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A B S T R A C T

Large eddy simulation of a flameless combustion furnace is discussed with comparison against experimental
measurements of the mean thermochemical quantities. The focus is on the introduction in flow simulations of
complex chemistry through the training of neural networks, in order to simulate the oxidation of a gaseous
fuel representative of recycled gases available in the steel industry. A canonical problem, based on a non-
adiabatic stochastic micro-mixing model and combined with a detailed description of chemistry, is setup to
train the neural networks prior to the flow simulation. For these networks to be predictive, the thermochemical
composition space is decomposed into sub-domains from a partitioning algorithm. A neural network is trained
in every sub-domain to return the increments in time of the most influential thermochemical quantities, from
the knowledge of temperature and species mass fractions solved with the flow. Implemented in an open-source
low-Mach number fluid mechanics code, the neural networks complex chemistry is shown to be very efficient
in terms of CPU time, with an overhead of only 60% compared to the non-reactive multi-species simulation
of the furnace.
1. Introduction

In the challenging context of decarbonization of the energy pro-
duction and of the transformation industries, fuel efficiency goes along
with more stringent regulation on emissions, such as NOx and particu-
late. To reach these objectives, actions are taken to benefit from every
single opportunity regarding the recycling of any type of Low Carbon
Fuel (LCF) gases produced on-site or by external parties. Thereby,
many industrial combustion systems are currently revisited. In terms
of burner design, multi-fuel injection stands as a promising way to
transform recycled gases into additional useful energy. For instance in
the steel industry, LCF includes auto-produced by-product steel gases
(Coke Oven Gas (COG), Blast Furnace Gas (BFG), Basic Oxygen Furnace
Gas (BOFG)), biogases and green hydrogen. Along these lines, it was
discussed in the literature how the use of auto-produced steel gases can
significantly reduce the environmental impact and contribute to energy
saving [1,2].

For these applications, burnt gases diluted combustion and flameless
oxidation appear as promising techniques to transform and benefit from
residual gases. Hence, among the technologies developed for mitigating
emissions from furnaces and boilers, highly diluted combustion and the
so-called flameless regime have received much attention over the past
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twenty years, first in studies to understand the fundamentals [3–5] and
then towards various applications for energy production [6,7].

The design of these combustion systems relies on both experimental
and numerical simulation studies. In the present work, we discuss a
strategy to account for a complex description of combustion chemistry
in unsteady simulations using artificial neural networks (ANN). The
objective is to benefit from a method allowing for performing multiple
simulations to optimize burners and boilers, thanks to a CPU time kept
to a minimum after training a set of neural networks to process the
expensive time integration of the stiff chemical system of equations.

Indeed, machine learning is now a standard ingredient of com-
putational combustion [11]. It is used for building sub-models from
various databases used to train neural networks (including DNS or
canonical problems) or to reduce CPU time by replacing specific costly
numerical operations performed during the solving of the aerother-
mochemical equations. Pioneer works in the field have discussed an
integrated probability density function/neural network approach for
simulating turbulent reacting systems [12]. Artificial neural networks
were also used in the 90’s to model the temporal evolution of reduced
combustion chemistry [13]. More recently, tabulation of chemistry
via ANN was addressed [14]. A skeletal mechanism was derived with
neural networks in order to simulate a laminar jet diffusion flame of
vailable online 2 March 2023
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Fig. 1. Schematic and picture of the UMONS furnace [8–10] (Lengths in m).
Table 1
UMONS inlet conditions.

Inlet B50 Air Recirculation

𝑋CH4
(molar fraction) 0.1425 – –

𝑋H2
0.325 – –

𝑋N2
0.28 0.79 0.696219

𝑋O2
– 0.21 0.0175578

𝑋CO2
0.12 – 0.112496

𝑋CO 0.1325 – –
𝑋H2O – – 0.173727
T(K) 290.65 1075.66 1300
Mass flow rate (kg/s) 0.002572941 0.010293228 0.064330844
Reynolds number 22400 19600 –
Bulk velocity (m/s) 98 65 –
Pressure (Pa) 101325 101325 101325

methly formate [15] and ANN based chemical mechanisms proposed
for modeling hydrogen/carbon monoxide/kerosene combustion [16].
Deep ANNs have been applied to multi-dimensional flamelet libraries
and spray flames [17] and an ANN based hybrid chemistry frame-
work was discussed [18]. Chemistry reduction using machine learning
trained from non-premixed micro-mixing modeling was applied to
syngas turbulent oxy-combustion [19] and an on-the-fly ANN chemistry
procedure was proposed for direct numerical simulation [20]. The
population balance equation for soot was also solved using ANN [21].

On the sub-grid scale modeling side, neural network-based closure
have been evaluated for the unresolved stresses in turbulent premixed
V-flame [22]. A generic framework was discussed for data-based turbu-
lent combustion closure and tested a posteriori [23]. Progress variable
variance and filtered rate modeling have been studied using con-
volutional neural networks and flamelet methods [24]. The direct
mapping from LES resolved scales to filtered-flame generated mani-
folds was achieved with convolutional neural networks [25]. Other
convolutional neural networks were introduced to classify combus-
tion modes and secure monitoring of supersonic combustion [26].
Deep learning was shown efficient to perform super-resolution recon-
struction of turbulent flows [27]. Raman/Rayleigh line measurements
were combined with machine learning for combustion regime iden-
tification [28]. Reduced-order models based on principal component
2

analysis allowed for developing digital twins for various reactive flow
applications [29]. Reactive flow solvers have also been developed from
machine learning [30] and much more works addressing turbulent
combustion modeling may be found in above references.

The partially-stirred reactor (PaSR) generic concept was introduced
in large variety of formulations in the literature for simulating highly
diluted combustion. PaSR were for instance used to study the effect of
hydrogen on H2/CH4 flame structure of MILD combustion [31] and to
simulate H2/N2 lifted flame in a vitiated co-flow [32] or to describe
a piloted lean premixed jet flame with finite-rate chemistry [33].
The Eddy Dissipation Concept was also extended to model turbu-
lence/chemistry interactions in MILD combustion [34] and to study the
reactive structures of NOx emissions of methane/hydrogen mixtures in
flameless combustion [35]. The influence of kinetic uncertainties on
the accuracy of numerical modeling of an industrial flameless furnace
fired with NH3/H2 blend was addressed in a combined experimen-
tal and numerical study [36,37], also examining the role of mixing
models in MILD combustion [38]. The specific aspect of internal re-
circulation and how it impacts on modeling accuracy was carefully
examined [39] along with strategies for hydrogen-enriched methane
flameless combustion [40].

Here we start by devising a procedure to build, from a detailed
chemical combustion kinetics, a database representative of the ther-
mochemical conditions which can be expected in a flameless furnace.
The method relies on stochastic micro-mixing, including the specific
high-dilution rates and heat-losses as observed in the UMONS furnace
studied experimentally [8–10]. From this database, a set of neural
networks are trained to return the increment in species mass fractions
and temperature for a given thermochemical state. These networks
are then introduced in a Large-Eddy Simulation (LES) flow solver
to be combined with a simple formulation of turbulence/chemistry
interaction modeling, in order to simulate the furnace and results are
compared against experimental measurements.

The subsequent section reports on the flow configuration, the nu-
merical methods and turbulence modeling. After that, the focus is on
the structures of the networks and their training in view of combustion
chemistry integration in LES. The training database is presented and
verified, with a discussion on the compromise between multiplying the
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Fig. 2. UMONS furnace configuration and mesh.

Fig. 3. Instantaneous iso-surface of Q criterion [41]. 𝑄 = 6.105 s−2, colored by
temperature in Kelvin.

number of both, the heat loss levels and the amount of dilution by
burnt gases, and, the simple application of data blurring, to benefit
from accurate predictions. Finally, the statistics obtained from LES are
compared against measurements before concluding.
3

Fig. 4. Histogram of the values of 𝜅 (Eq. (2)).

Fig. 5. CO stochastic particles mass fraction versus mixture fraction (gray dots). BG0:
Burnt gases inlet. Fuel: B50 gas inlet (Table 1).

2. Reactive flow configuration and numerics

2.1. UMONS flameless furnace

The UMONS lab-scale furnace [8–10] is a 30 kW pilot experiment
operating under the flameless combustion mode, hence with high di-
lution of the fresh reactants (air and fuel) by burnt gases and strong
heat transfer to a thermal charge, with radiative transfer contributing
to about 80% of the total heat transfer. This lab-scale furnace was
designed to mimic some of the main features of industrial furnaces,
through the configuration of the injection of the gases, the global ge-
ometry of the enclosure, the amount of air preheating and the variable
thermal charge.

The combustion chamber is made of stainless steel and it is equipped
with a fibrous ceramic heat insulation layer. It consists of a square inner
section of 0.35 m × 0.35 m for 1.0 m high (Fig. 1). A single air injection
lies in the center of the bottom wall. Two gas injectors with 11◦ tilt
angle are symmetrically located around this air injector.
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Fig. 6. Time evolution of major species mass fraction and temperature in Kelvin averaged over stochastic particles with 𝛼𝑙𝑜𝑠𝑠 = 3 ⋅ 105 and time step of 5 ⋅ 10−7 s. Symbols: detailed
chemistry. Line: ANN.
The air is preheated up to 1000 ◦C by an electrical system and the
fuel, named B50, is composed of 50% in volume of representative coke-
oven gas (COG) and low calorific blast-furnace gas (BFG) of heating
value 10.3 MJ/Nm3, the overall equivalence ratio is 0.89, see Table 1
summarizing gases composition and inlet mass flow rates. The composi-
tion of the recirculating burnt gases is taken at the outlet of the furnace,
also in agreement with recent Reynolds averaged simulations [10].
The mass flow rate of the recirculation inlet is calculated from the
dilution rate which is equal to 5. The thermal charge and the furnace
temperature are controlled through four water cooling tubes (heat
sink) whose immersion can be regulated from 0 to 90 cm. A reduced
water circuit is also added along the outer walls. According to the
measurements, this thermal charge extracts about 60% of combustion
heat release, 80% of which by radiative heat transfer and 20% by
convection [10]. Each vertical wall of the combustion chamber has a
removable part. A wall (on the rear side) is equipped with a quartz
window to allow for optical access and image recording. A side wall
(on the right) is equipped with eight S-type thermocouples, separated
from each other by 9 cm and mounted flush with the insulation layer,
to provide a wall temperature profile along the furnace height in the
vertical symmetry plane containing the air and gas injectors. Probes
are also inserted inside the furnace through fourteen holes on the
wall opposite to the thermocouples wall, to measure the temperature
and species concentration of O2, CH4, CO2 and CO (on dry basis) by
paramagnetic and infrared gas analysers. Measurement of H2 and N2
and additional measurements of O2, CH4 and CO were realized by a
gas chromatograph. More details regarding the experimental procedure
can be found in the literature [8,10,42,43].
4

2.2. Flow solver and modeling

The Navier–Stokes equations (momentum, energy and species mass
fractions) are solved using the open source software Code_Saturne [44].
It relies on a co-located second order accurate cell-centered finite
volume approach operating over unstructured grids. The full volume
of the furnace is meshed, including the 12 exhaust cylinders, with
a non-uniform mesh of 12 million cells, featuring tetrahedrons and
hexahedrons (Fig. 2). On the bottom wall where gases are injected,
the mesh is so that 𝑦+ is just below unity, while 7 < 𝑦+ < 15 on the
lateral walls. The mesh is strongly refined in the shear layers developing
downstream of jet injection with a resolution down to 0.2 mm. From
previous RANS simulations [10], the integral length scales in the shear
layers are about 10 mm and 5 mm in the air and the gas jets. The
resolution is thus adequate to capture the large scale flow motions and
the corresponding kinetic energy they contain. Fig. 3 shows the vortical
structures which develop from the three jets, to then be combined and
merge further downstream, they are colored by the temperature. At the
bottom close to injections, the reactants are mixed with recirculating
burnt products trapped between the jets, while the temperature is
indeed almost uniform as expected in the flameless combustion regime.

2.2.1. Turbulence-chemistry interaction modeling
Combustion in systems where reactants are injected through sep-

arated jets, thus operating in the non-premixed mode, is overall con-
trolled by a partial mixing of the reactants occurring at large and
medium flow length scales, followed by micro-mixing and molecular
diffusion at smaller scales, where reactants are put in contact and
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Fig. 7. Time evolution of minor species mass fraction averaged over stochastic particles with 𝛼𝑙𝑜𝑠𝑠 = 3 ⋅ 105 and time step of 5 ⋅ 10−7 s. Symbols: detailed chemistry. Line: ANN.
Fig. 8. Schematic of the decomposition in clusters for ANN training.
𝜔

chemical reactions occur [45]. Depending on the range of flow and
chemical characteristic time scales at play, finite rate chemistry and
other small-scales aero-thermochemical processes can strongly influ-
ence the operation of such furnace [5]. However, because the highly
diluted combustion regime goes with quite homogeneous mixture and
because the filtered thermochemical quantities are here resolved with
a mesh of about 200 μm in the reaction zones, scalars feature very
weak gradients away from the injection zones. Sub-grid scale scalar
fluctuations are then neglected at first to compute a reference chemical
source directly from the resolved field. In a second step, as in [46] this
source is modulated through a sub-grid Damköhler number, essentially
to account for the fast mixing occurring in the vicinity of the injection
of the reactants, fast mixing which can locally slowdown chemistry.

�̇�𝑘 denotes the LES filtered burning rate (or volume averaged over
the mesh cell), which enters the balance equation for the 𝑘th ther-
mochemical quantity. �̇�𝑘(𝑌 , 𝑇 ) is the burning rate computed from
quantities resolved by the mesh, where 𝑌 and 𝑇 are the LES filtered
5

vector of mass fractions and temperature respectively. �̇�𝑘(𝑌 , 𝑇 ) is
weighted by the reacting fraction 𝜅 [47], so that the filtered burning
rate reads

̇ 𝑘 = 𝜅�̇�𝑘(𝑌 , 𝑇 ) . (1)

The faster the chemistry (i.e. the smaller the chemical time 𝑡𝑐), the
larger �̇�𝑘(𝑌 , 𝑇 ). However, in each computational cell, the reacting
fraction 𝜅 must decrease if 𝑡m,𝛥, the mechanical mixing time in the cell
of characteristic size 𝛥, becomes larger than the chemical time, since
mixing is then not fast enough to fully feed the reactions occurring at
the smallest turbulent flow scales. Hence, 𝜅 = �̇�𝑘∕�̇�𝑘(𝑌 , 𝑇 ) is assumed
to be proportional to the ratio of characteristic times representative
of 𝑡c the reaction time and of 𝑡c + 𝑡m,𝛥, the total conversion time in
the computation cell, defined as the sum of the reaction time and the
sub-grid scale mixing time (𝑡m,𝛥) [47]:

𝜅 =
𝑡c = 1 , (2)
𝑡c + 𝑡m,𝛥 1 +𝐷𝑎𝑚
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Fig. 9. Time evolution of the loss function.
Fig. 10. State diagram of stochastic particles in mixture fraction space for a noised case.
where the sub-grid Damköhler number 𝐷𝑎𝑚 = 𝑡m,𝛥∕𝑡c has been intro-
duced. Because of the very weak gradients of all the thermochemical
quantities which are almost uniform, after ignition the characteristic
chemical time do not vary too much. In practice, it is whether the
mixture is ignited or not that overall drives the process and using a
single chemical time based on ignition to define 𝑡𝑐 was found sufficient
to obtain satisfying results. Here 𝑡𝑐 = 5.10−6 s is the shortest representa-
tive ignition delay of the mixture for the present operating conditions,
as observed in the detailed chemistry simulation reported thereafter.
The mechanical mixing time 𝑡𝑚,𝛥 is approximated from the Smagorinksy
SGS model [48,49], used in the simulations to represent transport by
unresolved velocity fluctuations:

𝑡𝑚,𝛥 =
(𝐶𝑠𝛥)2

𝜈 + 𝜈𝑠𝑔𝑠
. (3)

𝐶𝑠 is the parameter of the dynamic procedure [50] applied to ap-
proximate the SGS viscosity in the simulation, 𝜈𝑇 = (𝐶𝑠𝛥)2|𝑆|, where
|𝑆| = (2𝑆𝑖𝑗𝑆𝑖𝑗 )1∕2, with 𝑆𝑖𝑗 = (∇𝐮 + ∇𝐮𝑇 )∕2. 𝐮 is the velocity vector,
𝜈 is the molecular viscosity and 𝛥 = 𝑉

1
3 , with 𝑉 the volume of the

cell.1 LES of MILD combustion in the same furnace was conducted for
a different mixture using a formulation similar to the one used in this
work [51]. Fig. 4 reports the histogram of the values of 𝜅 computed
where the chemical heat release rate is non-zero. It is seen that 𝜅 = 1

1 Notice that this formulation for the chemical source would not be valid
in Reynolds averaged context (RANS), there it would be mandatory to account
for unresolved fluctuations of scalars when estimating the chemical source.
6

dominates, with another set of points in the jet shear layers where 𝜅
values are centered around 0.1.

Within this framework, the neural networks are trained to return
𝛿𝑌𝑘 = �̇�𝑘(𝑌 , 𝑇 ) × 𝛿𝑡, where 𝛿𝑡 denotes the time-step. During time
iterations in the flow solver, convection and diffusion are first solved,
then the increment due to chemistry is directly read from the networks.
Sub-iterations may be required in case the time-step is larger in the flow
solver than during the training phase of the network.

2.2.2. Radiative heat transfer modeling
The weighted-sum-of-gray-gases (WSGG) approach is applied to

model radiative heat transfer [52]. The emissivity weighting factors
and absorption coefficients of combustion products (H2O and CO2) are
calculated using correlations [53]. Three gray gases are considered to
minimize CPU time and memory requirements [10,54]. The discrete
ordinate method (DOM-𝑆4, 24 directions) [55,56] is used to discretize
the radiative transfer equation (RTE) over the three-dimensional mesh.

3. ANN reduced chemistry for flameless combustion

3.1. Training database

The strategy for building the neural networks training database
relies on previous works [19,57]. Stochastic micromixing modeling
is combined with complex chemistry to generate, prior to any flow
simulation, the variety of thermochemical conditions expected in the
combustion system. In this approach, the fraction of flow rate injected
through a given inlet defines the number of stochastic particles taking
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Fig. 11. Time evolution of major species mass fraction and temperature in Kelvin averaged over stochastic particles with 𝛼𝑙𝑜𝑠𝑠 = 1.5 ⋅ 105 and time step of 5 ⋅ 10−6 s for 3 ratios of
burnt gases recirculation rate. Left: 3. Middle: 4. Right: 5.
the thermochemical properties of that inlet at initial time. Each particle
carries information on the species mass fraction vector and enthalpy.
From this non-premixed initial condition, the stochastic particles evolve
in time according to2

𝜕𝑌 𝑝
𝑘 (𝑡)
𝜕𝑡

= MIX𝑝(𝜏T) + �̇�𝑝
𝑌𝑘

, (4)

𝜕ℎ𝑝𝑠(𝑡)
𝜕𝑡

= MIX𝑝(𝜏T) + �̇�𝑝
ℎ𝑠

+ 𝛼𝑙𝑜𝑠𝑠(𝑇𝑝 − 𝑇𝑤𝑎𝑙𝑙) . (5)

𝑌 𝑝
𝑘 (𝑡) is the mass fraction of the 𝑝th particule, MIX𝑝(𝜏T) denotes the Eu-

clidian Minimum Spanning Tree micromixing model [60] and �̇�𝑝
𝑌𝑘

is the
chemical source. The characteristic value of the micromixing time, 𝜏𝑇 =

2 Other applications of this class of model problem for chemistry reduction
and process control may be found in the literature [58,59].
7

0.3 ms, was determined from previous simulations of the furnace [10].
Varying 𝜏𝑇 in Eqs. (4)–(5) around its nominal value was found to have
a relatively weak impact for the purpose of database generation in
view of chemistry reduction, at least as long as ignition occurs [58].
To account for the non-adiabatic character of the flow, a linear heat
loss term is added and calibrated with the variable coefficient 𝛼𝑙𝑜𝑠𝑠,
the temperature of the particle 𝑇𝑝 and the average wall temperature
measured in the experiments 𝑇𝑤𝑎𝑙𝑙 = 1259.4 K. The parameter 𝛼𝑙𝑜𝑠𝑠
is chosen so that the mean chemical equilibrium temperature of the
ensemble of stochastic particles ranges between 1200 and 1500 K,
as reported experimentally in the recirculating burnt gases. The first
training database is then composed of three set of stochastic particles
evolving from their initial condition up to equilibrium, for 𝛼𝑙𝑜𝑠𝑠 taking
the values 3 ⋅ 105, 5 ⋅ 105 and 7 ⋅ 105 W kg−1 K−1. Eqs. (4) and (5) are
solved with routines from the Cantera package [61].
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Three inlets are imposed to build every set of time evolving stochas-
ic particles. These inlets carry respectively the B50 gas, air and a
iven amount of recirculating equilibrium burnt products (Table 1).
his third inlet is necessary because with separated jet injection, the
eactants are mixed with recirculating burnt gases before they meet and
his specific behavior must be included in the training thermochemical
ataset. The estimated mass flow rate of recirculating burnt gases, as
rovided experimentally, is given in Table 1. In practice, the system of
qs. (4)–(5) is then solved with, at initial time, 25 stochastic particles of
50, 102 particles of air and 643 particles of recirculating burnt gases.
composition space (CO-mixture fraction) distribution of the particles

epresentative of these conditions is shown in Fig. 5.
The time evolution of the relevant species mean mass fractions

nd temperature computed over the stochastic particles are shown in
ymbol with the GRI-3.0 detailed chemistry mechanism [62] for 𝛼𝑙𝑜𝑠𝑠 =
.105 and a time-step of 5.10−7 s in Fig. 6 for major species and in Fig. 7
or minor species. The identification of the species relevant to capture
he thermochemistry, and whose increment in time shall be learned
y the neural networks, is achieved applying the direct relation graph
ith error propagation analysis (DRGEP) [63] to the trajectories seen in

hese figures. Starting from the detailed scheme GRI3.0, 14 species were
dentified as essential to follow the dynamics of the chemical system
volution: H2, H, O, O2, OH, H2O, HO2, CH3, CH4, CO, CO2, HCO,
H2O and N2. These species mass fractions and the temperature will
erve as input to the neural networks, which are trained to return their
ncrements, or source terms, for a given time step. Meaning that 14
calars will be solved in LES.

.2. Clustering thermochemical data and ANN structure

A single neural network cannot handle the large variety of chemical
8

onditions seen by the gases during their evolution from injection up to o
hemical equilibrium. Following a previously develop approach [57],
he dataset is first decomposed in clusters and a dedicated neural
etwork will be affected to every cluster. Multiplying the numbers of
NN to secure precision does not increase significantly the CPU time
f the flow simulation, as all the ANNs are implemented as subroutines
n the computational fluid dynamics (CFD) solver and called according
o the thermochemical composition space location of the mesh cell to
e advanced in time. However, this considerably impacts on the CPU
evoted to training, as discussed in the next subsection.

The decomposition of the dataset into subdomains implies the ap-
lication of pre-treatments, such as centering, rescaling and clustering
ith K-means. [64]. More precisely, we use the K-means++ algo-

ithm [65], which stands as a well-established unsupervised machine
earning algorithm to group similar data into different clusters. The
lgorithm assigns randomly a first centroid, a second centroid is then
hosen as farthest as possible to the first centroid, a third centroid is
s farthest as possible to the first two centroids, and so on. Then, every
ata point is assigned to the cluster with the shortest Euclidean distance
n the multi-dimensional composition space. The centroid locations are
pdated by averaging all data points in each cluster and the process is
epeated until the centroid locations are converged by evaluating the
hifting tolerance which is chosen at 10−20.

There is a general trend of combustion data to cluster simply in two
roups according to fresh and burnt gases. Also to refine the analysis,
hierarchical clustering strategy is adopted [57]. The first clustering

eparates fresh and burnt gases (Parent 0 and Parent 1 in Fig. 8). The
arent 0 cumulates the data from mixing, ignition and combustion
tages, it is further decomposed into 20 child clusters. The data subset
n the second parent, representing the final stage of combustion up to
he ultimate equilibrium state, was found to require a special treatment
n the case of flameless combustion in order to guarantee the success

f ANN training. This second parent is decomposed into only 3 child
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Fig. 13. Experimental (symbol) and simulated vertical profiles of mean CO in volume percentage on dry basis. Dashed line and empty symbols: 𝑥 < 0 (left side of furnace). Line
and symbols: 𝑥 > 0 (right side). Maximum measurement uncertainty is 0.28%.
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Table 2
Structure of ANNs [19].

Layer Output shape Activation function

Input (None, 11) –
Dense (None, 512) ReLU
Dense (None, 256) ReLU
Dense (None, 128) ReLU
Dense (None, 64) ReLU
Dense (Output) (None, 11) –

clusters, which will have respectively, 40, 15 and 15 grandchildren.
Each child cluster of the first parent and each grandchild cluster of
the second parent benefits from its own ANN training. During LES,
from the input state vector composed of the species mass fractions
and temperature, the Euclidean distance to each cluster centroid is
calculated. The LES mesh point is then assigned to the cluster located
at the minimum distance.

The ANN regression structure (Table 2) is similar to previous
works [19] (Table 2). Every ANN consists of 1 input layer, 4 dense
hidden layers with the rectified linear activation function (ReLU) and
1 output layer. The total number of parameters (weights and biases)
is 179851. The database is split into training set (81%), validation
set (9%) and test set (10%) for model verification. The training is
performed for a fixed time-step of 5 ⋅ 10−7 s.

The training process is performed using Tensorflow 2 with GPU
support (NVIDIA GeForce GTX 1080 Ti) and the Adam optimizer in
default setting. To avoid overfitting, the early stopping callback is
used and set as 200 epochs. The check point callback saves the best
model with the lowest mean squared error (MSE) during the training
process. The parameters of the default setting of the Tensorflow 2 Adam
optimizer are used with a learning rate set at 0.001. The training- and
validation-loss were found to diverge, also the check point call back
9

o

procedure was introduced to avoid overfitting. The 200 epochs were
chosen to ensure that the final trained model always has the lowest
validation loss. The training curves are shown in Fig. 9. The overall
training, validation and test errors are within the range [10−5, 10−3].
(Beside early stopping callback, the dropout method was also tested
but it did not show significant impact and the training process took
longer.)

3.3. ANNs verification and database blurring

The ANNs are trained to return the increments, or source terms,
for the species mass fractions and temperature, knowing the vector
of species mass fractions and temperature (ANN input). To verify the
quality of the training, the evolution of the stochastic particles is
simulated again from Eqs. (4) and (5), but replacing the computation
of the chemical sources from the detailed mechanisms by the ANNs
output.

The strategy reported in previous works [19] is applied to fully in-
sure mass conservation after the removal of the less influential species.
The mass imbalance in the source of atom A is measured for reduced
set of species

𝛥�̇�A =
𝑁𝑟

𝑠
∑

𝑖=1

𝛽A,𝑖𝑊A

𝑊𝑖
�̇�𝑖 , (6)

here 𝑊A and 𝑊𝑖 are molar weights and 𝛽A,𝑖 the number of atom ‘A’ in
he 𝑖th species. Sources of carbon containing species and of hydrogen
ontaining species are corrected adding

�̇�𝑖 = −
𝑌𝑖
𝑌A

𝛥�̇�A , (7)

with the atom mass fraction 𝑌A =
∑𝑁𝑟

𝑠
𝑖=1 𝛽A,𝑖(𝑊𝐴∕𝑊𝑖)𝑌𝑖. For oxygen,

q. (7) is applied only to O2 and with the already corrected sources

f C and H containing species.
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Fig. 14. Experimental (symbol) and simulated vertical profiles of mean H2 in volume percentage on dry basis. Dashed line and empty symbols: 𝑥 < 0 (left side of furnace). Line
nd symbols: 𝑥 > 0 (right side). Maximum measurement uncertainty is 0.72%.
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Comparing in Figs. 6 and 7 the time evolution of the major and
inor species, results are quite convincing. Some departure exists for

he minor species, but it is acceptable considering the strong reduction
f the number of species transported, here from 53 to 14. Computing
hese evolutions is 80 times faster with the ANN than integrating the
etailed chemistry, notice that this speed-up would depend on the
tiffness of the detailed chemistry. Once the overall procedure setup has
een verified for the micromixing canonical problem, it is extended to
ddress the UMONS furnace test case.

As a matter of fact, within the UMONS furnace, the diversity of the
hermochemical conditions are more pronounced than those generated
y the canonical problem reported above. One of the major issue lies in
he huge variability in the amount of burnt gases locally mixed with the
eactants, mainly because the recirculation rate of burnt products is far
rom being uniform in space. The fuel may for instance be mixed only
ith burnt gases without air within coherent flow structures, which are

hen convected quite far downstream before meeting air. (See Figs. 11
nd 12).

A successful attempt was made to extend the above database by
onsidering additional levels of burnt gases recirculation, i.e., varying
he amount of stochastic particles within the third inlet of the model
roblem (Eqs. (4)–(5)). However, these additional levels coupled to-
ether with the different heat-loss levels lead to a computing effort for
raining which rapidly became prohibitive.

Following previous works in which the control of database augmen-
ation combined with improvement in training efficiency was achieved
rom a systematic blurring [19,21,25], 5% of Gaussian noise is added
o all variables in all cases of the above dataset, still conserving mass
hanks to Eqs. (6)–(7). The final database contains 25.238.581 rows.
he training is performed following the very same procedure reported
bove but in parallel using 8 GPUs (NVIDIA Tesla K80) and it is
10

ompleted in about 7 h runtime.
Fig. 10 shows the temperature and CO2 responses in mixture frac-
tion space for the noised database. Following the same procedure as
above, the ANNs obtained with this noised database are verified by
solving Eqs. (4) and (5) with detailed and ANN-based chemistry. For
this test, three dilutions ratios are considered (ratio between burnt
gases mass flow rate and sum of fuel and air mass flow rates) and with
a lower level of heat-loss 𝛼𝑙𝑜𝑠𝑠 = 1.5 ⋅ 105, in order to mimic different
conditions. The trained ANNs capture quite well the thermochemical
response, as seen in Fig. 11.

4. Results and comparison against measurements

Fig. 12 shows the comparison between measured and computed
averaged temperature. The rather flat temperature profiles expected in
a flameless combustion regime are observed. The temperature field is
quasi-homogeneous in the simulation, without hot spots representative
of thin flame reaction zones. Both locations on the left side (𝑥 < 0) and
on the right side (𝑥 > 0) of the furnace are displayed. At the locations
of x = ±0.12 m and ±0.15 m, the measured temperature decreases in the
vicinity of the fuel jet, a trend that is well recovered by the simulations.

The distributions of the three species, CO, H2 and CH4, initially
resent in the fuel and produced/consumed by combustion, are com-
ared against measurements in Figs. 13–15. Results are also convincing.
he peak values in the profiles correspond to the fuel jet. The measured
pecies profiles at the location of x = ±0.15 m (Figs. 13(d), 14(d) and

15(d)) feature a significant asymmetry between the right and left sides,
while the numerical results show rather similar profiles on both sides.
Thereby, the computed species profiles agree with the measured species
profile at x = −0.15 m, but not at x = +0.15 m. According to these
experimental profiles at x = +0.15 m, the molar fractions of CO, H2
and CH4 stays very low in the vicinity of the fuel jet on the side of
positive abscissa (the right side of the furnace), where the sampling
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Fig. 15. Experimental (symbol) and simulated vertical profiles of mean CH4 in volume percentage on dry basis. Dashed line and empty symbols: 𝑥 < 0 (left side of furnace). Line
and symbols: 𝑥 > 0 (right side). Maximum measurement uncertainty is 0.27%.
probe was introduced. It is therefore likely that the discrepancy in the
measurements between the two sides results from spurious perturbation
by the probe.

Overall the CPU cost of the simulation with the ANN chemistry
solver is only 1.6 times the CPU cost of the simulation of the variable
density flow within the furnace without chemistry, thus opening many
perspectives for the application of LES to such industrial combustion
systems.

5. Conclusion

Neural networks have been introduced in large-eddy simulation of a
flameless combustion furnace [42,43] to speed up the time integration
of chemistry. Storing the species mass fraction increments, the neural
networks both reduce and pre-integrate stiff chemical systems. In a low-
Mach number flow solver, with time-splitting for chemistry, the neural
networks directly return the updated state of the thermochemical pa-
rameters, allowing for performing the complex chemistry simulations
at a very moderate CPU cost.

To achieve the ANN training prior to the flow simulation, a stochas-
tic micro-mixing model problem with heat-loss and dilution by burnt
gases is simulated with a detailed chemical scheme. It is shown that an
acceptable level of accuracy can be achieved after clustering the data
in the thermochemical composition space applying standard machine
learning tools. A family of neural networks, each dedicated to a given
cluster, are finally trained to be applied in the simulations. The CPU
increase from a non-reactive multi-species simulation (i.e., from a
reference simulation transporting the 14 species for convection and
diffusion) is of only 60% with chemistry solved with ANN.

The numerical results compare well with experiments, which is very
encouraging considering the low computing cost of these simulations.
11

However, to fully conclude on the validity and the robustness of this
approach, additional test cases need to be considered, also including
measurements of emissions such as NOx or particulate, to further
develop and consolidate the modeling. Indeed, a simplified description
of the turbulence chemistry interaction (TCI) has been used to focus on
the CPU gain brought by the introduction of ANNs. The TCI modeling
part of the work could be improved by developing machine learning
based closures specialized in combustion regimes where reactants are
highly diluted by recirculating burnt products.
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