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Abstract

Discrete filters are used in numerous digital signal processing applications and nu-

merical simulations, for anti-aliasing, de-noising, and post-processing. Our specific

interest is for application in large-eddy simulations. In this work, we investigate

analytically the reconstruction properties of different filters, and how their discrete

approximations using different rules affect the convergence and accuracy of the re-

constructed signal. Following this analysis, a constrained and adaptive optimisation

framework is proposed for the automated calculation of explicit forward but also

direct-inverse discrete filter coefficients for a given filter transfer function. The opti-

mised forward filters are shown to perform well with stable reconstruction using clas-

sic van Cittert iterations. The optimised direct-inverse filters eliminate the need to

apply any iterations thereby substantially reducing the computational cost required

for reconstruction which is one of the main challenges associated with deconvolution-

based modelling in large-eddy simulations.
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1. Introduction

In explicit Large Eddy Simulation (LES), only the largest scales of motion are

resolved on the computational mesh by filtering the governing equations over a spatial

region Ω(x) using a filter G [1],

G~ u :=
∫

Ω(x)
G(x− s;χ)u(s, t)ds = ū(x, t) (1)

which, depending on the filter, may substantially damp or completely remove all

wavenumbers above the filter cut-off wavenumber kf . The filter cut-off wavenumber

and amount of damping are controlled by the filter parameter χ. Popular filters

include the Gaussian, Helmholtz (elliptic differential), Box, Implicit (Padé) [2], and

the spectral sharp cut-off filter. The filtering process introduces unclosed terms in

the LES equations (scalar flux terms, source terms etc.) which require modelling

in order to produce a closed set of equations [3, 4]. This information loss includes

contributions from two components: (a) Sub-Grid (SG) scales with wavenumbers

k > π/h where h is the mesh-spacing, and (b) Resolved Filtered (RF) scales with

k ∈ [0, π/h]. SG scales are always present for any filter while the amount of damping

of the RF scales depends on the filter. For instance, a spectral sharp cut-off filter

with a cut-off wavenumber of π/h only involves SG scales since RF scales are not

damped. A Gaussian filter on the other hand involves both components. In classic

LES, the goal of algebraic models such as the Smagorinsky model [5] is to model the

effects of SG scales, and by doing so regularise the governing equations by providing

sufficient energy dissipation. If the filter is such that component (b) is present, RF

scales also require modelling which can be recovered using approximate/iterative

deconvolution.

Deconvolution-based modelling has been considered in numerous studies for RF-
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scale modelling, and for SG-scale modelling by exploiting information from recon-

structed RF scales. Geurts [6] developed analytic expressions for the inverse of

the Box filter, and used these to develop generalised scale-similarity models for the

Reynolds stress tensor. Kuerten et al. [7] also developed an analytic expression for

the inverse of the Box filter which was then used to develop a dynamic stress-tensor

model. The velocity-estimation method of Domaratzki and Saiki [8] may also be

thought of as an approximate deconvolution method for the SG scales. In the works

of Stolz and Adams [9, 10, 11] the van Cittert [12] reconstruction algorithm was

employed to deconvolute damped RF scales up to kf . In the same study, a novel

explicit SG-scale model was proposed by introducing a relaxation term in the momen-

tum equation proportional to the difference between the filtered and deconvoluted

velocity fields. This approach was successfully used to model decaying turbulence [9],

turbulent channel flow at moderate but also high Re numbers [10, 13], and was also

extended for shock-capturing [11]. In [14] an analytic expression was derived for the

truncated inverse filter, and applied to the 1D Burger’s equation in order to derive an

equation for the evolution of the reconstructed field. In [15] implicit SG models were

developed in a systematic way by noting that averaging and reconstruction with a

Box filter in finite-volume formulations, amounts to filtering and deconvolution, and

the procedure was later extended in 3D for the Navier-Stokes equations [16]. In a dif-

ferent approach [17], deconvolution was used as a pre-processing step for increasing

the accuracy of the subsequent differentiation scheme. In this approach, the function

to be differentiated is first filtered using an approximate inverse filter which is implic-

itly introduced by the application of the discrete differentiation scheme. Along the

same lines, in recent work by Boguslawski et al. [18] inverse Wiener filtering was used

to invert the discrete filter implied by the numerical differentiation, and by doing so

deconvolve the resolved field on the mesh. Deconvolution-based simulation frame-
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works have also been adapted for temporal rather than spatial regularisation [19] but

also for application in Lattice-Boltzmann methods [20]. Deconvolution-based mod-

elling has also been applied in numerous a priori and a posteriori studies of turbulent

and reacting flows [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. The rationale behind the

RF-modelling approach using deconvolution may also be justified by the fact that the

quality of a discretisation scheme generally deteriorates for wavenumbers close to the

grid cut-off wavenumber [2], and filtering out these wavenumbers may improve the

solution. This point was examined by Bull and Jameson [31] a posteriori using LES

of turbulent channel flow. Different LES formulations were tested which included

a no-model fully implicit approach, as well as classic explicit approaches (using the

Smagorinsky model). The explicit filtering and reconstruction of the RF scales ap-

proach, on the LES mesh, was shown to improve the predictions in comparison to

the rest of the formulations [31].

Irrespective of the modelling approach and context of use, discrete filters lie

at the heart of deconvolution-based LES. The filter transfer function determines

the damping of the RF scales which in turn dictates the accuracy/efficiency of the

reconstruction. Therefore, the filter itself and its discrete approximation can be

considered to be model parameters. A preliminary investigation of different filters

on the LES solution was conducted by San et al. [32] using 2D and 3D LES of

Taylor-Green vortices. Box filters, Implicit filters [2], and Helmholtz filters were

considered. The authors found the simulation results to be sensitive to the filter (and

their parameters), but also to the number of total iterations N of the van Cittert

reconstruction algorithm. In fact, no clear distinction could be made between the

different filters, and similar conclusions were reported in a later study for decaying

1D Burger’s turbulence [33].

In practice, discrete filters in deconvolution-based LES may be implicit (Padé)
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or explicit. Implicit filters generally offer improved accuracy, and are the preferred

choice for canonical flows with periodic boundaries. They do require however solving

a linear system in order to obtain the filtered values at all grid-points of the mesh.

In most applications, the linear systems are tri-diagonal (three-point Implicit filters

used) for which efficient algorithms (e.g. Thomas algorithm) may be used. Neverthe-

less, this can still lead to implementation and parallelisation/communication issues

for application in actual large-scale LES especially for complex configurations, and

special consideration is required for an effective implementation [34]. Here, we focus

on developing explicit filters which are local, and as a result are straightforward to

implement and parallelise.

The primary aim of this work is to examine analytically the effect of different fil-

ters on the stability/convergence of the iterative reconstruction algorithm which lies

at the heart of most deconvolution-based LES frameworks. This involves analysing

the convergence properties of the filters in the continuous domain but also the con-

vergence properties of their discrete approximations. We begin by comparing in

section 2 some popular filters. In section 3, convergence criteria for the van Cittert

reconstruction algorithm are derived, which is one of the most fundamental linear re-

construction algorithms, and the basis for numerous deconvolution-based LES. The

results of this section allow us to gain insight into the effect of the discrete filter

transfer function on the reconstruction. Following this, we examine in section 4 the

effect of different methods/rules for obtaining explicit discrete filters, and in Section

4.4 an optimisation framework is proposed for developing discrete forward but also

direct-inverse filters for a given filter transfer function.
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2. Common filters

Table 1 shows some of the most popular explicit and implicit filters. For the

Gaussian filter ∆′ = ∆/
√
c, and typically c = 6. For the Box filter if kL/2 > π

the transfer function becomes negative. Also, even though Ĝ(0) is not defined for

this filter limk→0Ĝ(k)=1. For the spectral cut-off filter, kc is the cut-off frequency

above which all wavenumbers are completely removed. Implicit filters are defined

using a linear combination of unfiltered and filtered values [2], and the stencils of

the filtered/unfiltered values need not necessarily be equal. If the case where both

stencils are symmetric and equal, the Implicit filter is defined using,

M∑
l=−M

alūi+l =
M∑

l=−M
glui+l

where ū, u are the filtered and un-filtered (original) values of the signal respectively,

and al, gl are the corresponding discrete filter coefficients. The transfer function of

this filter is given by,

Ĝ(k) = g0 + 2∑M
l=1 glcos(khl)

a0 + 2∑M
l=1 alcos(khl)

For consistency i.e. Ĝ(0) = 1 we have the condition,

M∑
l=−M

gl =
M∑

l=−M
al

and g−l = gl, a−l = al for symmetric filters. The condition Ĝ(π) = 0 may also

be imposed so that the grid cut-off wavenumber is always damped. A special case

used by Stolz and Adams [9] for deconvolution on a 3-point stencil (M = 1) is given

in Table 1. The parameter a determines the shape of the transfer function, and

Ĝ(k) ≥ 0 provided 0 ≤ |a| ≤ 0.5.
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Filter G(x) Ĝ(k)

Gaussian 1
∆′
√
π
e
− x2

∆′2 e
−∆′2k2

4

Box


1
L , x ∈ [−L/2, L/2]

0, otherwise
2
kLsin

(
kL
2

)

Helmholtz 1
2λe
−|x|/λ 1

1+λ2k2

Spectral cut-off kc
π
sin(kcx)
kcx


1, k ∈ [−kc, kc]

0, otherwise

Implicit aūi−1 + ūi + aūi+1 =(
1
2 + a

) (
1
2ui−1 + ui + 1

2ui+1
)

(1/2+a)(1+cos(kh))
1+2acos(kh)

Table 1: Common explicit and implicit filters with their transfer functions.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
kh

−0.2

0.0
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0.4

0.6

0.8
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1.2

Ĝ

G
H
I
S
B

Fig. 1: Filter transfer functions: Gaussian (G), Helmholtz (H), Implicit (I), Sharp cut-off (S), and

Box (B). All filters have kfh = 1.017 = kf,Gaussianh at γ = ∆/h = 4.

The Gaussian and Helmholtz filters do not have distinct kf like the spectral cut-off

filter since they are continuous in wavenumber space. As proposed in [10] if we take

kf to correspond to Ĝ(kf ) = 0.5, then for the Gaussian filter kfh=
√

24ln(2)/γ, where
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γ = ∆/h (and taking c = 6). For the Helmholtz filter the same kf can be obtained

with δ = λ/h = 1/(kfh), and for the Implicit filter with a = −0.5cos(kfh). The

corresponding L for the Box filter can be found numerically. Using these values then

allows a common basis for comparison. The corresponding filter transfer functions

are shown in Fig. 1 for γ = 4 in which case kfh = 1.017. For k > kf , the Gaussian

filter has the least (positive) damping followed by the Implicit/Helmholtz filters,

and for k < kf the situation is reversed. For increasing ∆, L, kc and λ, kf reduces

and damping increases-for the Implicit filter this occurs for decreasing a. For the

Gaussian/Helmholtz filters Ĝ(π) 6= 0 while Ĝ(π) = 0 always for the Implicit filter

by construction. The Box filter is positive for all k provided L/h ≤ 2, and becomes

negative otherwise-as we show later on, this results in unstable reconstruction. Also,

from a practical point of view, a reasonable choice would be L/h = 2 for the Box

filter so that Ĝ(k) > 0. This however fixes kf which cannot be further reduced. As

a result, the Box-filter cannot be compared on an equal basis with the rest of the

filters which remain positive for lower kf values.

3. von Neumann stability analysis of the van Cittert algorithm

The van Cittert algorithm [12] is a fundamental linear reconstruction algorithm

which was employed in a number of LES studies [9, 10, 33, 35, 36]. Due to its lin-

earity/simplicity it has also been the subject of numerous theoretical investigations,

and the basis for developing simplified analytical models for the unresolved stress

tensor [37, 38, 39, 40]. The algorithm reads,

φ∗N+1(x) = φ∗N(x) + b
(
φ̄(x)−G~ φ∗N(x)

)
(2)

where φ∗N is the estimate of the reconstructed signal at iteration N , the initial

8



condition is taken to be φ∗0 = φ̄, and b is a constant. In order to investigate the con-

vergence properties of the algorithm a von Neumann stability analysis is conducted.

For periodic functions in x ∈ [0, L], the corresponding Fourier series expansions of

the original/filtered signals are,

φ(x) =
∞∑

r=−∞
are

jkrx φ̄(x) =
∞∑

r=−∞
are

jkrxĜ(kr)

φ∗N(x) =
∞∑

r=−∞
ANr e

jkrx φ̄∗(x) =
∞∑

r=−∞
ANr e

jkrxĜ(kr)

where kr = 2πr/L and,

Ĝ(kr) =
∫ ∞
−∞

G(s)e−jkrsds

Inserting the Fourier expansions into Eq. 2 we obtain after some algebraic ma-

nipulation a recurrence relation for the evolution of the Fourier coefficients ANr ,

AN+1
r = ANr

(
1− bĜ(kr)

)
+ barĜ(kr), which is a modified geometric series with the

solution ANr = (A0
r − ar)

(
1− bĜ

)N
+ ar. Since A0

r = arĜ(kr) (initial condition) it is

straightforward to show that,

φ∗N(x) =
∞∑

r=−∞
are

jkrx

︸ ︷︷ ︸
φ(x)

+
∞∑

r=−∞

(
1− bĜ(kr)

)N
(Ĝ(kr)− 1)arejkrx (3)

where the second term in Eq. 3 is essentially the reconstruction error. An alternative

interpretation of Eq. 3 is in terms of the transfer function of the reconstructed field

Q̂N ,

Q̂N(kr) = ANr
ar

= 1−
(
1− bĜ(kr)

)N
(1− Ĝ(kr)) (4)
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where the approximate inverse V̂ N is V̂ N(kr) = Q̂N(kr)/Ĝ(kr). For convergence we

require,

0 < bĜ(kr) < 2 (5)

so Q̂N(kr) → 1 for large N and for all Ĝ(kr) 6= 0. Note that if Ĝ(kr) = 0 then

Q̂N(kr) = 0 i.e. reconstruction has no effect on these wavenumbers. In the case of a

Box filter with L/h > 2, its transfer function is no longer positive throughout [0, π],

and according to Eq. 4 reconstruction is unstable. For a Gaussian filter on the other

hand Ĝ(k) = e−∆2k2/24 = e−cr > 0, and we have the following cases,

b



b = ecr , immediate convergence for wavenumber r

0 < b < ecr , non-oscillating reducing convergence for wavenumber r

ecr < b < 2ecr , oscillating reducing convergence for wavenumber r

and similar expressions can be derived for the rest of the filters. Note that equation

5 holds irrespective of Ĝ, and the choice b = 1 is a reasonable one to ensure steady

convergence.

In the discrete case on a mesh with xi=ih, i ∈ [0, Nx−1], Nxh = L, the algorithm

is applied point-wise to obtain φ∗Ni = φ∗N(ih),

φ∗N+1
i = φ∗Ni + b(φ̄i −Gd ~ φ∗Ni ) (6)

where φ∗0i = φ̄i, and where ~ now denotes the discrete filtering operation. The

simplest explicit rule we can employ is,

Gd ~ ui := ūi =
M∑

l=−M
glui+l (7)
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where gl are the discrete filter coefficients-the different methods for obtaining discrete

filters and how these affect reconstruction are discussed in section 4. Inserting the

corresponding Fourier expansions for the discrete signals in Eq. 6, and following a

similar procedure as in the continuous case we eventually obtain the discrete analog

of Eq. 3,

φ∗i
N =

Nx−1∑
r=0

are
jkrih

︸ ︷︷ ︸
φi

+
Nx−1∑
r=0

(
1− bĜd(kr)

)N (
Ĝd(kr)− 1

)
are

jkrih

where kr = 2πr/(Nxh) and,

Ĝd(kr) =
M∑

l=−M
gle

jkrhl = g0 + 2
M∑
l=1

glcos (krhl) (8)

As in the continuous case the function,

Q̂N
d (kr) = 1−

(
1− bĜd(kr)

)N (
1− Ĝd(kr)

)
(9)

is the discrete approximation at iteration N of the transfer function of the recon-

structed field and for convergence Eq. 5 must hold for Ĝd. In such a case, and

provided 0 < Ĝd < 1, for a sufficiently large number of iterations N , Q̂N
d (kr) → 1.

In practice, Ĝ(kr) and Ĝd(kr) are not necessarily equal due to approximation er-

rors in the discrete representation of the filter. Suppose Ĝ = Ĝd + e where e is

an error term and b = 1. Inserting this into Eq. 9 and expanding we obtain

Q̂N
d (kr) = 1 −

[(
1− Ĝ(kr)

)N+1
+ (N + 1)

(
1− Ĝ(kr)

)N
(e) + ...+ (e)N+1

]
. There-

fore, the reconstructed discrete Q̂N
d will also contain an error which is equal to the

sum of all the terms in the parenthesis starting from the second term. This error

depends on N , and on Ĝ.
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γ-Gaussian δ-Helmholtz a-Implicit kfh kfh/π NG NH NI

4 0.981 -0.262 1.017 0.324 46 13 26

6 1.471 -0.389 0.677 0.215 47 13 17

8 1.961 -0.436 0.509 0.162 47 13 15

10 2.452 -0.459 0.404 0.129 47 13 14

12 2.942 -0.471 0.336 0.107 47 13 14

14 3.432 -0.479 0.288 0.092 48 13 14

16 3.923 -0.484 0.252 0.080 48 13 14

Table 2: Number of van Cittert iterations N required for each filter having the same

initial kf for recovering all k ∈ [0, 2kf ].

3.1. Convergence rate

The choice of total iterations N is a free parameter. If N is sufficiently large

and the stability condition is satisfied all krh ∈ [0, π] are recovered. Depending on

the context where reconstruction is employed this may or may not be desirable. In

numerical simulations for instance this may not be desirable because wavenumbers

close to the grid cut-off are generally not well represented by the numerical scheme

[2]. In actual LES, it would be reasonable to chose γ/δ/a such that kf ≤ ks, where ks
is the wavenumber beyond which the accuracy of the numerical scheme deteriorates.

For instance, a 2nd-order-accurate centered scheme for the first derivative has ksh '

1.0 [2]. For γ = 4, kfh = 1.017. Therefore, if a Gaussian filter with γ ≥ 4 is used,

all wavenumbers larger than ks will be damped substantially. In any case, the filter

cut-off kf must be recovered. To recover kf , we find that for N = 4 the error is

0.54+1 i.e. less than 5% irrespective of the filter used. Indeed, N = 3 − 5 iterations

with an Implicit filter (a = 0.25) were used in previous studies [9, 32, 33].

In order to compare the convergence rate between the different filters, the num-

ber of iterations required to recover wavenumbers up to 2kf from the same initial
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filter cut-off kf have been calculated. For this exercise, a wavenumber is considered

“recovered” if more than 95% of its damping has been recovered. Wavenumbers

larger than 2kf may in principle be recovered but for heavier damping the number

of required iterations becomes substantially large. The number of iterations for each

filter and for different filter parameter values are given in Table 2. Note that all

filters have the same initial kf . For γ =4, both Ĝ = Q̂0 and Q̂N for each filter are

shown in Fig. 2. Table 2 shows that the Gaussian filter requires the most iterations,

and the Helmholtz filter the least since it damps higher wavenumbers less. Table

2 also reveals that the number of iterations for the Gaussian and Helmholtz filters

are relatively insensitive to the filter parameter value but this is not the case for the

Implicit filter. In addition, the reconstructed transfer function of the Helmholtz filter

shows that wavenumbers close to the grid cut-off are substantially amplified which

may not be desirable. In terms of the reconstruction computational efficiency, this

does not depend only on N , but additionally depends on the stencil size required to

represent a filter accurately.

4. Discrete approximation of continuous filters

In order to develop discrete filters Eq. 1 must be approximated numerically

where the function values ui are known only at the distinct points xi. The simplest

explicit rule we can employ is given by Eq. 7 with the corresponding transfer function

given by Eq. 8-this is always real for symmetric filters. Ideally, Ĝd(krh) = Ĝ(krh)

for all krh ∈ [0, π], and the half-stencil size M should be such that the filter is well-

resolved on the mesh. A straightforward way to quantify this is to use the consistency

condition
∫∞
−∞G(x)dx = 1. For the Box filter which is compact in space the inte-

gration interval is [−L/2, L/2], and 2Mh = L. For the Gaussian/Helmholtz filters

which are not compact we may define the consistency error ec = 1.0−
∫ xo
−xo

G(x)dx,
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Fig. 2: Forward Ĝ (=Q̂0) and reconstructed Q̂N transfer functions for the Gaussian (G), Helmholtz

(H), and Implicit (I) filters. The number of iterations N for each filter (Table 2 for γ = 4) is such

that all k ∈ [0, 2kf ] are recovered. For this case kfh ' 1 and all wavenumbers up to about kh =2.0

are recovered.

where 2Mh = 2xo is the symmetric region of integration. The errors for the

Gaussian/Helmholtz filters ec,G/ec,H are given by ec,G = 1 − erf(xo
√

6/∆) and

ec,H = exp(−xo/λ) respectively. For a given consistency error the corresponding

xo can be calculated, and the required stencil size M obtained for each filter. Table

3 shows the corresponding xo for different values of the consistency error.

ec xo/∆-Gaussian xo/λ-Helmholtz

10−3 0.95 6.91

10−4 1.12 9.21

10−5 1.28 11.51

10−6 1.41 13.82

Table 3: Consistency error ec and required half-integration region xo for the Gaussian

and Helmholtz filters.
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Table 3 shows that a good approximation would be M = int(γxo/∆) for the

Gaussian filter, and M = int(δxo/λ) for the Helmholtz filter. In practice, and

keeping efficiency in mind, a consistency error between 10−3 and 10−4 leads to a

choice of [−1∆, 1∆] for the Gaussian filter, and [−7λ, 7λ] for the Helmholtz filter.

Note that the consistency error of the discrete filter depends on the rule/method

we employ. If for the above stencil sizes the discrete filter is accurate enough, the

discrete consistency error should match the continuous consistency error as given

in Table 3. For the Implicit filter which is not easily recoverable in physical space,

we will show in section 4.4 how the stencil size can be determined adaptively using

optimisation.

4.1. Newton-Cotes rules.

Newton-Cotes (NC) rules are the natural choice for evaluating directly Eq. 1.

One approach is to apply a full rule on the (2M + 1)-point stencil of the filter

(fit a 2M -degree Lagrange polynomial), and another is to apply a lower-order rule

recursively i.e. use a composite rule. Here, we consider full rules as well as the

2-point composite trapezium rule (NC2), and the 3-point composite Simpson’s rule

(NC3). Table 4 lists the NC integration coefficients (given by cl = blh/f) up to a

9-point stencil. A composite NC2 rule can be perfectly applied for any stencil while

a composite NC3 rule can be perfectly applied for any odd-numbered stencil. For

instance, with the NC2 rule and a 5-point stencil, the integration coefficients are

h · [1/2, 1, 1, 1, 1/2] since on every point excluding the boundaries the 1/2 integration

coefficients are added together. The filter coefficients, call these zl, are then given

by h · [1/2 ·G(−2h), 1 ·G(−h), 1 ·G(0), 1 ·G(h), 1/2 ·G(2h)] from which the discrete

transfer function can be calculated using,
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Points f b0 b1 b2 b3 b4 b5 b6 b7 b8

2 2 1 1

3 3 1 4 1

5 45 14 64 24 64 14

7 140 41 216 27 272 27 216 41

9 14175 3956 23552 -3712 41984 -18160 41984 -3712 23552 3956

Table 4: Integration coefficients cl for Newton-Cotes rules are given by cl = blh/f .

Ĝd(krh) =
(
z0 + 2

M−1∑
l=1

zlcos(krhl)
)

where zl are the coefficients on each stencil point calculated as in the example above.

For other rules, the same process can be applied. In order to examine the response of

the different NC rules, we consider a case where filtering amounts to integration. This

corresponds to filtering using a Box filter on a (2M+1)-point stencil with L = 2Mh.

In this case, filtering is the same as integrating u over L scaled by 1/(2Mh). For

the example here, we choose M = 4 i.e. a 9-point stencil. On the 9-point stencil we

apply a 9-point NC rule, but also composite NC2/NC3 rules. Fig. 3(a) shows the

actual transfer function, and the discrete transfer functions using the NC2/NC3/NC9

rules. The corresponding squared error, e(kh) =
(
Ĝd(kh)−G(kh)

)2
, is shown in Fig.

3(b). The results in Fig. 3 indicate that higher-order rules may not necessarily be

beneficial. The NC9 rule reduces the error but only for lower wavenumbers whereas

for larger wavenumbers the error increases beyond that of the composite NC2/NC3

rules. Also, at kh = π only the NC2 rule is consistent. Therefore, if the signal

contains mostly low wavenumbers, a high-order rule would be appropriate but if it

mostly contains higher-wavenumbers a higher-order rule would yield poorer results.

In the sections which follow, we show that for non-constant filters, higher-order rules
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lead to poorer results even for lower wavenumbers.
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Fig. 3: (a) Actual (Ĝ) and discrete (Ĝd) filter transfer functions obtained using a 9-point Newton-

Cotes rule (NC9) as well as composite NC2/NC3 rules on a 9-point stencil for the Box-filter with

L/h = 8, and (b) logarithm of squared error e(kh) =
(
Ĝd(kh)−G(kh)

)2
against wavenumber.

4.2. Taylor expansion

An alternative approach to develop discrete filters is using Taylor-series expan-

sions which results in a differential expression for the filter [41]. Starting from the

1D filtering definition,

ū(x, t) =
∫ ∞
−∞

G(x− s)u(s, t)ds =
∫ ∞
−∞

G(s)u(x− s, t)ds (10)

and expanding u in Taylor series around s = x we obtain (from now on we will drop

the time dependency of u which will be implied),
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u(s) =
∞∑
r=0

(s− x)r
r! ur(s)|s = x (11)

where ur(s) = ∂ru/∂sr is the rth. Inserting the Taylor series expression into Eq. 10

we obtain,

ū(x) =
∞∑
r=0

(−1)rur(x)
r!

∫ ∞
a=−∞

arG(a)da =
∞∑
r=0

(−1)rur(x)
r! Mr (12)

i.e. the filtered signal is a sum of the derivatives of u whose factors depend on the

moments Mr of the filter. In the case of symmetric filters all odd moments disappear

leading to,

ū(x) = u(x) +
∞∑
r=1

u2r(x)
(2r)! M2r (13)

Table 5 shows the corresponding formulas for the filters’ moments along with a

truncated Taylor expansion.

Filter M2r Taylor expansion

Gaussian (2r)!
r!

(
∆′

2

)2r
ū(x) = u(x) + ∆′2

4
∂2u
∂x2 + ∆′4

32
∂4u
∂x4 + ∆′6

384
∂6u
∂x6 + ∆′8

6144
∂8u
∂x8 +O(∆′10)

Box 1
2r+1

(
L
2
)2r

ū(x) = u(x) + L2

24
∂2u
∂x2 + L4

1920
∂4u
∂x4 + L6

322560
∂6u
∂x6 + L8

92897280
∂8u
∂x8 +O(L10)

Helmholtz (2r)!λ2r ū(x) = u(x) + λ2 ∂2u
∂x2 + λ4 ∂4u

∂x4 + λ6 ∂6u
∂x6 + λ8 ∂8u

∂x8 +O(λ10)

Table 5: Filter moments and Taylor expansions

Since the Taylor series expansion includes derivative terms, a straightforward ap-

proach to derive discrete filters is to first truncate the series up to a certain order, and

then approximate the remaining derivatives using a finite difference rule. In practice,

the stencil size imposes a restriction on the maximum number of terms which can be

retained. For instance, on a 3-point stencil the 2nd derivative is approximated using

an O(h2) scheme, on a 5-point stencil we can approximate up to the 4th derivative
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etc. As a result, for a given stencil size we truncate up to maximum number of

derivatives we can approximate. In this approach, the order of the finite difference

approximation is highest for the lowest derivative and lowest for the highest deriva-

tive retained in the expansion. For instance, for the Gaussian filter and using c = 6

we have,

3-point stencil:

ū(x) = u(x) + ∆2

24
∂2u

∂x2

where the 2nd derivative finite-difference approximation is O(h2).

5-point stencil:

ū(x) = u(x) + ∆2

24
∂2u

∂x2 + ∆4

1152
∂4u

∂x4

where the 2nd derivative approximation is O(h4), and the 4th derivative approxima-

tion is O(h2) and so on for increasing stencil sizes.

4.3. Relation of Taylor-expansion to Newton-Cotes

The largest degree polynomial we can fit on a (2M + 1)-point stencil is a 2M -

degree Lagrange polynomial p2M(x). If this polynomial is integrated over the finite

region [−Mh,Mh] we obtain the coefficients for a NC rule. However, the NC rule

obtained using this approach i.e. as was done in section 4.1 does not contain any

information about the filter G. If this polynomial is used to approximate the function

u(x) alone (rather than Gu) everywhere in the domain then we have,

ūi =
∫ ∞
−∞

G(s)u(xi − s)ds =
∫ ∞
−∞

G(s)p2M(xi + s)ds

where the 2M -degree Lagrange polynomial is given by,
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p2M(xi + s) =
M∑

r=−M
ui+r

j=M∏
j=−M,(i+j)6=(i+r)

(s+ xi − xi+j)
(xi+r − xi+j)

Inserting into the convolution integral we obtain,

ūi =
M∑

r=−M
ui+r

∫ ∞
−∞

G(s)
j=M∏

j=−M,(i+j) 6=(i+r)

(s+ xi − xi+j)
(xi+r − xi+j)

ds


where the term in brackets is the weight gr for each quadrature point which depends

on the filter. For a uniform mesh, the weights gr only depend on h and after some

algebraic manipulation these can be shown to be given by,

gr = (−1)(M−r)

h2M(M + r)!(M − r)!

∫ −∞
−∞

G(s)
j=M∏

j=−M,j 6=r
(s− jh) ds (14)

Since the filter is symmetric, all the odd terms in the polynomial expansion

disappear, and the integral reduces to a sum of all the even moments of the filter.

In addition, consistency will be satisfied, and this approach thus becomes equivalent

to the Taylor-series method described above. The difference is that this approach

results in a direct expression for obtaining the filter coefficients (Eq. 14) which

alleviates the need to expand the Taylor series and to apply differentiation rules to

each resulting term. The coefficients gr for the Gaussian, Helmholtz and Box filters

are given up to a 9-point stencil in the Appendix. In contrast to the NC rules the

filter coefficients are functions of the filter parameter values.

4.4. Optimised forward filters

Filters using NC rules are not consistent, and as shown in section 4.1 higher-

order NC rules generally have poorer high-wavenumber responses. Filters based on

Taylor expansions are consistent with improved responses, however the maximum

range of filter parameter values (γ, δ, L/h) for which they work well is limited by
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the stencil size. It would also be useful to be able to obtain discrete filter coefficients

from knowledge of Ĝ alone for cases where Ĝ is given in Fourier space only with

no straightforward inverse transform (as is the case of the Implicit filter). This is

not straightforward to do with the above approaches. In addition, NC rules and

Taylor-expansion do not provide explicit control of the approximation error nor do

they ensure that Ĝd remains positive (ensuring reconstruction stability). All of these

issues can be addressed using optimisation. The optimisation problem we propose

solving is,

arg min
gl

(∫ π

kh=0

(
Ĝd(kh; gl)− Ĝ(kh;χ)

)2
d(kh)

)
(15)

The optimisation constraints are slightly different for the Gaussian/Helmholtz/Implicit

filters. For all three filters to ensure consistency (Ĝ(0) = 1) we apply the constraint,

g0 + 2
M∑
l=1

gl = 1

To ensure 0 ≤ Ĝd ≤ 1 for the Gaussian and Helmholtz filters, rather than specifying

a fixed lower threshold we found the results to be improved when applying the

constraint,

Ĝ(π) ≤ g0 + 2
M∑
l=1

glcos(khl) ≤ 1 ∀ kh ∈ (0, π]

instead i.e. having a filter-dependent lower-threshold, Ĝ(π), which is the minimum

value of the transfer function for the Gaussian and Helmholtz filters. For the Implicit

filter we apply instead the constraints,
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g0 + 2
M∑
l=1

glcos(πl) = 1

Ĝ(π) ≤ g0 + 2
M∑
l=1

glcos(khl) ≤ 1 ∀ kh ∈ (0, π)

where the first constraint ensures Ĝd(π) = 0 as should be for the Implicit filter. An

optimisation approach for fixed 3-point and 5-point stencils was employed by Sagaut

and Grohens [41] to derive discrete filters in the context of test-filtering operations for

explicit LES modelling (Gaussian/Box filters). In this work, additional constraints

are imposed, and two different methods are proposed for determining the filter-

dependent stencil size: (a) using the results of section 4, and (b) adaptively. In

method (a), for a given filter parameter value the stencil size is determined using

M = (int(2γ) + 1) for the Gaussian, and M = (int(2 · 7δ) + 1) for the Helmholtz

filter. In method (b), the Mean Squared Error (MSE) between Ĝd and Ĝ is specified

(essentially the term in parenthesis in Eq. 15), and the stencil size is obtained

adaptively until the target error is obtained.

The constrained optimisation problem was implemented in Python along with

dedicated libraries, and a Sequential Least Squares Programming (SLSQP) opti-

miser was used to solve it (the SLSQP optimiser was found to give the optimum

results). In the adaptive version of the optimisation routine, the mesh size is in-

creased sequentially and the optimisation problem solved on each new stencil. An

error controller is used to check at every iteration whether the target error on the

new stencil has been obtained, and whether the optimisation error increases with

every iteration in which case the routine terminates.

In order to demonstrate the method, optimised coefficients were obtained on a 9-

point stencil for a Gaussian filter with γ = 4, and for a Helmholtz filter with δ =0.6.

22



0.0 0.5 1.0 1.5 2.0 2.5 3.0
kh

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
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Ĝd− TE9
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Fig. 4: (a) Actual (Ĝ) and discrete (Ĝd) filter transfer functions for the Gaussian filter having γ = 4

on a 9-point stencil using the different rules: NC2 (trapezium rule), NC3 (Simpson’s rule), NC9

(9-point Newton-Cotes), TE9 (9-point Taylor-expansion), OP9 (9-point optimised filter), (b) corre-

sponding actual (Q̂) and discrete (Q̂d) reconstructed transfer functions at 10 van Cittert iterations.

These values were chosen according to the rules in section 4. Note however that the

discrete consistency error varies substantially between the different rules. Figures 4

(a) and 5 (a) show the actual and discrete filter transfer functions obtained using

the different rules for the Gaussian and Helmholtz filters respectively. Figures 4 (b)

and 5 (b) on the other hand show the corresponding actual and discrete reconstruted

transfer functions at N = 10 van Cittert iterations. For the Gaussian filter, the NC2

rule and the optimised filter perform well followed by the filter based on Taylor-

expansion with their transfer functions being almost indistinguishable from the actual

one. The reconstructed transfer functions of the NC2 rule and of the optimised filter

also match closely the actual reconstructed transfer function as one may see from

Fig. 4 (b). The reconstrcuted transfer function for the TE filter somewhat amplifies
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Fig. 5: (a) Actual (Ĝ) and discrete (Ĝd) filter transfer functions for the Helmholtz filter having

δ = 6 on a 9-point stencil using the different rules: NC2 (trapezium rule), NC3 (Simpson’s rule),

NC9 (9-point Newton-Cotes), TE9 (9-point Taylor-expansion), OP9 (9-point optimised filter), (b)

corresponding actual (Q̂) and discrete (Q̂d) reconstructed transfer functions at 10 van Cittert iter-

ations.

higher wavenumber contributions because of the lower damping obsreved for Ĝd at

these wavenumbers. The NC3 rule performs poorly in comparison while the NC9

performs the worst even at lower wavenumbers which is in contrast to the results

obtained in section 4 for constant filters. For the Helmholtz filter, the NC3 rule

performs better than the NC2 rule which has a larger consistency error, but not as

well as the optimised filter. The filter based on Taylor-expansion performs well only

for a limited range of wavenumbers while the NC9 rule has the worst performance-

Ĝd(0) is negative for this filter because the 8th degree Lagrange polynomial fitted

over the 9-point stencil is a poor approximation for this particular choice of δ. This

results in unstable reconstruction, and in fact Q̂10
d (0) is so negative that Q̂10

d exceeds

24



the limits of Fig. 5 (b) for all wavenumbers.
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Fig. 6: Error as as defined in Eq. 16: (a) eN (γ) for the Gaussian filter and (b) eN (δ) for the

Helmholtz filter. Note that the error for N = 0 corresponds to the error for the forward filter.

The above results indicate that the approximation rule is sensitive to Ĝ whose

shape depends on the parameter value. In order to quantify the performance of each

rule for different filter parameter values we calculate the error measure,

eN(χ) =
∫ π

kh=0

(
Q̂N
d (kh; gl)− Q̂N(kh;χ)

)2
d(kh) (16)

where χ = γ for the Gaussian filter and χ = δ for the Helmholtz filter. This was done

for the NC2/NC3 rules and for the optimised filters. The stencil size for each value of

γ and δ was chosen according to the rules in section 4 and was the same for each rule.

The error is calculated at N = 0 (forward filter) and at the extreme value N = 500

in order to highlight any amplification issues due to successive iterations. The results

are shown in Figs. 6 (a) and (b) for the Gaussian and Helmholtz filters respectively.
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Simpson’s rule performs relatively well for the forward Gaussian/Helmholtz filters,

but reconstruction for both filters is unstable. The simple trapezium rule performs

generally well for both filtering/reconstruction, and appears to be more robust to

variations in the filters’ parameters. The optimised filters perform overall better

than the trapezium rule both at the filtering and reconstruction levels.

4.5. Optimised inverse filters

From the analysis in section 3 an approximation of the inverse discrete filter

transfer function, V̂ N
d , is given by,

V̂ N
d = Q̂N

d

Ĝd

=
1−

(
1− Ĝd

)N+1

Ĝd

(17)

The inverse is also subject to the consistency condition V̂ N
d (0) = 1 while from

the above expression we find that limĜd→0V̂
N
d =(N + 1). If a sufficiently accurate

discrete approximation is obtained for V̂ N
d , reconstruction may be possible without

the need for iteration. This would substantially reduce the computational time for

reconstruction making deconvolution-modelling more tractable in LES. In the same

spirit of the previous section, we define an optimisation problem to obtain direct-

inverse discrete filter coefficients. The optimisation problem reads,

arg min
βl

(∫ π

kh=0

(
V̂ N
d (kh; βl)Ĝd(kh; gl)− Q̂N

d (kh; gl)
)2
d(kh)

)
(18)

subject to,

β0 + 2
MIF∑
l=1

βl = 1

β0 + 2
MIF∑
l=1

βlcos(kh · l) < (N + 1) ∀ kh ∈ (0, π]
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Note that we have chosen to define the error with respect to Q̂N
d rather than Q̂N .

This ensures that filtering and reconstruction are consistent in the discrete domain

regardless of any errors contained in the discrete approximation of the filter. The

rationale is that to obtain an accurate direct-inverse filter we must first obtain an

accurate enough discrete forward filter. The stencil for the inverse filter, MIF , need

not necessarily be equal to the stencil of the forward filter MFF . However, since

the aim is to reduce the computational cost by avoiding van Cittert iterations, some

analysis is required to derive bounds on the maximum possible size of MIF . For a

symmetric forward filter on a (2MFF +1)-point stencil, the number of Floating Point

Operations (FLOP) (additions, multiplications) required for van Cittert iterations is

given by OPFF = 2N
(
1 + (2MFF + 1)D

)
where D is the number of dimensions. For

a direct-inverse filter the total number of FLOP is given by OPIF = 2 (2MIF + 1)D−1

since no iterations are required for reconstruction. Therefore, provided,

2 (2MIF + 1)D − 1
2N

(
1 + (2MFF + 1)D

) < 1 (19)

the direct inverse filter will be computationally more efficient than using a forward

filter with van Cittert iterations. Therefore there is a limit on the maximum possible

MIF . This is proportional to N , MFF , and inversely proportional to D. Typically

N ' 5 at least, and for this value the corresponding max(MIF ) were calculated and

are given in Table 6.

From the results in Table 6 we observe that even for as few as 5 iterations the

maximum possible stencil size of the inverse filter can be larger than the stencil of the

forward filter before the direct-inverse filter approach becomes computationally more

expensive. Even in the 3D case we observe that for MFF > 4 MIF can be almost

twice the size of MFF . It is also important to note that for the table conditions
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D/MFF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84

2 3 5 7 9 11 14 16 18 20 23 25 27 29 31 34 36

3 2 3 5 7 8 10 12 14 15 17 19 20 22 24 26 27

Table 6: Maximum inverse filter half-stencil size MIF obtained using Eq. 19 for

N = 5 as a function of MFF , and problem dimension D. Below this limit, using a

direct-inverse filter (no van Cittert iterations) is computationally less expensive than

using a forward filter with N = 5 van Cittert iterations for reconstruction.

(N = 5) an accurate enough representation of Q̂5 may be obtained on the same

stencil as the for the forward filter which implies that the computational savings

using the direct-inverse filter approach can be substantial. In the sections which

follow, we show that accurate inverse optimised filters can be obtained on stencil

sizes much shorter than the corresponding maximum limits (for the given N in the

test-cases) which leads to substantial computational savings.

Filter γ, δ, a kfh (2MFF + 1) N (2MIF + 1) eopt,FF eopt,IF

Gaussian 4 1.017 9 203 21 / 10−5

Helmholtz 0.9807 1.017 13 19 13 / 10−5

Implicit -0.2618 1.017 11 93 21 10−6 10−5

Table 7: Test-case conditions for obtaining direct-inverse discrete filters: MFF is

the forward filter half-stencil size, MIF is the inverse filter half-stencil size, and

eopt,FF , eopt,IF are the target optimisation errors for the forward and inverse filters

respectively.

In order to illustrate the method, the optimisation problem was solved and opti-

mised direct-inverse filters obtained. Table 7 lists the conditions for each filter. The

filters’ parameters were chosen such that all filters have the same kf . N for each
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Ĝ :G, γ=4
Q̂203

Ĝd
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Fig. 7: Actual filter transfer fucntion (Ĝ) and actual reconstructed transfer function (Q̂N -obtained

with van Cittert iterations), discrete transfer function (Ĝd) and discrete reconstructed transfer func-

tion (Q̂Nd -obtained with van Cittert iterations), and direct-inverse filter transfer function (ĜdV̂ Nd -

without van Cittert iterations): (a) for a Gaussian filter with γ = 4, (b) Helmholtz filter with

δ = 0.981, and (c) Implicit filter with a = −0.262. The corresponding stencil sizes are given in

Table 7.
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filter was chosen such that wavenumbers in the range [0, 0.8π] are recovered-under

these conditions Q̂N
d (0.8π) > 0.95 i.e. 80% of the original signal is recovered. For

the optimised inverse filters, the adaptive version of the optimisation algorithm was

employed with a target error set to 10−5. This choice was found to give good re-

sults while keeping the stencil size to a reasonable size-all relevant conditions are

given in Table 7. Overall, the Gaussian filter requires the most iterations, and the

Helmholtz filter the least since the Helmholtz filter damps larger wavenumbers less

hence convergence is faster. The Helmholtz filter also requires the least stencil size

for the forward filter making it overall the most efficient to use for reconstruction.

The stencil size for the inverse filter is larger for the Gaussian and Implicit filters,

and remains the same for the Helmholtz filter. For all three filters, the inverse stencil

sizes are much lower than the upper bound predicted by Eq. 19 which implies these

are computationally more efficient-in the sections which follow this is quantified and

verified for all three filters.

For practical LES applications fewer iterations will be used-the choices here serve

as a stringent test for the method. Figure 7 shows the actual transfer functions, the

discrete transfer functions, the transfer functions of the reconstructed signal using

van Cittert iterations, and the inverse filter transfer functions (without van Cittert

iterations) for each filter. Note that 0.8π = 2.51, and all wavenumbers up to this

point are recovered by the direct-inverse filters which justifies the use of the proposed

optimisation framework. The optimisation framework can be used to derive direct-

inverse reconstruction filters for different filter transfer functions and/or iteration

counts N depending on the context where reconstruction is to be employed.
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4.6. Extension to higher dimensions/arbitrary meshes

One approach for 3D-filtering is to apply 1D filters recursively in each coordinate

in which case the filtering operation can be written as,

ūi,j,k =
Mz∑

n=−Mz

an

My∑
m=−My

bm
Mx∑

l=−Mx

clui+l,j+m,k+n

where Mx,My,Mz are the half-stencil sizes in each coordinate. Another approach is

to define a multi-dimensional filter. These two methods do not necessarily lead to the

same multi-dimensional transfer functions. The first method is the most straightfor-

ward to implement, and has been applied in numerous studies. Details for the second

method are given in [41]. For arbitrary meshes the problem is more difficult since the

filter coefficients will depend on the mesh spacing values-a procedure for obtaining

such filters is given in [41]. Another approach is to interpolate, filter, and reconstruct

on a structured mesh, and then interpolate back on the arbitrary mesh. This, may

be computationally more expensive depending on the mesh/geometry. With regards

to boundaries, careful attention is required. Even though it is not the focus of this

study, skewed filters can be defined near boundaries, and a modified optimisation

problem solved. In such cases the transfer function will contain an imaginary compo-

nent which must be kept small to minimise dispersion errors-for a detailed discussion

the reader is referred to [10].

5. 1D test case: model function

The domain for the test-case spans [0, 1], xi = ih, i ∈ [0, Nx − 1], and h =

1.0/(Nx − 1). The model function is periodic in x,

yi = y(ih) =
Px∑
r=0

arcos
( 2πr
Nxh

ih
)

+ brsin
( 2πr
Nxh

ih
)
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where Px = int(Nx/2) is the number of modes which include all wavenumbers up

to π/h. For this test-case Nx = 128, and ar, br are random numbers in the range

[−1, 1]. The model function is filtered using the Gaussian, Helmholtz, and Implicit

filters. Reconstruction is conducted with van Cittert iterations for the NC2, NC3,

and optimised forward filters. Reconstruction is also conducted using an optimised

inverse filter (without iterations). The conditions for each filter are given in Table

7. These were chosen so as to recover a significant wavenumber range of the original

signal as discussed in section 4.5. We note that for the forward filters where van

Cittert iterations are employed, MFF is always the same which for the different rules

(NC2/NC3/optimised) which ensures a fair comparison between them. To quantify

the accuracy of the filtering and reconstruction, the Fourier-mode differences ef and

er, are calculated in Fourier space using,

ef = 1
Px + 1

Px∑
r=0

(
|Ĝ(kr)ŷ(kr)− Ĝd ~ y(kr)|

)2

er = 1
Px + 1

Px∑
r=0

(
|ŷ(kr)| − |ŷ∗(kr)|

)2

whereˆdenotes the discrete Fourier transform. Figure 8 (a) shows the original and

Gaussian-filtered test function in Fourier-space using the different rules, and Fig. 8

(b) shows the corresponding Fourier transforms of the reconstructed fields. Figures 9

and 10 show the corresponding results for the Helmholtz-filtered and Implicit-filtered

functions respectively. The errors ef , er are given in Table 8. Table 9 additionally

shows the corresponding FLOP ratios for each filter obtained using Eq. 19, and

the actual computational time ratios required for reconstruction: TFF is the com-

putational time for a forward filter (with van Cittert iterations), and TIF is the

computational time for a direct-inverse optimised filter (without iterations). Note
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that the computational times for the forward filters are about the same for the

NC3/NC2/optimised filters since they all have the same stencil. In order to increase

the statistical accuracy of the results, the computational timings were averaged over

1000 reconstructions, and all compiler optimisations were switched off.
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Fig. 8: (a) Absolute value of the discrete Fourier transform of the test-function, and of the Gaussian-

filtered (γ = 4) test-function using the different rules, NC3 (Simpson’s rule), NC2 (trapezium

rule), OP (Optimised filter), and (b) corresponding transforms of the reconstructed functions for

each rule including the optimised direct-inverse filter (OPIF) with no van Cittert iterations. The

corresponding filter parameters for each filter are given in Table 7. Filtering damps the high-

wavenumber components of the test-function as seen in (a), and reconstruction recovers a significant

range of these wavenumbers as seen in (b) thus recovering to a good extent the original function.

For the Gaussian filter, the optimised filters perform well both for filtering and

reconstruction. For filtering, the error is lower than for the NC2 rule and for re-

construction the errors are similar. The optimised inverse filter also performs well,

however at a much reduced computational cost-about 100 times lower which is in
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Fig. 9: As in Fig. 8 for the Helmholtz-filtered (δ = 0.981) test-function.
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Fig. 10: As in Fig. 8 for the Implicit-filtered (α = −0.262) function.
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ef

Filter NC3 NC2 OP

Gaussian 1.412·101 2.692·10−4 1.829·10−5

Helmholtz 1.806 3.461 1.458·10−3

Implicit / / 3.210·10−4

er

Filter NC3 NC2 OP OP-IF

Gaussian 5.990·102 (Unstable) 5.469·101 5.479·101 5.406·101

Helmholtz 1.967·102 (Unstable) 1.848·10−2 3.193 2.551

Implicit / / 1.090·102 1.091·102

Table 8: Filtering and reconstruction errors for the 1D test-case.

good agreement with the actual FLOP count ratio predicted by Eq. 19. The NC3

rule performs poorly both for filtering/reconstruction in accordance with the results

in the previous sections: Ĝd < 0 for this rule which leads to unstable reconstruction

causing the reconstruction algorithm to exit prematurely.

For the Helmholtz filter, the NC3 rule performs better than the NC2 rule for

filtering, while the optimised filters perform better in comparison. For reconstruction,

the error for the NC3 rule is quite large for the same reasons as above. The NC2

rule appears to have the lowest reconstruction error, however this is misleading. Fig.

9(a) shows that the NC2 rule is in fact a poor approximation of the actual filter

transfer function. This is why the filtering error for the NC2 rule shown in Table

8 is larger than for the rest of the rules. In fact, the NC2 rule approximates Ĝ so

poorly that damping is much lower than what should be for all wavenumbers on the

mesh. As a result, for the same number of iterations, the reconstruction error is lower

simply because of the lower damping at the filtering level. This is also evident in

35



Fig. 9(b) where the NC2 rule actually recovers almost all wavenumbers on the mesh

something which it was not supposed to do. The optimised filter on the other hand

is a good approximation of Ĝ, and performs well for reconstruction. The inverse

filter also performs well, and is more efficient as evident by the results in Table 9-

about 20 times faster. Similarly good results are obtained for the Implicit filter. A

slight difference in this case is that in accordance with the optimisation conditions

for this filter, the grid cut-off is completely damped, and remains damped during

reconstruction.

Filter γ, δ, a MFF MIF N OPFF /OPIF Time ratio TFF /TIF
Gaussian 4 4 10 203 99.02 109.23

Helmholtz 0.9807 6 6 19 21.28 20.40

Implicit -0.2618 5 10 93 54.44 60.49

Table 9: Predicted and measured computational time ratios for the 1D test-case

using a forward filter (FF) with van Cittert iterations, and the optimised inverse

filter (IF) without any iterations.

6. 3D test case: turbulent flames

The data correspond to a 3D Direct Numerical Simulation (DNS) database of a

turbulent premixed flame propagating in an inflow-outflow configuration. Cold reac-

tants enter from one end of the computational domain and hot products leave from

the other end. The DNS was conducted using the SENGA2 code [42] which solves

the reacting Navier-Stokes equations in fully compressible form, using a 10th order

finite-difference scheme for the interior spatial derivatives, and a 4th-order explicit

Runge-Kutta scheme for the time-stepping. The particular database simulates the

turbulent combustion of a multi-component syngas-like fuel. Chemistry is modelled
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using a detailed chemical mechanism specifically developed for complex fuels [43, 44].

Details of the simulation geometry/parameters, and the DNS solver, can be found

in [42, 45].

Mesh Lx x Ly x Lz (mm) Nx x Ny x Nz γ

ho-DNS 14.0 x 7.0 x 7.0 768 x 384 x 384 /

h1-LES Same 97 x 49 x 49 4.0

Table 10: DNS and LES meshes used for the 3D test-case.

In order to simulate an LES, the DNS data are sampled on a coarser mesh h1

using Lagrange interpolation. On the LES mesh, the fields of interest (obtained

by interpolating from the DNS on the LES mesh) are the reference fields. These

reference fields are filtered on the LES mesh, and are then reconstructed on the LES

mesh. This procedure is different than the usual approach of filtering on the DNS

mesh and interpolating on the LES mesh because the LES mesh resolves adequately

enough the fields of interest. In this approach we avoid the expensive procedure of

filtering every time on the DNS mesh.

The primary field of interest is density which is used to obtain primitive variables

from conservative ones [28]. It is important to note that in the current implemen-

tation of the direct-inverse filter approach, there is no explicit bounds’ control on

the reconstructed signal whereas bounds’ control can be implemented when using

van Cittert iterations through a dynamic b [28]. Therefore, in order to examine how

well direct-inverse filter reconstruction performs for scalars we additionally consider

the mass fraction of O2, a major species. Mass fractions are reconstructed using

y∗k = {ρyk}∗/ρ∗ following previous works [28]. When using van Cittert iterations, the

classical approach is considered with no bounds control to ensure a fair comparison

is made.
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Details of the DNS and LES meshes are given in Table 10. All filters have the

same kf . In particular, γh1 = ∆/h1 = 4, δh1 = λ/h1 = 0.981, and a = −0.262

as shown in Table 2, and they damp substantially LES-resolved wavenumbers. 3D

filtering on the LES mesh is conducted using dimensional splitting as explained in

section 4.6. Reconstruction is conducted using the different rules excluding however

Simpson’s rule for which reconstruction was unstable as shown in the 1D test-case.

In contrast to the 1D test-case, reconstruction is conducted to recover wavenumbers

only in the range [0, 2kf ] which is more than enough to recover kf i.e. as would be

done in actual LES. The corresponding N required for each filter are given in Table 2.

Optimised inverse filters (without van Cittert iterations) at the corresponding N for

each filter given in Table 2 were also computed, and the filtered fields reconstructed

using this approach as well.

Filter NC3 NC2 OP OP-IF

Gaussian Unstable 1.742·10−6 1.762·10−6 3.566·10−6

Helmholtz Unstable 5.251·10−7 1.388·10−6 6.801·10−8

Implicit / / 1.734·10−6 8.728·10−7

Table 11: Spatial reconstruction errors eρ for the different rules.

Filter γ, δ, a MFF MIF N OPFF /OPIF Time ratio TFF /TIF
Gaussian 4 4 7 46 9.95 10.08

Helmholtz 0.9807 6 6 13 13.01 12.86

Implicit -0.2618 5 5 26 26.03 25.96

Table 12: Predicted and measured computational time ratios for the 3D test-case

using a forward filter (FF) with van Cittert iterations, and the optimised inverse

filter (IF) without any iterations.

The reconstruction error is calculated using,
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eu = 1
NxNyNz

Nz∑
k=1

Ny∑
j=1

Nx∑
i=1

(u∗i,j,k − ui,j,k)2

where Nx, Ny, and Nz are the number of points for the LES mesh.

Figures 11(a)-(c) show iso-surfaces of the the original, Gaussian-filtered and re-

constructed density using the NC2 rule, optimised filter, and optimised inverse filter

respectively on the LES mesh. Similar results were obtained using the Helmholtz and

Implicit filters. Note that the filtered field in Figs. 11(b) and (c) is the same because

in both cases the optimised forward filter was used. As expected, filtering smooths the

density field by removing high-wavenumber components. Reconstruction on the other

hand recovers some of the damped wavenumbers on the LES mesh thereby “sharp-

ening” the density field. Figure 12 additionally shows for each mesh-point of the

LES mesh the reconstructed density against the reference density using the different

approaches-note that these values are normalised using ρ+ = (ρ−ρmin)/(ρmax−ρmin).

The Pearson correlation coefficients are near-unity for all three cases, and the agree-

ment is good for the entire range of reference density values. It is also important

to note that for this particular database there are strong density gradients because

of combustion. These gradients occur over a small region in space where heat is

being released [45]. In fact, ρ+ indicates the extent of reaction with ρ+ = 1 corre-

sponding to unburnt cold gases, and ρ+ = 0 corresponding to hot burnt gases. In

between these values reaction takes place, and large density gradients exist. The

scatter plots indicate that even in regions with large gradients e.g. around ρ+ = 0.5,

the reconstructed density is well captured both with the optimised filter, and with

the optimised inverse filter. Table 11 shows the corresponding spatial reconstruc-

tion errors for each filter/rule. For the Gaussian filter, the reconstruction errors are

similar for all three rules. For the Implicit filter, the optimised forward and inverse
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filters perform well. Again the NC2 rule appears to provide improved results due

to the lower damping caused by the poor approximation of the Helmholtz filter as

in the 1D test-case. It is interesting to note that the optimised inverse filter for the

Helmholtz and Implicit filters improves reconstruction.

Figure 13 shows the corresponding reconstructed oxygen mass fraction for the

Gaussian filter and using the different rules. The red squares indicate the minimum

and maximum values of the reference mass fractions. The scatter plots indicate

that for all three reconstruction rules the reconstructed fields are in good agreement

with the reference fields with no significant non-physical under/over predictions even

though there is no explicit bounds’ control even when using the direct-inverse filter

approach. Similar results were obtained for the Helmholtz and Implicit filters.

In terms of computational efficiency, Table 12 shows the corresponding FLOP

ratios and actual measured computational time ratios between the forward filter

approach with van Cittert iterations, and the inverse filter approach without any

iterations. The measured computational time ratios for the 3D test-case are in

good agreement with the FLOP ratios as predicted by Eq. 19. Even though the

gain is inversely proportional to the number of dimensions, we observe that the

computational time savings for the 3D test-case by using the inverse filter approach

are still substantial.
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(a)

(b)

(c)

Fig. 11: Density iso-surface on the LES mesh (value=0.4) of original reference density (ρ), Gaussian-

filtered density at γ = 4 (ρ̄), and reconstructed density (ρ∗), using the different rules: NC2 (trapez-

ium rule), OP (Optimised filter), IF (inverse filter without van Cittert iterations). Filtering smooths

the original reference field, and reconstruction recovers the original field thereby ρ∗ resembles ρ on

the LES mesh. 41



(a) (b) (c)

Fig. 12: Scatter plots of normalised reconstructed density (filter=Gaussian, γ = 4) against nor-

malised reference density on the LES mesh using: (a) NC2 rule with van Cittert iterations, (b) using

the optimised filter with van Cittert iterations, and (c) using the optimised inverse filter without

van Cittert iterations.

(a) (b) (c)

Fig. 13: Scatter plots of reconstructed yO2 (mass fraction) (filter=Gaussian, γ = 4) against reference

yO2 on the LES mesh using: (a) NC2 rule with van Cittert iterations, (b) using the optimised filter

with van Cittert iterations, and (c) using the optimised inverse filter without van Cittert iterations.
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7. Conclusions

The reconstruction properties of the explicit Gaussian, Helmholtz, and of the

3-point Implicit (Padé) filter using the van Cittert deconvolution algorithm are in-

vestigated analytically. The von Neumann analysis leads to a necessary stability

condition for the discrete filter transfer function Ĝd. The different rules/methods

considered for obtaining discrete filters include: (a) Newton-Cotes formulas, (b) fil-

ters based on Taylor-expansions, and (c) filters derived by solving a newly-proposed

constrained and adaptive optimisation problem. The main results are as follows,

(i) Higher-order Newton-Cotes rules on a given stencil improve the accuracy of

Ĝd at low wavenumbers but reduce the accuracy at higher wavenumbers to the extent

that Ĝd may become negative leading to unstable reconstruction.

(ii) The simple trapezium rule was found to be robust with stable reconstruction

for the Gaussian/Helmholtz filters, and for all filter parameter values considered in

this study.

(iii) Simpson’s rule improves the results at the filtering level for the Helmholtz

filter but not for the Gaussian filter. At the reconstruction level, Simpson’s rule may

result in Ĝd < 0 for some wavenumbers, depending on the filter parameter value,

which leads to unstable reconstruction.

(iv) The proposed optimisation framework in section 4.4 produces forward filters

which are consistent and stable during reconstruction, and which offer improved ac-

curacy at the filtering and reconstruction levels.

(iv) Reconstruction using the optimised direct-inverse filters using the optimi-

sation framework in section 4.5 is stable, accurate, and removes the need to apply

successive van Cittert/otherwise iterations which substantially reduces the computa-

tional cost for reconstruction.
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Discrete optimised forward and inverse coefficients for the Gaussian, Helmholtz,

and 3-point-Implicit filters for different values of their corresponding parameters

are given as supplementary material. Even though the context of this work was

for modelling purposes in LES, these filters may be used in a variety of digital

signal-processing applications. In addition, the proposed optimisation frameworks

are flexible, and the optimisation parameters/targets/constraints are straightforward

to modify to suit the users’ needs. The relevant optimisation routines can be made

available by contacting the authors directly.
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Appendix

8. Discrete filters based on Taylor expansion

Gaussian G3 G5 G7 G9

g0
(12−γ2)

12
(192−20γ2+γ4)

192
(20736−2352γ2+168γ4−5γ6)

20736
(3981312−472320γ2+39312γ4−1800γ6+35γ8)

3981312

g1
γ2

24
(16γ2−γ4)

288
(1728γ2−156γ4+5γ6)

27648
(331776γ2−35136γ4+1740γ6−35γ8)

4976640

g2
(−4γ2+γ4)

1152
(−432γ2+120γ4−5γ6)

69120
(−82944γ2+24336γ4−1560γ6+35γ8)

9953280

g3
(192γ2−60γ4+5γ6)

414720
(36864γ2−12096γ4+1260γ6−35γ8)

34836480

g4
(−20736γ2+7056γ4−840γ6+35γ8)

278691840

Table 13: Discrete Gaussian-filter coefficients on 3, 5, 7, and 9-point stencils obtained

from Taylor expansion (γ = ∆/h).
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Helmholtz H3 H5 H7 H9

g0 1− 2δ2 (12−30δ2+72δ4)
12

(180−490δ2+1680δ4−3600δ6)
180

(5040−14350δ2+57330δ4−189000δ6+352800δ8)
5040

g1 δ2 (16δ2−48δ4)
12

(270δ2−1170δ4+2700δ6)
180

(8064δ2−40992δ4+146160δ6−282240δ8)
5040

g2
(−δ2+12δ4)

12
(−27δ2+360δ4−1080δ6)

180
(−1008δ2+14196δ4−65520δ6+141120δ8)

5040

g3
(2δ2−30δ4+180δ6)

180
(128δ2−2016δ4+15120δ6−40320δ8)

5040

g4
(−9δ2+147δ4−1260δ6+5040δ8)

5040

Table 14: Discrete Helmholtz-filter coefficients on 3, 5, 7, and 9-point stencils ob-

tained from Taylor expansion (δ = λ/h).

Box B3 B5 B7 B9

g0
(12−ε2)

12
(960−100ε2+3ε4)

960
(241920−27440ε2+1176ε4−15ε6)

241920
(46448640−5510400ε2+275184ε4−5400ε6+35ε8)

46448640

g1
ε2

24
(80ε2−3ε4)

1440
(6720ε2−364ε4+5ε6)

107520
(3870720ε2−245952ε4+5220ε6−35ε8)

58060800

g2
(−20ε2+3ε4)

5760
(−336ε2+56ε4−1ε6)

53760
(−967680ε2+170352ε4−4680ε6+35ε8)

116121600

g3
(448ε2−84ε4+3ε6)

967680
(61440ε2−12096ε4+540ε6−5ε8)

58060800

g4
(−34560ε2+7056ε4−360ε6+5ε8)

464486400

Table 15: Discrete Box-filter coefficients on 3, 5, 7, and 9-point stencils obtained

from Taylor expansion (ε = L/h).
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9. Optimised forward filter coefficients

Optimised forward filter coefficients (gl) and direct-inverse filter coefficients (bl)

are given below. The filtering/reconstruction relations are,

ūi =
MF F∑

l=−MF F

glui+l ui
∗ =

MIF∑
l=−MIF

blūi+l

The optimised direct-inverse filters were obtained at N = 5 van Cittert iterations.

γ = ∆/h for the Gaussian filter, and δ = λ/h for the Helmholtz filter. The filter pa-

rameter range was chosen to reflect practical values commonly used in the literature.

Note that for each forward filter, and for a given filter parameter, the correspond-

ing inverse filter is given for the said forward filter parameter in the inverse filter

table. MFF for the Gaussian/Helmholtz filters was chosen according to the rules in

section 4. MFF for the Implicit filter was obtained dynamically by setting a target

optimisation error of 10−6. MIF for the direct-inverse filters is always obtained dy-

namically for all three filters by setting a target error of 10−5. The error listed in

the tables corresponds to the final mean-squared error between the optimised dis-

crete forward/reconstructed transfer functions and the actual forward/reconstructed

transfer functions. The optimisation settings, target errors, reconstruction iterations

N etc. may be modified to suit the user’s needs. Note that the damping efficiency η

in the Tables is defined as,

η = 1− 1
π

∫ kh=π

kh=0
Ĝ(kh)d(kh)

and that for the inverse filters the quoted kfh, η are for the reoconstructed transfer

function V̂ N
d Ĝd which serve to quantify the extent of reconstruction.
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Forward filter: Gaussian

γ 4 5 6 7 8

kfh 1.016 0.813 0.679 0.580 0.508

η 0.655 0.724 0.770 0.803 0.827

Ĝd(π) 2.134E-03 3.428E-05 2.027E-04 1.773E-09 2.181E-04

MF F 4 5 6 7 8

Error 2.129E-08 6.196E-09 1.298E-08 2.064E-08 2.593E-08

g0 3.45415481E-01 2.76409458E-01 2.30361794E-01 1.97475161E-01 1.72812355E-01

g1 2.37565592E-01 2.17425584E-01 1.94962542E-01 1.74652668E-01 1.57270243E-01

g2 7.70135187E-02 1.05845990E-01 1.18286620E-01 1.21008168E-01 1.18750472E-01

g3 1.19009368E-02 3.18779064E-02 5.13942706E-02 6.55970380E-02 7.43261643E-02

g4 8.12212165E-04 5.95785198E-03 1.60156429E-02 2.78307565E-02 3.85520948E-02

g5 6.87938911E-04 3.59250436E-03 9.27026705E-03 1.65816852E-02

g6 5.67523443E-04 2.42349568E-03 5.93542954E-03

g7 4.80026714E-04 1.76737453E-03

g8 4.10358526E-04

Inverse filter: N=5

γ 4 5 6 7 8

kfh 1.825 1.461 1.213 1.043 0.912

η 0.409 0.526 0.605 0.661 0.704

V̂ N
d Ĝd(π) 1.117E-02 2.057E-04 3.565E-04 8.704E-09 3.786E-04

MIF 4 5 6 7 8

Error 6.519E-06 4.192E-06 1.813E-06 1.121E-06 7.857E-07

b0 3.48544218E+00 3.94893539E+00 3.81406144E+00 3.70253496E+00 3.62257966E+00

b1 -1.24814783E+00 -1.24731324E+00 -7.16575919E-01 -3.94376008E-01 -2.01146597E-01

b2 -1.55292944E-01 -3.75990613E-01 -9.75288675E-01 -9.97560350E-01 -8.59013025E-01

b3 1.89248380E-01 3.67688340E-02 2.95305166E-01 -2.11596765E-01 -5.27024873E-01

b4 -2.85287002E-02 1.51522917E-01 -1.72149686E-01 3.24836028E-01 1.55763485E-01

b5 -3.94555931E-02 2.31596699E-01 -2.72938255E-01 1.91402698E-01

b6 -6.99183036E-02 2.98632698E-01 -2.98558392E-01

b7 -9.82648256E-02 3.52884957E-01

b8 -1.25598080E-01
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Forward filter: Helmholtz

δ 0.9 1.0 1.1 1.2 1.3

kfh 1.110 0.998 0.908 0.831 0.769

η 0.565 0.598 0.627 0.652 0.674

Ĝd(π) 1.177E-01 9.618E-02 8.054E-02 6.897E-02 5.854E-02

MF F 7 8 8 9 10

Error 1.491E-06 3.860E-07 3.962E-07 4.630E-07 1.312E-07

g0 4.35408387E-01 4.01919378E-01 3.73081451E-01 3.47935525E-01 3.25847440E-01

g1 1.95604785E-01 1.94464743E-01 1.92050952E-01 1.88703449E-01 1.84769063E-01

g2 5.60486232E-02 6.41254101E-02 7.08121613E-02 7.61701017E-02 8.03697299E-02

g3 2.19610597E-02 2.66355134E-02 3.12474636E-02 3.55215537E-02 3.93857877E-02

g4 5.41625050E-03 8.16549348E-03 1.11748563E-02 1.41857177E-02 1.71223739E-02

g5 3.01695761E-03 4.04181145E-03 5.43905280E-03 7.00217254E-03 8.65962773E-03

g6 2.48130493E-04 7.93446697E-04 1.60735893E-03 2.52473892E-03 3.54236379E-03

g7 8.13893018E-04 1.12742972E-03 1.53077020E-03 2.01029212E-03

g8 3.93733297E-04 6.76369324E-04

g9 5.40672483E-04

Inverse filter: N=5

δ 0.9 1 1.1 1.2 1.3

kfh N/A 2.840 2.607 2.387 2.198

η 0.155 0.193 0.229 0.263 0.296

V̂ N
d Ĝd(π) 5.280E-01 4.538E-01 3.944E-01 3.491E-01 3.030E-01

MIF 7 8 8 9 10

Error 9.221E-08 4.560E-07 7.700E-07 6.934E-08 1.689E-07

b0 2.70423445E+00 2.90120692E+00 3.08003115E+00 3.24245257E+00 3.38947677E+00

b1 -8.48937373E-01 -9.06039802E-01 -9.48885247E-01 -9.79961135E-01 -1.00086978E+00

b2 -1.79260656E-03 -4.36735228E-02 -8.70560698E-02 -1.29658962E-01 -1.70496536E-01

b3 -1.48024221E-02 -1.59092479E-02 -2.10651992E-02 -2.99901166E-02 -4.11573849E-02

b4 1.76978730E-02 1.79593944E-02 1.72685505E-02 1.59380192E-02 1.26312285E-02

b5 -7.96026931E-03 -5.49115431E-03 -3.04984781E-03 -1.82211074E-03 1.14612814E-04

b6 3.67757488E-03 4.72086589E-03 4.04045294E-03 5.95050121E-03 6.02343673E-03

b7 -2.16999390E-03 -1.26821254E-03 -3.60390312E-03 -1.71559447E-03

b8 1.92142184E-03 1.18274238E-03

b9 -4.51112565E-04
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Forward filter: Helmholtz

δ 1.4 1.5 1.6 1.7 1.8

kfh 0.710 0.665 0.625 0.584 0.553

η 0.694 0.711 0.727 0.740 0.753

Ĝd(π) 5.069E-02 4.499E-02 3.905E-02 3.464E-02 3.155E-02

MF F 10 11 12 12 13

Error 2.570E-07 2.573E-07 1.048E-07 2.241E-07 1.937E-07

g0 3.06364076E-01 2.89004418E-01 2.73453343E-01 2.59506668E-01 2.46864255E-01

g1 1.80566354E-01 1.76168717E-01 1.71708869E-01 1.67299074E-01 1.62933860E-01

g2 8.36886435E-02 8.61919769E-02 8.80353631E-02 8.93838791E-02 9.02626280E-02

g3 4.29072252E-02 4.60023015E-02 4.87082106E-02 5.10766140E-02 5.31026669E-02

g4 2.00052156E-02 2.27131028E-02 2.52422738E-02 2.76245331E-02 2.97912104E-02

g5 1.04594277E-02 1.22592591E-02 1.40451696E-02 1.58329180E-02 1.75409055E-02

g6 4.71137920E-03 5.92663808E-03 7.17449792E-03 8.49203227E-03 9.78775081E-03

g7 2.64973884E-03 3.34549853E-03 4.11368138E-03 4.96922605E-03 5.84508755E-03

g8 1.08397918E-03 1.52822407E-03 2.02309155E-03 2.60407509E-03 3.20925734E-03

g9 7.45998391E-04 9.76096668E-04 1.24578267E-03 1.60545074E-03 1.98461462E-03

g10 3.85976013E-04 5.61527866E-04 8.01245246E-04 1.05357758E-03

g11 4.14861310E-04 5.57618588E-04 7.05305331E-04

g12 3.51008657E-04

Inverse filter: N=5

δ 1.4 1.5 1.6 1.7 1.8

kfh 2.045 1.906 1.789 1.681 1.587

η 0.326 0.355 0.381 0.406 0.429

V̂ N
d Ĝd(π) 2.673E-01 2.418E-01 2.122E-01 1.900E-01 1.753E-01

MIF 10 11 12 12 13

Error 3.384E-07 9.546E-08 1.018E-07 2.007E-07 8.861E-08

b0 3.52330948E+00 3.64521063E+00 3.75640356E+00 3.85806431E+00 3.95147618E+00

b1 -1.01432707E+00 -1.02164170E+00 -1.02383860E+00 -1.02221004E+00 -1.01756534E+00

b2 -2.08513862E-01 -2.43297739E-01 -2.75029320E-01 -3.03588211E-01 -3.28994190E-01

b3 -5.46436078E-02 -6.96658104E-02 -8.52452627E-02 -1.01175638E-01 -1.17261925E-01

b4 8.19883993E-03 2.64405792E-03 -4.40678370E-03 -1.23155079E-02 -2.08539014E-02

b5 1.00354217E-03 7.88048978E-04 2.05726755E-04 -1.39383477E-03 -3.95369072E-03

b6 6.39448040E-03 7.22229758E-03 7.29925098E-03 6.97925626E-03 6.64669004E-03

b7 -6.08709600E-04 -4.45132448E-04 7.24061411E-04 1.65492275E-03 1.94400154E-03

b8 5.18113491E-04 2.67501201E-03 2.41702916E-03 2.66098154E-03 3.59326458E-03

b9 3.23531373E-04 -2.47727139E-03 -4.20622937E-04 1.60812630E-04 -2.87033778E-04

b10 1.59292430E-03 -3.23120305E-04 -1.02617170E-03 1.56388971E-03

b11 4.15860546E-04 1.22127596E-03 -2.27541893E-03

b12 1.70556098E-03
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Forward filter: Implicit

a -0.45 -0.4 -0.35 -0.3 -0.25

kfh 0.449 0.638 0.791 0.926 1.043

η 0.813 0.750 0.704 0.667 0.634

Ĝd(π) 0 0 0 0 0

MF F 14 10 8 7 6

Error 5.417E-07 4.867E-07 5.196E-07 2.945E-07 3.226E-07

g0 1.86693964E-01 2.50108178E-01 2.95951478E-01 3.33365970E-01 3.66180541E-01

g1 1.51835834E-01 1.87548992E-01 2.08357521E-01 2.22336564E-01 2.32085456E-01

g2 9.52244478E-02 9.38588899E-02 8.52018412E-02 7.41067761E-02 6.23087900E-02

g3 5.96836770E-02 4.69245153E-02 3.47860664E-02 2.48056578E-02 1.66956640E-02

g4 3.74655447E-02 2.35464668E-02 1.43211037E-02 8.26309796E-03 4.60093942E-03

g5 2.34778026E-02 1.17671298E-02 5.84185250E-03 2.85777839E-03 1.21887992E-03

g6 1.47719578E-02 5.96684018E-03 2.50131603E-03 9.47140851E-04

g7 9.25406163E-03 2.97751004E-03 1.01456042E-03

g8 5.85737779E-03 1.57371401E-03

g9 3.66736357E-03 7.81853350E-04

g10 2.35406136E-03

g11 1.47162302E-03

g12 9.79628535E-04

g13 6.09637888E-04

Inverse filter: N=5

a -0.45 -0.4 -0.35 -0.3 -0.25

kfh 1.160 1.524 1.753 1.915 2.045

η 0.595 0.495 0.432 0.386 0.348

V̂ N
d Ĝd(π) 0 0 0 0 0

MIF 14 10 8 7 6

Error 3.999E-07 7.746E-08 8.612E-08 6.692E-08 7.745E-08

b0 4.20853240E+00 4.06594390E+00 3.78244175E+00 3.56921620E+00 3.38381441E+00

b1 -7.72026844E-01 -1.19718922E+00 -1.25560244E+00 -1.28345962E+00 -1.28245083E+00

b2 -7.37219693E-01 -3.17171841E-01 -1.75268658E-01 -4.78267924E-02 5.14370733E-02

b3 8.90631380E-02 -3.46334470E-02 2.09765559E-02 3.43469752E-02 3.82907321E-02

b4 -3.01424489E-01 -9.79663814E-03 6.81552747E-03 1.28733996E-02 1.54866135E-03

b5 2.00572916E-01 2.45399205E-02 1.49853142E-02 -8.87352951E-04 -7.32841433E-04

b6 -1.83537756E-01 -7.91762352E-03 -6.33498029E-03 3.45290313E-04

b7 1.60650042E-01 1.41175343E-02 3.20780943E-03

b8 -1.22905618E-01 -9.73292293E-03

b9 1.03077153E-01 4.81228612E-03

b10 -7.33506006E-02

b11 5.18551199E-02

b12 -3.11902153E-02

b13 1.21706469E-02
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Forward filter: Implicit

a -0.2 -0.15 -0.1 -0.05 0

kfh 1.155 1.263 1.366 1.470 1.569

η 0.604 0.577 0.550 0.525 0.500

Ĝd(π) 0 0 0 0 0

MF F 5 5 4 4 2

Error 6.624E-07 5.727E-08 2.204E-07 3.297E-09 3.715E-33

g0 3.95683528E-01 4.23240534E-01 4.49661564E-01 4.74958176E-01 5.00000000E-01

g1 2.39347002E-01 2.44176137E-01 2.47461732E-01 2.49372644E-01 2.50000000E-01

g2 4.99447270E-02 3.74876932E-02 2.51692179E-02 1.25209118E-02

g3 1.06529981E-02 5.82386289E-03 2.53826796E-03 6.27355538E-04

g4 2.21350918E-03 8.92039582E-04

Inverse filter: N =5

a -0.2 -0.15 -0.1 -0.05 0

kfh 2.157 2.247 2.328 2.400 2.467

η 0.319 0.291 0.267 0.245 0.226

V̂ N
d Ĝd(π) 0 0 0 0 0

MIF 5 5 4 4 5

Error 3.181E-07 8.708E-09 2.098E-06 2.315E-06 1.667E-07

b0 3.22526517E+00 3.08128188E+00 2.94435695E+00 2.81439403E+00 2.70353110E+00

b1 -1.27269098E+00 -1.25214599E+00 -1.22255440E+00 -1.18360797E+00 -1.15489889E+00

b2 1.40273950E-01 2.14489036E-01 2.77821526E-01 3.26111295E-01 3.79701344E-01

b3 2.31096601E-02 2.71750113E-03 -2.74456022E-02 -4.97003369E-02 -8.82848484E-02

b4 -3.32521583E-03 -5.70148312E-03 1.17168466E-02
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Forward filter: Implicit

a 0.05 0.1 0.15 0.2 0.25

kfh 1.667 1.771 1.874 1.982 2.094

η 0.475 0.450 0.423 0.396 0.366

Ĝd(π) 0 0 0 0 0

MF F 4 4 5 5 6

Error 3.297E-09 2.204E-07 5.727E-08 6.624E-07 3.220E-07

g0 5.25041824E-01 5.50338436E-01 5.76759466E-01 6.04316547E-01 6.33835800E-01

g1 2.49372644E-01 2.47461732E-01 2.44176137E-01 2.39346712E-01 2.32081749E-01

g2 -1.25209119E-02 -2.51692179E-02 -3.74876932E-02 -4.99449354E-02 -6.23158421E-02

g3 6.27355538E-04 2.53826796E-03 5.82386289E-03 1.06532876E-02 1.66914416E-02

g4 -8.92039587E-04 -2.21333794E-03 -4.60205778E-03

g5 1.22680945E-03

Inverse filter: N =5

a 0.05 0.1 0.15 0.2 0.25

kfh 2.526 2.580 2.634 2.683 2.737

η 0.207 0.189 0.172 0.155 0.138

V̂ N
d Ĝd(π) 0 0 0 0 0

MIF 5 6 6 7 8

Error 3.227E-06 7.413E-07 5.285E-06 2.293E-06 1.944E-06

b0 2.57791721E+00 2.47475000E+00 2.35178325E+00 2.24573892E+00 2.12933320E+00

b1 -1.10352543E+00 -1.06633472E+00 -1.00516102E+00 -9.56688708E-01 -8.92993156E-01

b2 4.10110978E-01 4.51358201E-01 4.67960381E-01 4.93537902E-01 5.05083973E-01

b3 -1.15862247E-01 -1.57912859E-01 -1.86540018E-01 -2.28798644E-01 -2.63483512E-01

b4 2.03180918E-02 4.33344593E-02 6.12034643E-02 9.30687278E-02 1.26598737E-01

b5 -7.82008352E-03 -1.33544314E-02 -3.13156531E-02 -5.46058966E-02

b6 7.32691393E-03 1.99167042E-02

b7 -5.18345153E-03
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Forward filter: Implicit

a 0.3 0.35 0.4 0.45

kfh 2.211 2.346 2.499 2.688

η 0.333 0.296 0.250 0.187

Ĝd(π) 0 0 0 0

MF F 7 8 10 14

Error 2.945E-07 5.197E-07 4.868E-07 5.420E-07

g0 6.66629639E-01 7.04046044E-01 7.49889577E-01 8.13307141E-01

g1 2.22335937E-01 2.08357049E-01 1.87551511E-01 1.51834225E-01

g2 -7.41053271E-02 -8.51994280E-02 -9.38585474E-02 -9.52273727E-02

g3 2.48062385E-02 3.47824916E-02 4.69229420E-02 5.96795968E-02

g4 -8.26275361E-03 -1.43210902E-02 -2.35458677E-02 -3.74605638E-02

g5 2.85782485E-03 5.84524035E-03 1.17690661E-02 2.34802567E-02

g6 -9.46738592E-04 -2.50250403E-03 -5.96754745E-03 -1.47674731E-02

g7 1.01521873E-03 2.97615185E-03 9.25857717E-03

g8 -1.57282579E-03 -5.86321546E-03

g9 7.80328620E-04 3.66106414E-03

g10 -2.35884643E-03

g11 1.47189839E-03

g12 -9.76099121E-04

g13 6.14381785E-04

Inverse filter: N =5

a 0.3 0.35 0.4 0.45

kfh 2.791 2.845 2.903 2.975

η 0.121 0.102 0.082 0.057

V̂ N
d Ĝd(π) 0 0 0 0

MIF 9 10 12 17

Error 2.495E-06 4.997E-06 6.808E-06 5.614E-06

b0 2.00402351E+00 1.86532106E+00 1.70687438E+00 1.50607468E+00

b1 -8.18557646E-01 -7.27388487E-01 -6.15247394E-01 -4.59881242E-01

b2 5.04234876E-01 4.87927719E-01 4.51264344E-01 3.74085994E-01

b3 -2.93313914E-01 -3.13647222E-01 -3.22117689E-01 -3.00464595E-01

b4 1.60403802E-01 1.93568389E-01 2.24216467E-01 2.38508414E-01

b5 -8.23274868E-02 -1.13752825E-01 -1.51506984E-01 -1.86897426E-01

b6 3.84228557E-02 6.35647802E-02 9.96332023E-02 1.44703672E-01

b7 -1.53426265E-02 -3.24980588E-02 -6.29368071E-02 -1.10529005E-01

b8 4.46838776E-03 1.42935610E-02 3.82128591E-02 8.32774799E-02

b9 -4.72838550E-03 -2.13740606E-02 -6.17663483E-02

b10 1.04053409E-02 4.49685900E-02

b11 -3.98646956E-03 -3.20862683E-02

b12 2.21007872E-02

b13 -1.47851853E-02

b14 8.63434275E-03

b15 -5.07933156E-03

b16 2.17278306E-03
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