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SUMMARY TEXT FOR THE TABLE OF CONTENTS

A long-term (24-years) field experiment was assessed regarding the effect of no-tillage 

on organic C and rice yield in a subtropical lowland ecosystem in Southern Brazil. Based 

on our findings, no-tillage promotes C accumulation in subtropical paddy rice soils, but 

its effect on yield stability and profitability of rice crop is less prominent and only occur 

in long-term.
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22 No-tillage promotes C accumulation in soil but has only a slight effect on yield stability and 

23 profitability of rice in subtropical lowland ecosystems
24

25 Abstract

26 CONTEXT No-tillage effect on soil organic C (SOC) and rice yield in lowland soils is poorly 

27 understood in subtropical ecosystems. AIMS We assessed, in a long-term (24-years) field experiment, 

28 the effect of no-tillage (NT) on SOC stocks in labile (> 53 µm, particulate) and stable (< 53 µm, 

29 mineral associated) fractions of soil organic matter and on rice grain yield in comparison to 

30 conventional tillage (CT) and pre-germinated tillage (PG) systems in a lowland Gleysol in Southern 

31 Brazil. METHOD Soil from 8 different layers down to 40 cm under each tillage system was sampled 

32 in a field experiment, and additional soil samples were obtained from an adjacent area under native 

33 grassland (NG) as reference for SOC stocks. KEY RESULTS While PG and CT systems maintained 

34 similar SOC stocks in comparison to NG soil, NT increased SOC stocks at an annual rate of 0.41 Mg 

35 ha−1 in relation to the traditional CT soil, mainly in mineral-associated organic matter. Rice grain yield 

36 increased twice in the 24-years, amounting to 12 Mg ha–1 in the last crop season. Despite the lower 

37 rice yield in NT system than under CT and PG systems in the most crop seasons (mean of 7.7, 8.0 and 

38 8.5 Mg ha−1 for the whole experimental period, respectively), a slight effects on yield stability and 

39 profitability (<10%) were observed for NT. CONCLUSIONS AND IMPLICATIONS Based on our 

40 findings, no-tillage promotes C accumulation in subtropical paddy rice soils, but its effect on yield 

41 stability and profitability of rice crop is less prominent and only occur in long-term.

42

43 Key words: soil organic matter, C lability, paddy rice, profitability, southern Brazil.
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44 Introduction

45 Rice (Oryza sativa L.) is the staple food for more than one-half of the world’s population (Seck et al., 

46 2012). Approximately 80 million ha of rice crop and 75% of the world’s rice production are managed 

47 by flood irrigation at present (Irri, 2019). Irrigated rice in Brazil comes mainly from the subtropical 

48 region in the South. Rio Grande do Sul, which is the southernmost Brazilian state and borders on 

49 Argentina and Uruguay, is a massive rice granary with a cultivated area close to 1 Mha (Conab, 2018). 

50 Rice yield in this state has increased from 4.0 to 7.5 Mg ha–1 over the last 20 years (Ibge, 2019) as a 

51 result mainly of the use of more productive plant varieties plus improvements in soil and crop 

52 management (Irga, 2018).

53 In Southern Brazil lowlands, rice is usually grown in tilled soil in order to standardize surfaces, 

54 and also to facilitate sowing and irrigation while minimizing competition from weeds (Sosbai, 2018). 

55 The most widely used soil tillage systems for rice cultivation in Southern Brazil are conventional 

56 tillage (CT) and minimum tillage (MT), both of which involve sowing in dry soil. However, pre-

57 germinated tillage (PG) is traditionally adopted in small farms, in which soil is flooded for almost half 

58 of the year (i.e., about two months more than under CT; Sosbai, 2018).

59 Long-term field studies conducted in American, African and Asian Continents have shown 

60 irrigated rice cultivation in CT soils to have an adverse impact on soil organic carbon (SOC) (Buarach 

61 et al., 2014; Rosa et al., 2011; Zhou et al., 2009) despite the prevailing anoxic environment, where 

62 microbial activity is partially inhibited (Sarahwat, 2005). Because of the well-known impact of SOC 

63 on chemical, physical and biological properties of subtropical soils, a decline in SOC stocks can 

64 adversely affect soil quality and rice yield. The extended soil flooding period in PG may result in 

65 decreased microbial decomposition of soil organic matter (SOM) due to less efficient anaerobic 

66 metabolism (Rinklebe & Longer, 2006). These conditions may help maintain SOM status, but no 

67 scientific evidence from field studies exists as to whether this is indeed the case. 

68 One of the current challenges posed by irrigated rice cultivation in the subtropical lowland 

69 ecosystems of Brazil arises from the adoption of no-tillage (NT), which may be an effective practical 

70 strategy for soil organic matter stabilization (Sahrawat, 2005, 2012), with potential benefits on SOC 

71 stocks and lability, which can provide a useful combined indicator of soil performance potential (Blair 

72 et al., 1995; Zanatta et al., 2019). However, some studies in lowland soils have shown frequent 
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73 flooding to decrease the stability of soil aggregates, thereby reducing physical protection of labile 

74 organic fractions such as particulate organic matter (Nascimento et al., 2009; Rosa et al., 2011) —it 

75 should be borne in mind that C of stable organic matter associated with minerals is the most strongly 

76 affected by tillage in flooded soils (Nascimento et al., 2009). 

77 Despite the potential effect of soil quality on crop yields, the response of irrigated rice yield to 

78 NT remains unclear (Huang et al., 2015), with some studies suggesting a favorable effect (Buarach et 

79 al., 2014) and some an adverse influence (Singh et al., 2013; Alan et al., 2014). Rather than rice yield, 

80 the impact of tillage systems should be assessed in terms of between-season stability (Knapp & van 

81 der Heijden, 2018) and profitability (Page et al., 2019). 

82 The starting hypothesis for this work was that no-tillage would have a more favorable long-

83 term impact on SOC stocks and rice yield in subtropical lowland ecosystems than would tillage. 

84 Carbon stabilization in lowland soil under NT occurs mainly by association with minerals and has a 

85 minor effect on particulate SOM. Rather than grain yield, NT increases between-season yield stability 

86 and gross margin in rice crop. The main purpose of this work was to assess the long-term effect of 

87 three tillage systems on SOC stocks and lability, grain yield and its between-season stability, and gross 

88 margins of irrigated rice in a subtropical sandy loam Gleysol in Southern Brazil.

89

90 Materials and Methods

91 Site description, experiment design and conduction

92 The study was based on a 24-yrs old experiment at the Experimental Station of the Rio Grande do Sul 

93 Rice Institute in the municipality of Cachoeirinha (Rio Grande do Sul State, Southern Brazil; 

94 29°57′02″ S, 51º05′02″ W, 7 m a.s.l.). The climate as per Köppen’s classification is Cfa, and the mean 

95 annual temperature and rainfall are 18.4 °C and 1412 mm, respectively. The soil was a sandy loam 

96 Gleysol (WRB/FAO) and had the following properties:  clay content = 170 g kg–1, organic matter 

97 content = 17 g kg–1, pH2O = 5.3, available P (Mehlich-1) = 14.3 mg dm–3 and available K (Mehlich-1) 

98 = 41.8 mg dm–3. The original vegetation was native grassland, which was preserved in a small area in 

99 the vicinity of the experiment site. 

100 The experiment, established in 1994, involved a monoculture of irrigated rice (Oryza sativa L.) 

101 in the spring/summer in succession to a self-growing ryegrass (Lolium multiflorum Lam.) as a 
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102 nonirrigated cover crop in the autumn/winter. The soil was subjected to three tillage systems, namely: 

103 (a) conventional tillage (CT), where the soil was mobilized on a yearly basis through plowing (2 

104 months after rice harvest) and harrowing (first immediately after plowing and then 2 weeks after 

105 ryegrass desiccation) immediately before rice was sown in spring; (b) pre-germinated tillage (PG), by 

106 which soil was disturbed similarly to CT, but smoothing and levelling with a blade were performed 

107 under flooding (water layer of approximately 5 cm) prior to sowing previously germinated seeds; and 

108 (c) no-tillage (NT), with which the soil was not subjected to any tillage operation and the rice was 

109 sowed through the straw layer on the soil surface. The experimental design consisted of complete 

110 randomized blocks with three replications. Each plot was 28 × 40 m and separated from the others by 

111 levees. 

112 A glyphosate-based herbicide was applied at 3 L ha–1 to ryegrass at the flowering stage in early 

113 spring, followed by machine chopping of standing biomass in the three tillage systems. The rice sowing 

114 was performed until the first half of November. With CT and NT, rice was mechanically seeded at a 

115 rate of 125 kg ha−1 with a seed drill along lines spaced 17.5 cm; also, the soil was irrigated by flooding 

116 when the plants were at developing stage V4 (Counce et al., 2000). With PG, the soil was flooded 

117 about 60 days before seeding and pre-germinated seeds were broadcast after the plots were leveled 

118 and flooded. 

119 The rice varieties and rates of N, P2O5 and K2O fertilization for each crop season were identical 

120 for all tillage systems (see Table S1 in Supplementary data). 

121  

122 Biomass and carbon input by rice and ryegrass 

123 An average annual C input was estimated for the whole experimental period as the combined biomass 

124 of ryegrass in winter and rice in summer. The shoot biomass of ryegrass was estimated by averaging 

125 biomass production in 2001, 2002, 2014 and 2015 as evaluated in six sub-samples collected from a 

126 0.5 m2 area in each plot. The shoot biomass supplied by rice was estimated from rice grain yields, 

127 using an apparent (without roots) harvest index of 0.5 (Fageria et al., 2007). A dry matter contribution 

128 of roots equivalent to 30% of shoot biomass of rice (Holzschuh et al., 2009) and ryegrass (Assmann et 

129 al., 2014) was considered. Also, a mean concentration of 0.45 kg C kg–1 dry matter of both residues 

130 was used to estimative of C input (Nascimento et al., 2009).
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131

132 Soil sampling and analysis

133 The soil profile was sampled at eight different depths (02.5, 2.55, 57.5, 7.510, 1015, 1520, 

134 2030 and 3040 cm) after rice harvest in March 2015 (i.e., 21 years after the experiment was started). 

135 An area under native grassland adjacent to the experimental site was also sampled at the same soil 

136 depths and used as reference for natural SOC stocks. A total of 20 soil sub-samples were collected 

137 with a cutting shovel and combined into a single composite sample from each plot that was air dried 

138 and ground to ≤ 2 mm in a Marconi 330 grinder. Approximately 20 g of soil was further ground to ≤ 

139 0.025 mm in a mortar and analyzed for C by dry combustion in a Fisher Scientific Flash 2000 CN 

140 analyzer. 

141 SOC stocks were calculated by using the equivalent soil mass approach (Ellert & Bettany, 

142 1995) with CT soil mass as reference. Soil bulk density (BD, Table S2) was determined by using the 

143 volumetric ring method (Blake & Hartge, 1986) in duplicate at the same soil depths as for SOC. 

144 Soil organic matter was subjected to granulometric fractionation in order to quantify the labile 

145 and stable C-pools in soil organic matter. Briefly, 20 g soil samples were shaken horizontally in 80 

146 mL of sodium hexametaphosphate solution (5 g L−1) for 16 h (Cambardella & Elliott, 1992). The 

147 resulting suspensions were sieved through 53 μm mesh and the retained fraction, which consisted of 

148 particulate SOM (POM, labile fraction), were washed, oven dried at 50 °C and analyzed for C by dry 

149 combustion. The C content of mineral-associated organic matter (min-OM, stable fraction) was 

150 calculated as the difference between SOC and POM-C. 

151 The carbon management index (CMI) for the 0–40 cm layer was calculated as originally 

152 proposed by Blair et al. (1995), and POM-C and Min-OM-C were used as proxies for the labile and 

153 stable C pools, respectively (Vieira et al., 2007). CMI was calculated from data for the native grassland 

154 (NG) soil used as reference (CMI = 100) as follows: 

155 (1)CMI =  CLI ×  CPI ×  100

156  (2)CPI =  C pool index =  
treatment Cstock
reference Cstock

157  (3)CLI =  C lability index =
C lability (L) in treatment

C lability in the reference NG
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158  . (4)L =  C lability =
C stock in labile SOM fraction 0 - 40 cm 
C stock in stable SOM fraction 0 - 40 cm

159

160 Rice grain yield, between-season yield stability and gross margin

161 Rice grain yield was determined by harvesting 6 subsamples from a 4 m2 area in each plot and 

162 expressed at 130 g kg–1 soil moisture. No rice was harvested in the 2001/02 season because the crop 

163 had been attacked by birds; also, soybean was grown from 2010/11 to 2013/14, so rice yield could 

164 only be assessed in 19 seasons. 

165 Between-season stability in grain yield was assessed by calculating a relative stability ratio for 

166 each tillage system according to Knapp & van der Heijden (2018). Such ratio, which represents the 

167 variability per unit grain yield, was calculated by dividing the coefficient of variation (CV) for each 

168 tillage system by that for the CT system (the reference). Thus, ratio values of 1, < 1 or > 1 for a tillage 

169 system indicated that between-season stability in grain yield under it was identical with, lower than or 

170 higher than, respectively, that for CT system. 

171 An economic analysis was conducted to compare the gross margins for the three tillage 

172 systems. Gross margin was calculated as the income from grain minus the operating costs involved in 

173 producing the summer cash crop each year. No fixed or overhead expenses such as rates, tax, 

174 insurance, interest or depreciation on machinery and buildings were considered. All costs and income 

175 were calculated on the basis of present-day values with provision for no fluctuations in input costs 

176 over time. The overall costs for rice under CT in the 2018/19 crop season estimated by the 

177 Riograndense Rice Institute were used as reference (1372 US$ ha-1). With NT, the economy of diesel 

178 resulting from less tillage operations amounted to 96 US$ ha–1 and was subtracted from the costs of 

179 the CT system. With PG, the additional cost of irrigation for 2 further months (73 US$ ha–1) was added 

180 to the CT costs. The gross income from the grain harvest was calculated on the assumption of a grain 

181 price of 221 US$ Mg–1 (viz., the current price rice paid to farmers). No fluctuations in grain price over 

182 time were considered. 

183
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184 Statistical analysis

185 The results were checked for variance normality and homoscedasticity with the Kolmogorov–Smirnov 

186 and Levene test, respectively, and appropriated data transformation were performed when assumptions 

187 were violated. The analysis of the variance was performed and, when significant (p < 0.05), the 

188 differences between treatment means were evaluated with Tukey’s test at p < 0.05. The MIXED 

189 procedure was used to compare the effects of tillage method (T) and soil layer (L) on the response of 

190 the SOC and SOM pools. On the other hand, tillage methods (T) were compared in terms of their effect 

191 on rice yield and SOC stocks in the 0–40 cm layer. The results for NP were excluded from the statistical 

192 analysis because this tillage system did not follow the experimental design and was simply used as 

193 reference for the effects of tillage. The statistical procedures used tillage method as a fixed factor, and 

194 blocks and experimental errors as random variables. All analyses were performed with SAS® v. 9.4 

195 (Statistical Analysis System Institute, Cary, NC, USA).

196

197 Results 

198 Carbon input by crops

199 The average addition of biomass (shoots + roots) from winter ryegrass and summer rice for the three 

200 tillage systems was 15.09 Mg ha1 and rice biomass accounting for 64% of total biomass addition 

201 (Table 1). The annual C input ranged from 6.7 to 7.0 Mg ha1 across tillage systems. 

202

203 Soil carbon content and stocks, and soil organic matter fractions

204 Twenty-one years of contrasting tillage systems resulted in large differences in SOC stocks in the 040 

205 cm soil layer (Table 2). In fact, SOC stocks ranged from 46.5 Mg ha−1 in CT soil to 55.6 Mg ha−1 in 

206 NT soil (Table 2), with an intermediate value (47.8 Mg ha−1) in PG soil. However, the increased SOC 

207 level under NT was restricted to the surface soil layer (0−2.5 cm; Figure 1). The difference in SOC 

208 down to 40 cm between CT and NT (9.1 Mg ha−1) resulted in an annual C accumulation rate of 0.41 

209 Mg ha−1. SOC stocks under NT were similar to those in the reference soil (NG; Table 2).

210 POM-C and Min-C were affected by tillage system only in the surface soil layers (Figure 1). 

211 Thus, POM-C ranged from 4.9 to 24.4 g kg−1 soil in the surface layer but dramatically decreased with 

212 depth (to 0.3–0.4 g kg−1 soil in 30–40 cm layer; Figure 1). As with SOC, tillage had a substantial impact 
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213 on the surface soil layer, where POM-C was 100 and 110% greater with NT than it was with CT and 

214 PG, respectively. No differences in POM-C stocks in the 0−40 cm soil layer among tillage systems 

215 were observed, however (Table 2). NT also resulted in increased Min-C stocks in the surface soil layers 

216 (Figure 1), the increased levels reflecting in Min-C stocks down to 40 cm that were 16 and 19% greater 

217 than with CT and PG, respectively (Table 2). 

218

219  Carbon pool indices

220 Relative to NG (CLI and CPI = 1, CMI = 100), CPI and CMI in the 0–40 cm layer were influenced by 

221 tillage system, whereas CLI was not (Table 2). Thus, CLI was 20–40% lower with the three systems 

222 than it was in the reference soil (NG). On the other hand, CPI was 10% lower with CT and PG, but 

223 10% higher with NT (Table 2). The combination of the previous CLI values and the respective 

224 quantitative changes in SOC stocks embodied in CPI led to a CMI value with CT, PG and NT 

225 corresponding to 59.6%, 79.9% and 81.4% that for NG. 

226

227 Rice yield, between-season yield stability and gross margin

228 The average rice yield for the body of tillage systems increased from 5.0 Mg ha−1 in the 1994/95 crop 

229 season to around 8.0 Mg ha−1 in the 2000s and almost 12.0 Mg ha−1 in the last season (Figure 2). 

230 Overall, rice grain yield under PG was higher than it was under CT and/or NT in 10 of the 19 crop 

231 seasons (Figure 2). In contrast, NT had slight lower yields than did CT and/or PG in 11 seasons (Figure 

232 2). The mean rice grain yield for the experimental period was 8.0 Mg ha–1 with CT, 8.5 Mg ha−1 with 

233 PG and 7.7 Mg ha−1 with NT. 

234 Yield stability, as measured in terms of the ratio of coefficient of variation for rice yield relative 

235 to the CT system, was higher with PG and NT. The yield stability ratio under NT exceeded 1.0 and 

236 was 15% higher on average than under CT and PG during the first 7 years, but decreased in the long 

237 term (Figure 3). In fact, the ratio was 4% and 10% lower under PG and NT, respectively, than it was 

238 under CT between the 8th and 14th year, and 13 % and 23% lower, respectively, between the 15th and 

239 24th year (Figure 3). These results indicate that PG and NT led to more stable yields in the long-term 

240 than did CT (Figure 3).
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241 The absolute gross margins of rice production under NT and PG were slightly higher than they 

242 were under CT in 17 and 12 crop seasons, respectively (Figure 4a). Gross margins across seasons 

243 averaged at 428 US$ ha−1 with NT and 425 US$ ha−1 with PG, both figures being slightly higher than 

244 that for CT (392 US$ ha−1). While the differential gross margin between PG and CT was similar 

245 throughout the experimental period, that between NT and CT increased from nearly -60 US$ ha–1 in 

246 the early years to around 131 US$ ha–1 in the latest (Figure 4b). 

247

248 Discussion

249 Soil organic carbon stocks

250 Twenty-one years of contrasting tillage systems resulted in large differences (up to 9.1 Mg ha1) in 

251 SOC stocks in the soil profile (040 cm; Table 2). Conversion from NG to irrigated rice in tilled soil 

252 decreased SOC stocks, with little difference between CT (2.8 Mg C ha−1) and PG (1.5 Mg C ha−1). 

253 This similarity in SOC down to 40 cm between NG, CT and PG was possibly a result of the combined 

254 effect of a high biomass input by summer rice (presumably higher than 9 Mg DM ha−1) and the slow 

255 decomposition of organic matter in flooded soil relative to NP even though the soil was annually 

256 perturbed by plowing and disking. Anaerobic organisms in flooded soil are less efficient in obtaining 

257 energy from organic matter than are aerobic organisms (Pett-Ridge et al., 2006) —and hence also less 

258 efficient in mineralizing plant residues incorporated into soil (Bellinger et al., 2012). The increased 

259 SOC levels of PG relative to CT may have resulted from the former system involving flooding for a 

260 longer time (approximately 2 months), thereby reducing the rate of mineralization of organic 

261 compounds in the soil.

262 On the other hand, increase of SOC stocks in NT relative to CT is consistent with previous 

263 reports (Liping and Erda, 2001; Nascimento et al., 2009; Rosa et al., 2011; Xu et al., 2013). The 

264 increased SOC stocks under NT resulted from enrichment with C of the soil surface layer by effect of 

265 the absence of perturbations and the presence of a high annual C input. Thus, NT increased SOC down 

266 to 40 cm at a rate of 0.41 Mg C ha−1 yr−1 relative to CT. These annual soil C accumulation rates in NT 

267 soil under irrigated rice are similar to those found by Zanatta et al. (2007) in uplands (0.44–0.60 Mg 

268 ha−1) under similar climatic conditions.
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269 If annual C inputs are assumed to be similar among tillage systems, then the increase in SOC 

270 stocks was a result of more marked SOC stabilization in NT soil than in no-tilled soils. The SOC 

271 differences of NT with CT and PG can be ascribed to differences in Min-C stocks, which correspond 

272 to organomineral associations. The association of organic C with minerals has been deemed one of the 

273 main mechanisms for stabilizing organic C in soil, mainly in lowland rice soils were frequent flooding 

274 causes rupture of soil aggregates and low efficiency of physical protection to organic matter 

275 stabilization (Nascimento et al., 2009; Conceição et al., 2013). 

276 Despite the marked residue input by rice, the increased C/N ratio and Si content (Devêvre & 

277 Horwáth, 2000; Pereira et al., 2004) relative to NG also probably diminished turnover of residual C 

278 and hindered its incorporation into the POM-C pool (or CLI). This was also probably why, even under 

279 NT, POM-C and CLI (0.7 in 040 cm soil layer) tended to decline and were never restored to the 

280 starting level in NG soil (Table 2). As a result, CMI was lower under CT and PG than it was under 

281 NG. On the other hand, NT allowed CMI in 040 cm soil layer to be partially recovered and CMI 

282 levels under this system to be similar to those in NG soil. Based on these results, NT provides an 

283 effective method for increasing SOC stocks in soil bearing irrigated rice in the long term, albeit with 

284 potentially adverse effects on the role played by labile carbon (POM-C) in soil.

285

286 Rice yield, between-season yield stability and gross margin

287 A marked increase in rice yield (5–12 Mg ha–1) was observed over the 19 crop seasons irrespective of 

288 tillage system. This was mainly the result of improved soil and crop management, and of using shorter, 

289 soluble Fe-tolerant, resistant to diseases and, thus, more productive rice varieties. Especially prominent 

290 among soil and crop management conditions were the preferential time to sowing; better seed quality 

291 and treatment; a reduced sowing density; higher, more balanced fertilizer rates; earlier irrigation; and 

292 more efficient control of weeds, insect pests and diseases (Menezes et al., 2012).

293 The increased rice yield observed under PG in 11 of the 19 years can be ascribed to the fact 

294 that flooding was advanced by approximately 30 days before rice sowing. Earlier flooding led to also 

295 earlier electrochemical changes in the soil solution, and raised pH, reduced Al3+ concentrations and 

296 increased nutrient availability in the soil solution as a result, thus boosting rice development 
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297 (Ponnamperuma, 1972). In addition, earlier flooding facilitated physical control of weeds (red rice 

298 mainly), thus reducing disease and damage to the crop (Sosbai, 2018).

299 On the other hand, NT exhibited lower rice yields in 11 of the 19 growing seasons. 

300 Interestingly, this system led to limited crop yield during the first ten seasons, possibly as a result of 

301 N being immobilized by soil microorganisms (Beri et al., 1992). This was probably not the case with 

302 CT and PG, which led to increased rice yields relative to NT. However, yields were similar with NT 

303 and PG in the last 5 crop seasons (except in penultimate season), and also with NT and CT in the last 

304 10 crop seasons (except in last season). The gradual increase in rice grain yield under NT in the long 

305 term may be associated to the increase in soil organic matter increasing the availability of N, which is 

306 the individual nutrient most markedly influencing rice development (Nadelhoffer et al., 1983).

307 NT and PG led to greater temporal yield stability than did CT (Page et al., 2019). Interestingly, 

308 relative yield stability ratio was negatively related to rice yield. Thus, as previously found by Knapp 

309 & Van Heijden (2018) and Page et al. (2019), such stability ratio decreased with increasing yield in 

310 long term. In relation to profitability, the reduced production costs of NT, and the yield advantage of 

311 NT and PG, resulted in higher gross margins with these two tillage systems than with CT. Although 

312 rice yield was substantially higher under PG than it was under NT, the former system was not more 

313 profitable than the latter owing to the increased cost derived from irrigation for 2 further months. Our 

314 results suggest that profits from conventional rice production systems in Southern Brazil could be 

315 increased by 33 US$ ha−1 by switching from CT to PG, and by 36 US$ ha−1 by replacing CT with NT. 
316

317 Conclusions

318 Tillage system is a key factor influencing soil organic matter and gross margins in irrigated rice. No-

319 tillage appears to be a C-friendly system for lowland soils, mainly because it increases their contents 

320 in mineral associated organic matter. Despite lower rice yield than pre-germinated and conventional 

321 tillage systems, no-tillage determined a slight increase on yield stability and profitability, which effects 

322 are less obvious and only occur in the long term. 

323

324
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Figures Caption

Figure 1. Soil organic carbon (a), particulate organic C (b) and mineral associated organic 

C (c) in the 0–40 cm layer of a sandy loam Gleysol subjected to three different tillage 

systems for 21 years, or native grassland (NG), in Southern Brazil. Horizontal bars denote 

least significant differences as per Tukey’s test at p < 0.05. ns not significant. CT 

conventional tillage, NT no-tillage, PG pre-germinated tillage.

Figure 2. Time course of irrigated rice grain yield from 1994/95 to 2017/18 in a sandy 

loam Gleysol subjected to three different tillage systems in Southern Brazil. Tillage 

means followed by same letter for each crop season were not significantly different as per 

Tukey’s test at p < 0.05. In 2001/02, rice was attacked by birds, so it was not harvested. 

Also, in the growing seasons from 2010/11 to 2013/14, soybean was cultivated to control 

red rice. CT conventional tillage, NT no-tillage, PG pre-germinated tillage. 

Figure 3. Between-season relative stability ratio of rice grain yield under pre-germinated 

tillage (PG) and no-tillage (NT) relative to the conventional tillage (CT) in the short (1–

7 seasons), medium (8–15 seasons) and long-term (16–24 seasons) in a subtropical 

Gleysol in Southern Brazil. A ratio < 1 or > 1 for a tillage system indicate that between-

season stability in grain yield under it was higher than or lower than, respectively, that 

for CT. 

Figure 4. Gross margin of irrigated rice (US$ ha-1) under three different tillage systems 

(CT, NT and PG) (a), and differential gross margin under NT and PG in relation to CT 

(reference) (b), on a sandy loam Gleysol in southern Brazil. The continuous line in the 

figure (b) represents the mean trend in differential gross margins across crop seasons in 
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differential gross margins between NT or PG in relation to CT system. No rice was 

harvested in 2001/02 because the crop was attacked by birds. Also, soybean was 

cultivated to control red rice in the growing seasons from 2010/11 to 2013/14. CT 

conventional tillage, NT no-tillage, PG pre-germinated tillage.
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Fig. 4. 
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Table 1

Dry matter and C input (shoot + root) by ryegrass in winter and rice in summer in a 

subtropical Gleysol subjected to three different tillage systems in Southern Brazil. 

Tillage 
system

Winter
ryegrass

Summer 
rice Annual

----------------------- Mg há–1 -----------------------

Dry matter
CT 5.43 9.55 15.0
PG 5.30 10.28 15.6
NT 5.49 9.22 14.7

C input
CT 2.44 4.30 6.7
PG 2.39 4.63 7.0
NT 2.47 4.15 7.0

CT conventional tillage, PG pre-germinated tillage, NT no-tillage.
Rice root biomass was assumed to be 30% of shoot biomass of ryegrass (Assmann et al., 2014) and rice 
(Holzschuh et al., 2009). 
Root shoot biomass for the whole experimental period (1994/95 to 2017/18) was estimated by using an 
apparent harvest index [grain/(grain + shoot)] of 0.5 (Fageria et al., 2007). 
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Table 2 

Soil organic carbon (SOC) stock, particulate organic carbon (POM-C), mineral-

associated carbon (Min-C), and C management index (CMI) components for the 0–40 cm 

layer of a subtropical Gleysol under native grassland and three tillage systems in Southern 

Brazil. 

Soil attribute Soil use and management system 1

NG CT PG NT

SOC stock, Mg C ha-1 49.3 46.5 b 2 47.8 ab 55.6 a

POM-C stock, Mg C ha-1 12.0 8.1 b 10.3 a 10.8 a

Min-C stock, Mg C ha-1 37.3 38.5 b 37.5 b 44.8 a

Carbon indices 3

CPI 1.0 0.9 b 0.9 b 1.1 a
CLI 1.0 0.6 a 0.8 a 0.7 a
CMI 100.0 60 b 80 ab 81 a

CMI components: C pool index (CPI), C lability index (CLI).
1 NG native grassland, CT conventional tillage, PG pre-germinated tillage, NT no-tillage.
2 Means followed by the same letter in each row were not significantly different as per Tukey’s 
test at p < 0.05. NG was not included in the statistical analysis because it do not follow any 
experimental design. 
3 C indices were calculated from eqs 1–3.
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SUPLEMENTARY DATA

Table S1. Rice varieties and rates of N, P2O5 and K2O used to establish rice each crop 

season from 1994/95 to 2017/18. 

Season Rice variety Tillage system
CT NT PG

N P2O5 K2O N P2O5 K2O N P2O5 K2O
 ---------------------------------- kg há–1 ---------------------------------

1994/95 BR IRGA 410 95 80 80 95 80 80 95 80 80
1995/96 BR IRGA 410 95 80 80 95 80 80 95 80 80
1996/97 BR IRGA 410 64 40 40 64 40 40 64 40 40
1997/98 BR IRGA 410 100 70 105 100 70 105 100 70 105
1998/99 BR IRGA 410 106 60 60 106 60 60 106 60 60
1999/00 BR IRGA 410 60 66 66 60 66 66 60 66 66
2000/01 BR IRGA 410 160 0 60 160 0 60 160 0 60
 2001/02 IRGA 422 CL 140 60 90 140 60 90 140 60 90
2002/03 IRGA 422 CL 130 40 60 130 40 60 130 40 60
2003/04 IRGA 422 CL 145 60 90 145 60 90 120 60 90
2004/05 IRGA 417 135 60 90 135 60 90 135 60 90
2005/06 IRGA 417 135 60 90 135 60 90 135 60 90
2006/07 IRGA 422 CL 140 90 135 140 90 135 140 90 135
2007/08 IRGA 422 CL 120 40 90 120 40 90 120 40 90
2008/09 Puitá Inta CL 135 70 105 135 70 105 135 70 105
2009/10 Puitá Inta CL 150 50 75 150 50 75 150 50 75
2014/15 IRGA 424 166 68 108 166 68 108 166 68 108
2015/16 IRGA 424 166 68 108 166 68 108 166 68 108
2016/17 IRGA 424 RI 166 68 108 166 68 108 166 68 108
2017/18 IRGA 424 RI 166 68 108 166 68 108 166 68 108
Average 129 60 87 129 60 87 127 60 87

No rice was harvested in the 2001/02 season because the crop was attacked by birds. Also, soybean was 
cultivated to control red rice in the growing seasons from 2010/11 to 2013/14.
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Table S2. Soil bulk density in different layers of an Entisol under three different tillage 

systems (CT, PG and NT) and native grassland in an adjacent reference area in a 

subtropical lowland ecosystem in Southern Brazil. 

Soil layer (cm) NT PG CT NG

----------------------------Mg m-3-------------------------------

0.0–2.5 1.37 1.38 1.62 1.32

2.5–5.0 1.37 1.38 1.62 1.32

5.0–7.5 1.71 1.55 1.64 1.46

7.5–10 1.71 1.55 1.64 1.46

10–15 1.80 1.65 1.80 1.62

15–20 1.79 1.73 1.84 1.68

20–30 1.79 1.73 1.84 1.68

30–40 1.79 1.73 1.84 1.68

NT no tillage, PG pre-germinated tillage,
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