupling strategy to CFD-codes

To this point, we presented a closed system of composition space equations and demonstrated

their numerical solution by a suitable algorithm. With only few parameters and an adequate

definition of boundary conditions, the overall approach can serve as a basis for modeling multi-

regime combustion when coupled to a flow solver. In this section, we outline such a coupling strategy

and discuss its strength and open issues left to implement it, all from a conceptual perspective.

Considering large eddy simulation (LES) approaches operating with tabulated manifolds, it

appears attractive to project the composition space solution into the conventional (Z,Yc)-space. This

allows utilizing exisiting subgrid scale closures based on progress variable and mixture fraction, such

as presumed PDF [17, 36] or artificial thickened flame (ATF) approaches [37]. To date, tabulated
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manifolds are often generated either from premixed or non-premixed flamelets (i. e., the limiting

cases) and have already been used for partially premixed / multi-regime combustion simulations with

reasonable results [32, 38, 39]. Hence, it is conceivable that the aforementioned coupling strategies

can also be applied with minor modifications to the current modeling approach. In this context, it

is important to differentiate between Z∗ and φ∗ (Eq. (44)), which are useful normalized coordinates

to solve the 2D composition space equations, and the conventional Z and Yc, which appear more

beneficial to parameterize a manifold and couple it to a CFD code. Besides Z and Yc, at least a

third quantity is required for the parameterization of the manifold to reflect the imposed strain

rate, which itself controls the extent of mixture stratification and flamelet-flamelet interactions.

However, in opposition to previous coupling approaches, it would not be necessary to provide an

ad-hoc model to bridge between the strain rate imposed to the scalar field by turbulence and the

scalar gradients (or the scalar dissipation rates). Instead with the present formulation, the scalar

gradients are explicitly computed in composition space, with the strain rate being a direct input

flow parameter of the modeling. The SGS modeling would then need to focus on the fluctuating

part of the strain rate, a quantity which has deserved attention in the context of flame surface

density modeling [40].

Figure 7: 2D composition space solution (strain=100/s) projected into (Z, Yc)-space. The figure shows the gradients

and scalar dissipation rates for the mixture fraction and the reaction progress variable together with the reconstructed

cross-terms ∂Yc/∂Z and χZ,Yc . The latter terms can be directly computed from the numerical solution of the 2D

composition space solution.

To illustrate the potential of the proposed strategy, Figure 7 shows the projection of a 2D
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composition space solution into (Z,Yc)-space. The projection is readily obtained calculating Yc as a

weighted sum of species and utilizing the backward transformation Z∗ → Z, cf. Eq. (44). From the

numerical solution of the mixture fraction gradient, gZ , the composition-space distribution of the

scalar dissipation rate, χZ = 2Dg2Z , can be determined. The progress variable gradient, gc = |∇Yc|,

is not a solution quantity, but it can be computed as [22]

g2c = g2φ + g2Z

(
∂Yc
∂Z

)2

. (54)

Analogously, the scalar dissipation rate of the progress variable is obtained from χYc = 2Dg2c . These

scalar dissipation rates provide estimations of SGS scalar mixing frequencies useful in scalar SGS

mixing modeling [41].

Employing orthogonal coordinates, χZ,Yc does not appear in the equations and can be retrieved

by post processing the numerical solution [22]

χZ,Yc = 2Dg2Z
∂Yc
∂Z

. (55)

While this quantity explicitly requires a closure in other 2D composition space approaches [24, 19,

21], this is not the case for the present model. Interestingly, due to the fact that χZ,Yc contains

information on both orientation and magnitude of ∇Z and ∇Yc, it will qualify to help improving

the modeling. This will be particularly the case using probability density functions to calibrate the

SGS correlations between mixture fraction and progress of reaction. These unresolved correlations

are linked to fluctuations whose amplitude can be expected to depend on the topology of the

multi-regime reaction zones, topology which, on the other hand, directly relates to the cross-scalar

dissipation rate χZ,Yc = 2D∇Z · ∇Yc.

7. Conclusions

In this work, it has been shown how adopting a Lagrangian interpretation of the flamelet trans-

formation allows deriving a self-consistent set of two-dimensional composition space equations for

partially premixed combustion. The formulation makes use of the mixture fraction, Z, and a mod-

ified reaction progress variable, φ, where the latter is defined in such a way that the condition

∇Z · ∇φ = 0 is satisfied in the entire flame domain. Additionally to the typical composition space

equations for chemical species and temperature, equations for gZ = |∇Z| and gφ = |∇φ| were de-

rived, which allowed to achieve a solvable formulation in terms of four parameters: two strain rates

(aZ , aφ) and two curvatures (κZ , κφ). After an appropriate numerical approach was introduced,

the derived set of 2D equations was employed to study the interaction between premixed flamelet
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structures subject to different levels of imposed strain in the Z-direction. A budget analysis of

the different contributions to the scalar gradient equations showed that for gZ , diffusion is mainly

balanced by convection in the φ-direction. The latter effect is not included in previous g-equations

obtained in the context of single-regime combustion, which highlights the relevance of the current

extended formulation. For gφ, on the other hand, it was found that diffusion is mainly balanced

by terms associated with chemical reactions. This roughly coincides with results obtained for the

gradient of the conventional reaction progress variable in the context of premixed flames, even when

some influence of the interaction between flamelets could be observed. These results provide new

and important insights into the physics of scalar gradients in two-dimensional composition space

equations. Finally, conceivable coupling strategies of the present formulation with CFD codes were

discussed in the context of the numerical simulation of turbulent flames.
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Appendix A. Derivation of the gS-equation

For the derivation of a general equation for gS , we apply the operator nS · ∇(·) to Eq. (13),

which yields

nS · ∇
(
∂S

∂t
+ u · ∇S = ΓS

)
. (A.1)

The transient term can be then rewritten as

nS · ∇
(
∂S

∂t

)
= ni

∂

∂xi

(
∂S

∂t

)
= ni

∂

∂t
(|∇S|ni)

= nini︸︷︷︸
=1

∂gS
∂t

+ gS ni
∂ni
∂t︸ ︷︷ ︸

=0

=
∂gS
∂t

, (A.2)
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while the convective term yields

nS · ∇ (u · ∇S) = ni
∂

∂xi

(
uj
∂S

∂xj

)
= niuj

∂

∂xj

(
∂S

∂xi

)
+ ni

∂S

∂xj

∂uj
∂xi︸ ︷︷ ︸

=−gSaS

= nini︸︷︷︸
=1

uj
∂gS
∂xj

+ ujgS ni
∂ni
∂xj︸ ︷︷ ︸
=0

−gSaS

= u · ∇gS − gSaS , (A.3)

where aS = −nS · ∂u/∂nS . Replacing in Eq. (A.2) and conveniently re-arranging we obtain

∂gS
∂t

= −u · ∇gS + gSaS +
∂ΓS
∂nS

, (A.4)

which corresponds to the final form required in Section 2 (see Eq. (26)).

Appendix B. Detailed transformation of ΓYk and ΓT

In order to obtain the final form of the chemical species and temperature composition space

equations, Eqs. (38) and (39), ΓYk and ΓT need to be transformed from physical into composition

space. According to Eqs. (31) and (32), these terms are

ΓYk =
1

ρ
∇ · (ρD∇Yk) +

ω̇k
ρ

(B.1)

and

ΓT =
1

ρ
∇ · (ρD∇T ) + ω̇T

ρ
+
D

cp
∇T · ∇cp +

N∑
k=1

cp,k
cp
D∇Yk · ∇T, (B.2)

respectively. It is noted now that there are two kind of terms that need to be transformed in these

equations, namely ∇ (ρD∇ψ) and (∇ψ1 ·∇ψ2). The first of them can be generically transformed as

∇ (ρD∇ψ) = ∇ ·
(
ρD

(
∂ψ

∂Z
∇Z +

∂ψ

∂φ
∇φ

))
=
∂ψ

∂Z
∇ · (ρD∇Z) + ρD|∇Z|2 ∂

2ψ

∂Z2
+
∂ψ

∂φ
∇ · (ρD∇φ) + ρD|∇φ|2∂

2ψ

∂φ2

= ρD|∇Z|2 ∂
2ψ

∂Z2
+ ρD|∇φ|2∂

2ψ

∂φ2
+ ΓZ

∂ψ

∂Z
+ Γφ

∂ψ

∂φ
. (B.3)

For the transformation of the second term, we make use of Eq. (11), which allows expressing the

gradients of ψ1 and ψ2 as ∇ψ1 = ∂ψ1/∂Z ∇Z+∂ψ1/∂φ ∇φ and ∇ψ2 = ∂ψ2/∂Z ∇Z+∂ψ2/∂φ ∇φ,

respectively. After multiplying both expressions and properly arranging terms, we obtain

∇ψ1 · ∇ψ2 = |∇Z|2∂ψ1

∂Z

∂ψ2

∂Z
+ |∇φ|2∂ψ1

∂φ

∂ψ2

∂φ
+

(
∂ψ1

∂Z

∂ψ2

∂φ
+
∂ψ1

∂φ

∂ψ2

∂Z

)
(∇Z · ∇φ)︸ ︷︷ ︸

=0

. (B.4)
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With Eqs. (B.3) and (B.4), ΓYk and ΓT can be rewritten in their final forms as

ΓYk =
1

ρ

(
ρDg2Z

∂2Yk
∂Z2

+ ρDg2φ
∂2Yk
∂φ2

+ ΓZ
∂Yk
∂Z

+ Γφ
∂Yk
∂φ

)
+
ω̇k
ρ

(B.5)

and

ΓT =
1

ρ

(
ρDg2Z

∂2T

∂Z2
+ ρDg2φ

∂2T

∂φ2
+ ΓZ

∂T

∂Z
+ Γφ

∂T

∂φ

)
+
ω̇T
ρ

+
D

cp

(
|∇Z|2 ∂T

∂Z

∂cp
∂Z

+ |∇φ|2∂T
∂φ

∂cp
∂φ

)
+

N∑
k=1

cp,k
cp
D

(
|∇Z|2∂Yk

∂Z

∂T

∂Z
+ |∇φ|2∂Yk

∂φ

∂T

∂φ

)
, (B.6)

respectively.

Appendix C. Consistency with Scholtissek et al. [22]

Scholtissek et al. [22] have recently derived a set of composition space equations in an orthogonal

coordinate system built in terms of the mixture fraction and a reaction progress variable governed

by Eqs. (33) and (34), respectively. The approach employs a Lagrangian particle traveling with

a mixture fraction iso-surface, but which is free to move along them with the flow velocity. The

required orthogonal space is then defined in terms of the transformation given by Eq. (1). Before

further assumptions are introduced, their composition space equation for chemical species mass

fractions yields [22]

ρ
∂Yk
∂τ

= ρD|∇Z|2∂
2Yk
∂Z2

+ ρD|∇⊥Yc|2
∂2Yk
∂Y 2

c

∣∣∣∣
Z

+
∂Yc
∂τ

∂Yk
∂Yc

∣∣∣∣
Z

− ω̇c⊥
∂Yk
∂Yc

∣∣∣∣
Z

+ ω̇k, (C.1)

with

ω̇c⊥ = ρD|∇Z|2∂
2Yc
∂Z2

+ ω̇c. (C.2)

While the same procedure was used in that work for the derivation of a composition space equation

for the temperature, we will focus here on Eq. (C.1) only, since it already contains all the necessary

terms to evaluate conditions for equivalence between their equations and the ones introduced in the

present work.

We proceed now to analyze conditions required to achieve equivalence between Eqs. (38) and (C.1).

For this, we note first that the condition ∇φ = ∇⊥Yc directly implies that

∂Yk
∂φ

=
∂Yk
∂Yc

∣∣∣∣
Z

and
∂2Yk
∂φ2

=
∂2Yk
∂Y 2

c

∣∣∣∣
Z

, (C.3)
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and that the chemical source term appearing in Eq. (38) is identical to the one given by Eq. (C.3).

However, despite these similarities, some important differences still remain. First, the temporal

derivative of Yk (with respect to τ) is different for both approaches. In particular, in the formulation

presented in the current work this quantity is computed considering a particle moving with two

scalar isosurfaces. In contrast, as stated above, Scholtissek et al. [22] allow the particle to move

with the flow field in the direction tangential to ∇Z. A further difference observed is the term

ρ∂Yc∂τ
∂Yk
∂Yc

appearing in Eq. (C.1), which does not have a counterpart in Eq. (38). The equivalence

between the different transient terms can be better understood by considering the change of variable

(Z,φ, τ) → (Z, Yc(Z,φ, τ), τ), which, after applying the chain rule, allows rewriting the transient

term in Eq. (38) in the following equivalent way

∂Yk
∂τ

∣∣∣∣
Z,φ

=
∂Yk
∂τ

∣∣∣∣
Z,Yc

+
∂Yc
∂τ

∣∣∣∣
Z,φ

∂Yk
∂Yc

∣∣∣∣
Z,τ

. (C.4)

Thus, with this it becomes clear that the differences regarding the transient terms are apparent

only. Despite the exact relation existing between them, having a single transient term evidently

results in an easier to handle formulation.

Appendix D. The transformation (Z,φ) → (Z∗, φ∗)

The 2D composition space equations are formulated in (Z,φ)-space, but they are solved in the

normalized (Z∗, φ∗)-space, cf. Fig. 2. In this section, we describe how the change in variables

leads to a reformulation of the terms appearing in the equations. With this, the composition space

equations can be evaluated on a (Z∗, φ∗)-grid to facilitate their numerical solution.

The transformation rules for the change of variables (Z,φ) → (Z∗, φ∗) are repeated here for the

readers convenience:

Z∗(Z) =
Z − Zmin

Zmax − Zmin
, (D.1)

φ∗(φ,Z) =
φ− φmin

φmax(Z)− φmin
. (D.2)

For consistency, we further introduce the time-like coordinate τ∗ with the trivial transformation

τ∗ = τ . In the above transformation, the quantities φmin and φmax correspond to the values of

the progress variable at the lower and upper boundary, respectively. For the current case, the

progress variable is defined as Yc = YH2O
+ YCO2

. Thus, φmin = 0 (fresh gas conditions at lower

boundary) and φmax(Z) = Yc(Z) is a case-specific function of mixture fraction to be determined

from the non-premixed flamelet solution prescribed for the upper boundary. For the normalization

of mixture fraction, Zmin = 0.0284 (ϕ = 0.5) and Zmin = 0.0903 (ϕ = 1.7) which are both constants

independent from Z or φ.
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For the change of variables, it is useful to formulate the jacobian:

∂(τ∗, Z∗, φ∗)

∂(τ, Z, φ)
=



∂τ∗

∂τ

∂τ∗

∂Z

∂τ∗

∂φ
∂Z∗

∂τ

∂Z∗

∂Z

∂Z∗

∂φ
∂φ∗

∂τ

∂φ∗

∂Z

∂φ∗

∂φ



=


1 0 0

0
1

∆Z
0

0 − φ∗

∆φ

∂φmax

∂Z

1

∆φ

 . (D.3)

Utilizing these transformation rules, the partial derivatives with respect to τ , Z, and φ can be

rewritten as

∂(·)
∂τ

=
∂τ∗

∂τ

∂T

∂τ∗
+
∂Z∗

∂τ

∂T

∂Z∗ +
∂φ∗

∂τ

∂T

∂φ∗

=
∂T

∂τ∗
, (D.4)

∂T

∂Z
=
∂τ∗

∂Z

∂T

∂τ∗
+
∂Z∗

∂Z

∂T

∂Z∗ +
∂φ∗

∂Z

∂T

∂φ∗

=
1

∆Z

∂T

∂Z∗ − φ∗

∆φ

∂φmax

∂Z

∂T

∂φ∗ , (D.5)

and

∂T

∂φ
=
∂τ∗

∂φ

∂T

∂τ∗
+
∂Z∗

∂φ

∂T

∂Z∗ +
∂φ∗

∂φ

∂T

∂φ∗

=
1

∆φ

∂T

∂φ∗ . (D.6)

Applying the above math to the second partial derivatives with respect to Z and φ, one obtains

the transformation rules provided in Eqs. 50 and 51.

Appendix E. Transformed composition space equations

The composition space equations for species and temperature in (Z∗, φ∗)-space read

ρ
∂Yk
∂τ∗

+
ω̇φ
∆φ

∂Yk
∂φ∗ =

ρDg2Z
∆Z2

∂2Yk

∂Z∗2 +
ρDg2φ
∆φ2

∂2Yk
∂φ∗2

+ ρDg2Z

[
m1

∂2Yk
∂φ∗∂Z∗ +m2

∂2Yk
∂φ∗2 +m3

∂Yk
∂φ∗

]
+ ω̇k (E.1)
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and

ρ
∂T

∂τ∗
+
ω̇φ
∆φ

∂T

∂φ∗ =
ρDg2Z
∆Z2

∂2T

∂Z∗2 +
ρDg2φ
∆φ2

∂2T

∂φ∗2

+
ρD

cp

[
g2Z

(
1

∆Z

∂T

∂Z∗ +m0
∂T

∂φ∗

)(
1

∆Z

∂cp
∂Z∗ +m0

∂cp
∂φ∗

)
+

g2φ
∆φ2

∂T

∂φ∗
∂cp
∂φ∗

]

+
N∑
k=1

cp,k
cp

[
ρDg2Z

(
1

∆Z

∂Yk
∂Z∗ +m0

∂Yk
∂φ∗

)(
1

∆Z

∂T

∂Z∗ +m0
∂T

∂φ∗

)
+
ρDg2φ
∆φ2

∂Yk
∂φ∗

∂T

∂φ∗

]

+ ρDg2Z

[
m1

∂2T

∂φ∗∂Z∗ +m2
∂2T

∂φ∗2 +m3
∂T

∂φ∗

]
+ ω̇T , (E.2)

respectively. Additionally, the corresponding equations for gZ and gφ are

∂gZ
∂τ∗

= −
[
gφ
ρ∆φ

∂

∂φ∗ (ρDgφ)−Dgφκφ +
ω̇φ
ρ

]
1

∆φ

∂gZ
∂φ∗

+
g2Z

ρ∆Z2

∂2

∂Z∗2 (ρDgZ)− g2Z

(
1

∆Z

∂

∂Z∗ (DκZ) +m0
∂

∂φ∗ (DκZ)

)
−
g2Z
ρ2

(
1

∆Z

∂ρ

∂Z∗ +m0
∂ρ

∂φ∗

)(
1

∆Z

∂

∂Z∗ (ρDgZ) +m0
∂

∂φ∗ (ρDgZ)

)
+
g2Z
ρ

[
m1

∂2

∂φ∗∂Z∗ (ρDgZ) +m2
∂2

∂φ∗2 (ρDgZ) +m3
∂

∂φ∗ (ρDgZ)

]
+ gZaZ (E.3)

and

∂gφ
∂τ∗

= −
[
gZ
ρ

(
1

∆Z

∂

∂Z∗ (ρDgZ) +m0
∂

∂φ∗ (ρDgZ)

)
−DgZκZ

](
1

∆Z

∂gφ
∂Z∗ +m0

∂gφ
∂φ∗

)
+

g2φ
ρ∆φ2

∂2

∂φ∗2 (ρDgφ)−
g2φ

ρ2∆φ2

∂ρ

∂φ∗
∂

∂φ∗ (ρDgφ)

−
g2φ
∆φ

∂ (Dκφ)

∂φ∗ +
g2φ
∆φ

∂

∂φ∗

(
ω̇φ
ρgφ

)
+ gφaφ , (E.4)

where m0 - m3 represent metric terms defined as

m0 = − φ∗

∆φ

∂φmax

∂Z
,

m1 = −2
φ∗

∆φ∆Z

∂φmax

∂Z
,

m2 =
φ∗2

(∆φ)2

(
∂φmax

∂Z

)2

,

and

m3 =
2φ∗

(∆φ)2

(
∂φmax

∂Z

)2

− φ∗

∆φ

∂2φmax

∂Z2
.
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